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Comparative transcriptome 
analysis of Eogammarus possjeticus 
at different hydrostatic pressure 
and temperature exposures
Jiawei Chen1,2, Helu Liu1, Shanya Cai1,2 & Haibin Zhang   1

Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine 
organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic 
invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, 
only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the 
present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus 
possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 
16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. 
possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted 
in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes 
were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. 
possjeticus was related to temperature. Several biological processes including energy metabolism, 
antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, 
and DNA repair are probably involved in the acclimatisation in deep-sea environments.

Hydrostatic pressure is thought to be the major environmental factor that limits the vertical distribution of extent 
marine animals1,2. Studies in the western North Atlantic3,4 revealed a unimodal diversity-depth pattern. Diversity 
and biomass are relatively low at the upper bathyal and abyssal depths but peak at the intermediate depths, rang-
ing from 1,000 m to 3,000 m5. This kind of depth zonation may have resulted from the colonisation of the deep sea 
by shallow-water organisms (for review see Brown & Thatje 20146).

The colonisation of the deep sea occurred throughout selection and during the slow genetic drift of species 
that gradually adapted to life in the deep6. However, depth range shifts, which may be as important as geographic 
range shifts, are observed in response to ocean warming7,8. Thus, the ability of a shallow-water animal to accli-
matise to deep-sea environments during its lifetime is vital. The combined effects of temperature, pressure, and 
oxygen concentration, may have constrained the bathymetric migrations of marine fauna8. Substantial studies 
have examined the tolerance of shallow-water invertebrates to high hydrostatic pressure and low temperature 
(for review see Brown & Thatje 20146). These studies indicated that many extant marine benthic invertebrates 
can tolerate hydrostatic pressure outside their known natural distributions, and a low temperature could impede 
high pressure acclimatisation. A few studies have focused on gene expression, such as that of heat shock protein 
70 (hsp70), in response to high pressure exposure9–11. However, the transcriptomic approach is seldom applied 
to relevant studies. A set of genes, which may be activated in response to high hydrostatic pressure (HHP) expo-
sure, can be detected through comparative transcriptome analysis. Thus, the molecular mechanisms that enable 
shallow-water organisms to acclimatise to deep-sea environments can be studied.

Transcriptome analysis has been applied widely to discover mRNA-level responses, revealing the genetic 
basis of adaptation to deep-sea environments12–15. Most comparative transcriptome analyses of invertebrates 
were based on the comparisons of congeneric species that have different vertical distribution profiles, and com-
mon patterns of adaptation appeared in widely different taxa of deep-living organisms16. Many biological pro-
cesses are possibly related to deep-sea adaptation, including alanine biosynthesis15, antioxidation13,17, energy 
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metabolism15,18, immunity18,19, fatty acid metabolism20, and genetic information processing15. However, tran-
scriptomic studies have seldom examined how shallow-water invertebrates acclimatise to a simulated immersion 
in the deep-sea. Applying transcriptome analysis to reveal deep-sea environmental acclimatisation is of great 
importance because both evolutionary adaptation and phenotypic acclimation are essential for high pressure 
adaptation21.

The impacts of hydrostatic pressure on shallow-living organisms were explored in many studies (for review 
see Somero 199222). Lipid bilayer is regarded as one of the most sensitive molecular assemblages of hydrostatic 
pressure21–25. High pressure leads to a reduction of membrane fluidity; consequently, the physiological function 
of membrane, including potential transmission23,26, transmembrane transportation, and cell movement27,28, are 
impeded. The effects of HHP and low temperature are similar29,30. Parallel effects can be detected according to 
membrane composition with an increase in hydrostatic pressure of 100 MPa and a reduction in temperature of 
13–21 °C22. Studies on microorganisms have indicated that the increasing proportion of unsaturated fatty acid 
and branched-chain fatty acid can remit the reduction of membrane fluidity imposed by high pressure and low 
temperature27,31. The structure of protein is depolymerised under high pressure, which results in the inactiva-
tion of enzymes27,32,33. Low temperature also has a negative effect on protein structure. Therefore, it induces ele-
vated protein chaperoning34,35, which decreases the stabilisation of the secondary structures of RNA and DNA. 
Moreover, high pressure can strengthen hydrogen bonds. Consequently, processes that include DNA replication, 
transcription and translation, are impeded36.

