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Oomycetes: Plant and animal pathogens in a fungal disguise

The oomycetes or “water moulds” are diverse eukaryotic microbes that are found in both

aquatic and terrestrial habitats. Based on their absorptive mode of nutrition, filamentous

growth, and formation of spores for reproduction, it was initially thought that they are related

to fungi, hence their name meaning “egg fungus” in Greek [1]. However, molecular data

placed oomycetes within the Stramenopiles, so more closely related to brown algae and dia-

toms rather than fungi [2]. The lack of septa in hyphae and the presence of a cellulose and β-

glucan instead of a chitin-rich cell wall differentiate oomycetes from fungi, while their hetero-

trophic lifestyle sets them apart from other Stramenopiles, which are largely photosynthetic

[2].

While numerous saprophytic oomycetes live in aquatic and moist soil environments, it is

the pathogenic oomycetes that have received the most attention. Most of our understanding

about the oomycete biology comes from decades of research on the notorious plant pathogen

Phytophthora infestans, which causes the late blight disease in potato and triggered the Great

Irish famines in the mid-19th century. However, pathogenic oomycetes are not just restricted

to plants and also represent an emerging threat to animal health (Fig 1). For example, mem-

bers of the genus Saprolegnia and Aphanomyces infect fish and crustaceans, thus harm the

aquaculture industry and threaten endangered species [3]. Pythium insidiosum infects a variety

of mammals, such as horse, dog, cattle, and humans, leading to a disease known as pythiosis

[4,5]. Although thought to be noncontagious, the clinical manifestations of pythiosis can prog-

ress into systemic fatal pathologies, and currently, apart from surgical removal of the infected

tissue, there is no treatment available to cure this disease [6].

A constant coevolutionary battle shapes host–pathogen interactions. Pathogenic oomycetes

use effectors as weapons to combat host responses and establish a successful infection [7]. For

example, P. infestans displays a bipartite genome organisation having slow and fast-evolving

regions, with the latter being enriched for genes encoding putative effectors that reside within

repeats and transposable elements. Such plastic regions of the genome may allow oomycetes to

rapidly evolve new virulence determinants and acquire species-specific means to overcome

host resistance [8]. The repertoire of potential virulence factors that oomycetes use to infect

animal hosts has also started to be understood [9–12]. Some virulence factors are shared

between plant- and animal-infecting species, such as the extracellular lipid transfer proteins of

the elicitin family or carbohydrate-binding module family 1 (CBM1) domain-containing pro-

teins that both constitute pathogen-associated molecular patterns recognised by plant hosts

[10,12,13,14]. However, effectors containing the well-studied N-terminal RxLR motif for

translocation to plant cells are largely missing in Saprolegnia parasitica [10] or, when present,

the motif is not required for translocation into fish cells, as in the case of a host-targeting effec-

tor that degrades RNA [11]. Instead, S. parasitica has an expanded repertoire of proteases [10].
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In turn, hosts are able to sense pathogenic oomycetes to mount an appropriate defence

response. For example, oomycete-derived cell wall carbohydrates have been shown to elicit an

inflammatory response in fish cells [15]. Other immune responses include the phenoloxidase-

mediated melanisation that correlates with oomycete resistance in crayfish [16] and the activa-

tion of Th2-type of cytokines in animal hosts infected with P. insidiosum [5].

Oomycete infections in nematodes

In order to tackle the emerging oomycete threats, it is important to have the right models in

place. Compared to plant pathogenic oomycetes, animal infections have been much more diffi-

cult to study in the lab due to paucity of tractable experimental systems. The discovery of a nat-

ural oomycete pathogen of the model nematode Caenorhabditis elegans [17] promises to

bridge this gap.

It all started with nematode sampling in Lisbon, which led to the recovery of a C. elegans
isolate containing “pearl-like” structures in its entire body, suggestive of a putative infection

(Fig 2). This pathogen was identified as the oomycete Myzocytiopsis humicola and has now

been repeatedly found to be naturally associated with C. elegans [17]. Nematode infections by

oomycetes are not unexpected; the first nematophagous oomycete was discovered by F.W.

Zopf in the late 19th century, and several genera, such as Chlamydomyzium, Gonimochaete,

Fig 1. Cartoon representing the phylogeny of animal pathogenic oomycetes. The tree shows the phylogenetic

position of nematode-infecting oomycetes in the context of the early diverging lineages (Haptoglossa/Eurychasma) and

the 2 main oomycete clades (Saprolegnian and Peronosporalean), which all include animal pathogens. Myzocytiopsis
humicola found to naturally infect Caenorhabditis elegans belongs to the Peronosporalean clade together with the plant

pathogenic oomycete Phytophthora infestans and the mammalian pathogen Pythium insidiosum. The illustrations

indicate the main host(s) infected by pathogen species within a certain genus, for example, nematodes in the case of

Haptoglossa, brown algae for Eurychasma, and fish for Saprolegnia. Note that some genera include pathogens that

infect both animal and plant hosts. The tree is adapted from [10] and modified to include nematode pathogens based

on phylogenetic relationships described in [2,19].

https://doi.org/10.1371/journal.ppat.1009316.g001
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Haptoglossa, and Myzocytiopsis, have been morphologically characterised as obligate parasites

of nematodes [18,19]. However, it is the association of M. humicola with C. elegans that is par-

ticularly interesting, given the plethora of molecular and genetic tools that are available for

research in this model organism.