The amphipod Eogammarus possjeticus, belonging to the gammaridean crustaceans, is widely distributed in 
the coastal and estuarine areas of the Yellow Sea and Bohai Sea in northern China37. The optimal temperature 
and salinity of E. possjeticus are 20–25 °C and 5–35, respectively37. Amphipods are not only ubiquitous in shallow 
water, but are also widespread at the hadal depth38, which suggests that shallow-water amphipods could accli-
matise to HHP. In the present study, we examined the hydrostatic pressure tolerance of E. possjeticus for the first 
time. We employed comparative transcriptome analysis on E. possjeticus to examine their molecular responses to 
hydrostatic pressure stress at different temperature conditions. Our findings may shed light on the mechanisms 
behind molecular acclimatisation to HHP at the genetic level.

Methods
Collection, maintenance, and rearing of E. possjeticus.  Adult specimens of E. possjeticus were net 
caught from an aquaculture farm in Shandong, China on December 2016. They were maintained at a closed 
recirculating aquacultural system (seawater was partially refreshed once a week) in the laboratory of the Institute 
of Deep-sea Science and Engineering, Chinese Academy of Sciences. The amphipods were reared in aerated 
filtered seawater (salinity: 34.7–35.3, 1 μm filtered, natural light cycle), and were fed with brine shrimp flakes 
thrice a week; unconsumed food was removed after 24 h. Experimental individuals were starved for 3 d prior to 
pressurisation.

The experimental animals were maintained in the aquacultural system at 20 °C for 2 weeks to acclimatise them 
to laboratory environments and allow them to recover from collection and handling stress. The other amphipods 
remained in the aquacultural system at a constant temperature, while 10 individuals were chosen from the aqua-
cultural system and used for pressure incubation. After the 20 °C experiments were finished, which took at least a 
week, the aquacultural system temperature was adjusted to 15 °C by a maximum of 2 °C per day. All experimental 
samples acclimatised to the temperature after it reached 15 °C for at least 5 d before pressurisation. The same 
procedure was followed for the experiments conducted at 10 °C and 5 °C. Studies on temperature acclimation of 
insect39–42 and amphibians43,44 indicated that nearly all studied animals can acclimatise to a temperature variation 
of 5 °C within 5 d. Thus, the temperature acclimatisation of experimental samples in this study is likely to be 
reached before pressure incubation was achieved.

Pressurisation.  The hydrostatic pressure system was set to desired temperature by using circulating water 
bath (Tianheng Instrument Factory, Zhejiang, China) at least 6 h prior to each experiment. Ten adult individuals 
of similar size (length: 13 ± 2 mm) were placed inside the stainless pressure chamber (volume: ~20 litres, internal 
diameter 20 cm, internal depth 65 cm) which is full of filtered seawater at a constant temperature (±0.8 °C), and 
maintained for 1 h to allow acclimatisation and recovery from handling stress. Then, the pressure vessel was pres-
surised at 1 MPa per minute to experimental pressure by using hydraulic pump (AILIPU Science and Technology 
Co., Inc., Zhejiang, China). Experimental samples would be maintained at temperature (5, 10, 15, and 20 °C) and 
hydrostatic pressure (5, 10, 15, 20, 25, and 30 MPa) conditions for 16 h. The pressure chamber was sealed and 
isolated during this time period. The pressure was released instantaneously after hydrostatic pressure exposure 
for 16 h, and the samples were removed from the pressure chamber and snap frozen in liquid nitrogen. The max-
imum time elapsed between departure from experimental pressure and flash freezing is 3 min. The flash-frozen 
individuals were stored at −80 °C for further use. Muscle tissues were not dissected before RNA extraction.

Dissolved oxygen, salinity and pH value were measured by using YSI Professional Plus (YSI Inc., USA) to 
ascertain the stabilisation of seawater quality. In addition, concentration of nitrite nitrogen (NO2-N), ammoniacal 
nitrogen (NH3-N) and nitric nitrogen (NO3-N) were measured by using HACH DR 1900 (HACH Company, USA) 
before and after each experiment. No significant difference was found between the experimental context before 
pressurisation (dissolved oxygen: 5.38 ± 0.3 mg.L−1, salinity: 35.0 ± 0.3, pH: 8.1 ± 0.1, NO2-N: 0.0055 ± 0.0005, 
NH3-N: 0.015 ± 0.005, NO3-N: 0.015 ± 0.005) and after pressurisation (dissolved oxygen: 5.26 ± 0.4 mg.L−1, salin-
ity: 35.0 ± 0.3, pH: 8.1 ± 0.1, NO2-N: 0.007 ± 0.0005, NH3-N: 0.02 ± 0.005, NO3-N: 0.015 ± 0.005).

RNA extraction, quantification, and qualification.  Approximately 50 mg pooled muscle tissues from 
5 individuals of the same experimental group were used for each RNA extraction. The muscle tissues from 5 
frozen samples were dissected before melted, and immediately transferred into 1 ml of QIAzol (from RNeasy 
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Plus Universal Kit) and homogenised by T10 basic ULTRA-TURRAX (IKA, German). Total RNA was extracted 
by RNeasy Plus Universal Kit (QIAGEN, UK) according to the manufacturer’s protocol. All samples must meet 
requirements of the 260/280 ratio between 1.8 and 2.1, and the 260/230 ratio between 2.0 and 2.4, tested by using 
Nanodrop spectrophotometer (Thermo Fisher Scientific, USA). RNA integrity and concentration were assessed 
by using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA), 
and Qubit RNA Assay Kit in Qubit 2.0 Flurometer (Life Technologies, CA, USA), respectively. Only the samples 
with a RIN value higher than 6.8 were further used. Moreover, RNA degradation and contamination were also 
monitored on 1% agarose gels. Clear bands of 28 s, 18 s and 5 s rRNA were needed.

Library preparation, Illumina sequencing, and assembly.  Six of these experimental groups were cho-
sen for further comparative transcriptome analysis. Their experimental conditions and treatment identifiers are 
provided in Table 1. A total of 1.5 μg RNA per sample was used for the RNA sample preparations. Sequencing 
libraries were generated by using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA), and index 
codes were added to attribute sequences to each sample. TruSeq PE Cluster Kit v3-cBot-HS (Illumina) was used 
for the clustering of the index-coded samples performed on a cBot Cluster Generation System. Then, the library 
preparations were sequenced on an Illumina Hiseq platform and paired-end reads were generated. Clean data 
were obtained by removing reads containing adapter, reads containing ploy-N and low quality reads from raw 
data. Transcriptome assembly was then accomplished based on the clean data by using Trinity45. At last, tran-
scripts were hierarchical clustering by Corset46.

Gene functional annotation.  All unigenes were annotated in seven databases, including NCBI 
non-redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), a manually anno-
tated and reviewed protein sequence database (Swiss Prot), euKaryotic Ortholog Groups (KOG), Protein family 
(Pfam), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). The annotation results 
of all unigenes are supplied in Table S1.

Transcriptome differential expression analysis and enrichment analysis.  First, FPKM and read 
count of six experimental groups were calculated by using RSEM47. Then, FPKM were normalised by using 
TMM method. The read counts and normalised FPKM of unigenes are supplied in Table S2. Second, differential 
expression analysis of paired-sample test was implemented by using DESeq. 2 package48 to identify differential 
expression genes (DEGs) involved in HHP acclimatisation. The following combinations were paired: T20P15 with 
T20P0.1, T15P15 with T15P0.1, and T10P15 with T10P0.1. Only genes with an adjusted p-value < 0.01 and |log2 
(fold change)| > 1 were regarded as DEGs. In this study, only up-regulated genes were considered as activated 
genes in response to HHP exposure because only essential processes can be maintained, whereas nonessential 
processes are reduced outside the optimal range49–53.

The well-annotated DEGs were further analysed and they were grouped in 10 biological processes. The dis-
tance among experimental groups was calculated according to normalised FPKM of these well-annotated DEGs 
with vegan R package54 by using the euclidean method. Then, hierarchical clustering result was visualised by using 
pheatmap R package55 via the complete method. Moreover, the KEGG enrichment analysis of these up-regulated 
DEGs was implemented by using the KOBAS software56.