The natural environment of C. elegans consists of soil, compost, rotting fruits, and leaves,

where it goes through a boom-and-bust lifestyle based on food availability. In this habitat, C.

elegans interacts with a plethora of microbes and pathogens, so it has evolved suitable means

to respond to such biotic interactions [20]. In the absence of specialised immune cells and

adaptive immunity, C. elegans relies on innate immune responses. Indeed, previous studies

have identified evolutionarily conserved signalling pathways and species-specific immune

effectors involved in the response to naturally occurring infections with bacteria [21], noda-

viruses [22], microsporidia [23], and fungi [24], as well as lab-induced infections with human

opportunistic pathogens such as Pseudomonas aeruginosa [25] and Staphylococcus aureus [26].

M. humicola infects through penetrating the collagenous cuticle of C. elegans, via attach-

ment to specific regions, mostly the longitudinal ridges known as alae or near the mouth (Fig

2A and 2B). This contrasts with bacterial and fungal pathogens that commonly attach to the

entire cuticular surface. Post-cuticle penetration, the oomycete spreads throughout the body

cavity in the form of hyphae, without forming specialised sites of interaction with host cells,

such as the haustorial interface observed during plant infections [27]. The pathogen hyphae

absorb nutrients while degrading host tissues, swell, and partition into multiple pearl-like spo-

rangia. The sporangia produce biflagellate zoospores, a characteristic of this group of patho-

gens, which are then released through exit tubes into the environment to form adhesive buds

and infect new nematodes [17].

Nematode-infecting oomycetes occupy distinct phylogenetic positions (Fig 1), which may

reflect diversity in the repertoire of virulence factors and infection strategies used. For exam-

ple, members of the genus Haptoglossa, which represent a basal clade, employ specialised “gun

cells” to shoot an infective sporidium into the body of nematodes [28]. Gun cells originate

from encysted zoospores and contain an inverted tube that forms the sporidium, as well as a

needle-like apparatus held under pressure by a large basal vacuole. The gun cells are kept ready

to fire and upon contact with a nematode or pressure, the tube explosively everts, and the nee-

dle penetrates the cuticle leading to pathogen entry. It would be interesting to find out if C. ele-
gans can also be infected by Haptoglossa. Together with the M. humicola model, this would

allow a comparative analysis of infection and immunity mechanisms in evolutionary distinct

oomycete lineages.

Chitinase-like proteins as part of the host immune response

The C. elegans transcriptional response to M. humicola exposure is distinct to that against

other nematode pathogens [17]. A hallmark of this response is the induction of chitinase-like

(chil) genes in the epidermis, which modulate the host sensitivity to infection. Chitinase-like

proteins (CLPs) are thought to cause modifications to the host cuticle, in a way that reduces

pathogen attachment to initiate the infection, thereby providing host resistance [17]. This

response strategy is reminiscent of callose deposition at the plant cell wall, which limits patho-

gen growth in response to oomycete detection [29]. CLPs are thought to arise from gene dupli-

cation of active chitinases, followed by mutations in their catalytic domain rendering them

catalytically dead, although they can still bind chitin [30]. In other systems, CLPs have been

studied in the context of helminth or bacterial infection [31,32], as well as inflammatory

pathologies, such as asthma [33] and fibrosis [34]. In C. elegans, the chil gene family is

expanded and includes at least 28 members compared to 4 in humans, so chil genes may
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exhibit functional redundancy or specificity for different pathogens. Pathogens have been

shown to harbour their own CLPs, which can act to suppress host immunity [35].

Interestingly, the induction of CLPs was observed even upon exposure to an innocuous

extract prepared from infected animals with M. humicola [36], so it is more likely to constitute

a response to pathogen sensing rather than a response to pathogen-induced host perturbation.

In addition, the C. elegans response to M. humicola was found to be modulated by chemosen-

sory neurons, which through currently unknown mechanisms, trigger the induction of CLPs

in the epidermis [36]. Pathogen recognition in C. elegans does not use classical innate immune

receptors such as Toll-like receptors (TLRs), and the underlying mechanisms remain elusive.

Therefore, the establishment of new tools, such as the M. humicola extract and chil gene

Fig 2. Caenorhabditis elegans infection by Myzocytiopsis humicola. (A) Cartoon describing the oomycete life cycle

within nematodes. (B) Images show different stages of the infection process from pathogen attachment (left panel,

arrowhead marks M. humicola adhesive bud attached to the nematode mouth) to early hyphal growth (middle panel,

pathogen is visualised in red by 18S FISH), to development of “pearl-like” sporangia in the head region (right). (C)

Late infection phenotype at the whole animal level with pathogen sporangia now developed throughout the body. Scale

bars are 20 μm in B and 100 μm in C.

https://doi.org/10.1371/journal.ppat.1009316.g002
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induction as a binary readout, will facilitate efforts towards dissecting the host machinery

involved in oomycete recognition.

Future perspectives

We now have a tractable animal host to elucidate the role of immune response mediators, such

as the CLPs and innate immunity pathways involved in detecting and fighting oomycete path-

ogens using molecular genetics. C. elegans can be used to identify systemic signals that coordi-

nate the host response to infection at the whole organism level, such as those connecting

sensory neurons to the responding epidermis upon pathogen recognition. To develop M.

humicola as a pathogen model, a series of new tools will be required for genetic transforma-

tion, gene modification, and pure pathogen culture that are currently lacking. Genome and

transcriptome analysis of the nematode-infecting species will start providing insights into

potential virulence factors. Heterologous expression of pathogen virulence factors in C. elegans
can be used to investigate their effect on host survival and physiology, while host-induced gene

silencing may be useful to study their function during infection. Furthermore, attempts can

also be made to test if nematode-killing oomycetes can serve as biocontrol agents for plant par-

asitic nematode infections damaging economically important crops [37]. The discovery of

oomycetes as natural pathogens of C. elegans has opened up multiple new avenues for further

research.
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