Gene expression analysis and validation by quantitative real-time reverse transcription-PCR 
(qPCR).  A total of 23 DEGs were employed for qPCR by StepOnePlus Real-Time PCR System (Applied 
Biosystems, USA) to validate the RNA-seq results. Each 25 μl reaction contained 12.5 μl of FastStart Universal 
SYBR Green Master (Rox) (Roche, Switzerland), and 2.5 μl of template cDNA. The primer sequences (Table S3) 
were designed by Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA, USA). DNase treat-
ment was not required because gDNA solution (from RNeasy Plus Universal Kit) was used for RNA extraction. 
The cDNA library was established by PrimeScript II 1st Strand cDNA Synthesis Kit (Takara, Janpan) according to 
the manufacturer’s standard protocol.

Relative standard curve method was used for expression level analysis with Rpl8 as internal control. The inter-
nal control was selected by GeNorm software (Primer Design, Ltd., Southampton University, Highfield Campus, 
Southampton Haunts, UK). Six 3-fold serial dilutions were performed on a cDNA template to ensure that each 
primer-set had a qPCR reaction efficiency of between 90 and 105% and a linearity greater than r2 = 0.98 across 
the predicted experimental cDNA concentration range. Normalised relative quantities were scaled to the control 
treatment (20 °C 0.1 MPa) in each comparison and converted to relative fold change (RFC). Then, log2 (RFC) was 
used to evaluate differential expression level. The melting curve analysis was performed at the end of each PCR to 

Group ID Temperature (°C) Pressure (MPa)

T20P0.1 20 0.1

T20P15 20 15

T15P0.1 15 0.1

T15P15 15 15

T10P0.1 10 0.1

T10P15 10 15

Table 1.  Experimental conditions of six experimental groups used for comparative transcriptome analysis.
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confirm only one PCR product was amplified. At last, Pearson correlation coefficients (PCC) between RNA-seq 
and qPCR results were calculated by corrplot R package57.

According to the results of differential expression analysis in this study, five of these genes, including glu-
tamine synthetase (GS), phosphoenolpyruvate carboxykinase (PEPCK), peroxidase, crustin Pm5, and lysozyme, 
were selected and their expression patterns were examined in all experimental conditions by using qPCR. We also 
examined the expression level of a HHP induced gene hsp70 (not existed in the result of transcriptome differen-
tial expression analysis in this study) which has been reported in many studies. Two-way ANOVA was used to 
determine whether temperature and hydrostatic pressure significantly impacted the gene expression patterns, and 
one-way ANOVA was used to determine whether hydrostatic pressure significantly impacted the gene expres-
sion patterns at each temperature condition. The ANOVA analyses were implemented by using R software58. The 
expression patterns of the six genes were shown on line graph by using Graphpad Prism 7 (Graphpad software, 
Inc., USA).

Results
Pressure tolerance of Eogammarus possjeticus.  The highest examined hydrostatic pressure condition 
in the present study was 30 MPa. All experimental individuals died at any temperature condition after 16 h pres-
sure exposure under 30 MPa (Table 2). The critical pressure of E. possjeticus is 25 MPa at temperature conditions 
from 10 °C to 20 °C because up to 50% individuals died under these conditions. However, 25 MPa in the low 
temperature of 5 °C resulted in 100% mortality rate. A total of 100% survival rate was observed at all temperature 
conditions (5–20 °C) after 16 h pressure exposure under 20 MPa.

Transcriptome sequencing, assembly and annotation.  Six experimental groups were chosen for tran-
scriptome analysis (Table 1). Qualities of sequencing are listed in Table S4. Clean reads were finally assembled 
into 138, 304 unigenes with a total length of 167, 172, 351 bp and an N50 length of 1, 900 bp (Table S5). A total of 
60, 928 (44.05%) unigenes were annotated in at least one database (Table S6). Sequence analysis indicated that the 
experimental samples in the present study share 99% 16S rRNA sequence similarity with Eogammarus possjeticus 
according to Nt database.

DEGs involved in acclimatisation of high pressure exposure.  A total of 137 up-regulated genes were 
selected through DESeq. 2 paired test, of which 94 were well-annotated (Table S7). These genes were grouped into 
10 different biological processes according to their functions as follows: energy metabolism (9 genes), antioxida-
tion (5 genes), immunity (13 genes), lipid metabolism (4 genes), membrane-related process (18 genes), genetic 
information processing (13 genes), DNA repair (4 genes), oxidation-reduction (7 genes), chitin metabolism (6 
genes) and others (15 genes). Their expression patterns were visualised via heatmap (Fig. 1). Results of KEGG 
enrichment indicated that six KEGG pathways were significant enriched (adjusted p-value < 0.01), including 
nitrogen metabolism, glutamatergic synapse, arginine biosynthesis, glyoxylate and dicarboxylate metabolism, 
GABAergic synapse,and alanine, aspartate and glutamate metabolism (Fig. S1).

Nine genes were grouped in energy metabolism. Four of them were annotated in glutamine synthetase (GS) 
which catalyse the amidation of glutamate to glutamine59. Two of them were annotated in phosphoenolpyruvate 
carboxykinase (PEPCK) which is a key enzyme in the lyase family involved in gluconeogenesis60. One gene was 
annotated in carbonic anhydrase (CA) which catalyse the conversion of CO2 to the bicarbonate ion and protons61.

Five genes were grouped in antioxidation. Three of them were annotated in vitellogenin (VG) which is known 
as a yolk protein and was reported to act as an antioxidant to promote longevity62. The other two genes were 
annotated in peroxidase and catalase respectively. Both genes catalyse the decomposition of hydrogen peroxide 
to water and oxygen63,64.

A total of 13 genes, including crustin Pm5, lysozyme, and alpha-2-macroglobulin (α2M), were grouped in 
immunity. The gene crustin Pm5 and lysozyme exhibit antimicrobial activity against some gram-positive bacte-
ria65,66, and α2M serves as humoral defense barriers against pathogens67.

Four genes were grouped in lipid metabolism. They were fatty acid desaturase, elongation of very long chain 
fatty acids protein (ELOVL), sphingomyelin phosphodiesterase (SMase), and fatty acid-binding protein. Fatty 
acid desaturase is an enzyme which creates carbon-carbon double bond. It allows the membrane to become more 
fluid when the temperature is decreased68. A kind of ELOVL is required for the synthesis of C28 and C30 satu-
rated fatty acids and of C28-C38 very long chain polyunsaturated fatty acids69. SMase is involved in sphingolipid 
metabolism70, and its activation is suggested to be involved in the production of ceramide in response to cellular 
stresses71. A total of 18 genes were grouped in membrane-related process, most of which are related to ion trans-
membrane transportation.

A total of 13 genes were grouped in genetic information processing, including DNA replication, transcription, 
and translation. Four genes were grouped in DNA repair and they were annotated in C2H2 zinc finger domain, 

0.1 MPa 5 MPa 10 MPa 15 MPa 20 MPa 25 MPa 30 MPa

20 °C 0% 0% 0% 0% 0% 50% 100%

15 °C 0% 0% 0% 0% 0% 40% 100%

10 °C 0% 0% 0% 0% 0% 40% 100%

5 °C 0% 0% 0% 0% 0% 100% 100%

Table 2.  Mortality rates of Eogammarus possjeticus at different hydrostatic pressure and temperature 
conditions. Ten individuals were used in each experiment.
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MYM-type zinc finger domain, and C4 zinc finger domain. The functions of zinc finger proteins include DNA 
recognition, RNA packaging, and transcriptional activation72. Studies found that genes encoding for zinc finger 
domains expanded in deep-sea amphipod compared with other shallow-water species genes15.

Gene expression analysis by qPCR.  PCC between RNA-seq and qPCR results ranged from 0.77 to 0.99 
(Table S3), which validated the reliability of the RNA-seq results. Two-way ANOVA results (Table 3) confirmed 
that the expression patterns of the five genes involved in pressure acclimatisation were significantly correlated 
with hydrostatic pressure, whereas hsp70 was not. The expression patterns of four genes, including GS, PEPCK, 
peroxidase, and lysozyme, were also significantly affected by temperature. Pressure and temperature had a signif-
icant interaction on the expression patterns of two genes (GS and PEPCK). One-way ANOVA analysis (Table 3) 
indicated that although the gene expression level was not always significantly up-regulated by hydrostatic pres-
sure, a positive correlation can be mostly observed between gene expression patterns and hydrostatic pressure 
(Fig. 2). Genes involved in energy metabolism (GS and PEPCK) can also be up-regulated by low temperature, 
whereas genes involved in immunity (crustin Pm5 and lysozyme) did not show this trend (Fig. 2).

Discussion
The utilisation of a pressure vessel provided a stable and controllable experimental context allowing for pressure 
tolerance to be examined accurately. Although 5 d are enough for insect and amphibian to acclimate to a tem-
perature variation of 5 °C, a longer period of acclimatisation time of more than 10 d is recommended in marine 
invertebrates73. We measured water quality before and after each experiment to ascertain that the experimental 
context only involved pressure and temperature stresses, and no significant difference was observed. Therefore, 
hydrostatic pressure and temperature were the only two variables.

Figure 1.  Expression patterns of 94 well-annotated differential expression genes. Heatmap Clustering is based 
on normalised FPKM of differential expression genes. Name of corresponded biological processes are listed on 
the right of the heatmap. T20P0.1: 20 °C, 0.1 MPa; T20P15: 20 °C, 15 MPa; T15P0.1: 15 °C, 0.1 MPa; T15P15: 
15 °C, 15 MPa; T10P0.1: 10 °C, 0.1 MPa; T10P15: 10 °C, 15 MPa.

GS PEPCK Peroxidase Crustin Pm5 Lysozyme Hsp70

Two-way ANOVA

Pressure 0.017* 2.44 × 10−12*** 0.001** 0.001** 0.013* 0.115

Temperature 4.31 × 10−7*** 0.003** 0.003** 0.083 5.58 × 10−4*** 0.606

interaction 1.81 × 10−5*** 0.034* 0.797 0.964 0.858 0.112

One-way ANOVA

Pressure (20 °C) 2.96 × 10−4*** 5.93 × 10−6*** 0.002** 0.059 0.089 0.814

Pressure (15 °C) 1.17 × 10−4*** 0.002** 0.976 0.857 0.567 0.663

Pressure (10 °C) 0.072 8.48 × 10−9*** 0.167 7.39 × 10−6*** 0.009** 0.002**

Pressure (5 °C) 0.006** 4.87 × 10−4*** 9.11 × 10−8*** 0.592 0.184 0.399

Table 3.  Correlations between gene expression patterns and two environmental variables tested by two-way 
ANOVA, and correlations between gene expression patterns and hydrostatic pressure at each temperature 
condition tested by one-way ANOVA. ***p-value < 0.001; **p-value < 0.01; *p-value < 0.05.
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Pressure tolerance of Eogammarus possjeticus.  The shallow-water amphipod E. possjeticus can survive 
100% at 20 MPa at all temperature conditions ranging from 5 °C to 20 °C for at least 16 h. The impressive tolerance 
of HHP was also observed among many other shallow-water invertebrates (for review see Brown & Thatje 20146). 
Remarkably, the pressure boundary of most studied shallow-water invertebrates ranged from 20 MPa to 25 MPa, 
coinciding with regions of high species turnover5,6.

Low temperatures lead to a decreasing pressure tolerance of E. possjeticus. The phenomenon of decreasing 
temperature resulting in a reduction of pressure tolerance was also reported among other marine animals. For 
example, the amphipod Stephonyx biscayensis, subjected to a 10-minute pressure exposure, can tolerate 30 MPa at 
10 °C; however, its pressure tolerance fell to 20 MPa at 3 °C74. Increasing the pressure by 1 MPa every 5 min up to 
30 MPa resulted in the rate of “loss of equilibrium” in ≥50% of shrimp Palaemonetes varians observed at 20 MPa 
at 20 °C and 15 MPa at 10 °C75.

Genes in response to high hydrostatic pressure.  Most deep-sea animals are widely accepted to have 
originated from shallow waters as a consequence of a series of extinction events during the Phanerozoic, and 
the colonisation of deep sea by shallow-water organisms that fallowed76,77. Most existing studies focused on 
these multiple colonisation events, and the adaptation mechanisms of deep-sea species. However, the deep-sea 
environments acclimatisation mechanisms of shallow-water fauna are seldom studied. This question is of great 
importance in the present context of climate change and ocean warming, which are likely to force bathymetric 
migrations of marine fauna8,11.

In the present study, we explored the acclimatisation mechanisms of the shallow-water amphipod E. possjeti-
cus via transcriptome analysis for the first time. Our results suggested that several biological processes, including 
energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information 
processing, and DNA repair, are involved in the acclimatisation of HHP.

The HHP condition of 15 MPa is apparently beyond optimum for the shallow-water amphipod E. possjeticus. 
Homeostatic effort is required to maintain internal conditions within their physiological tolerance boundaries. 
Consequently, an increased level of energy requirement to facilitate the increased homeostatic effort is needed. 
Our results identified three genes are involved in energy metabolism, and two of them (PEPCK and GS) involved 
in energy production. PEPCK, involved in pathway of gluconeogenesis60, converts oxaloacetate into phosphoe-
nolpyruvate, which has the highest energy phosphate bond found in living organisms. GS catalyse the amida-
tion of glutamate to glutamine59 which is the most abundant amino acid in the plasma and plays an essential 
role in protein and lipid synthesis78,79. Moreover, glutamine acts as an important energy source in cells80–82, and 

Figure 2.  Effect of hydrostatic pressure on expression patterns of six genes at different temperature conditions. 
Normalised relative quantities were scaled to the control treatment (20 °C, 0.1 MPa) in each comparison and 
converted to relative fold change (RFC). Error bars represent 95% confidence intervals. Correlations between 
gene expression patterns and hydrostatic pressure at each temperature condition are tested by one-way ANOVA 
(***p-value < 0.001; **p-value < 0.01; *p-value < 0.05).
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glutaminolysis partially recruits reaction steps from the citric acid cycle. An increased oxygen demand is required 
to support a high level of energy requirement. Oxygen is converted into carbon dioxide through aerobic respira-
tion, resulting in the up-regulation of CA, which converts CO2 to the bicarbonate ion and protons61.

Although the metabolic rate of E. possjeticus was not examined in this study, existing studies on crab Lithodes 
maja indicated that oxygen consumption increases with increasing hydrostatic pressure and is significantly higher at 
7.5–17.5 MPa than at 0.1 MPa11. The Pressure tolerance is constrained by oxygen concentration8,11. It may be because 
the oxygen intake of animals has its ceiling. However, the oxygen consumption of deep-sea species did not appear 
to be elevated compared with shallow-water congeneric species83–85, suggesting that the former are functionally 
adapted to high hydrostatic pressure and low temperature86. Although the oxygen consumption of deep-sea species 
is not significantly higher than that of shallow-water species, the genes involved in carbohydrate and energy metab-
olism are positively selected in amphipod Hirondellea gigas, which lives at the depth of 10, 929 m in the Challenger 
Deep15. In general, energy metabolism is of great important in both acclimation and adaption to the deep sea.

Increased mitochondrial activity is needed to meet the energy requirement under high pressure stress. 
Therefore, mitochondrial oxidative damage is elevated. Consequently, genes involved in antioxidation may be 
activated. Moreover, the electron transport chain of many reactions would be impeded because the enzyme 
activity is highly impacted by high pressure87, which consequently induces antioxidant response. In this study, 
five genes involved in HHP acclimatisation, including peroxidase and catalase, are grouped in antioxidation. 
An increasing number of evidence indicates that antioxidant defense responses can be induced by HHP and 
low temperature88–90. Experimental evidence indicates that the mutant of bacteria Shewanella piezotolerans, with 
enhanced antioxidant defense capacity by experimental evolution under H2O2 stress, has better growth ability at 
the high pressure of 20 MPa and low temperature of 4 °C than the wild type S. piezotolerans17.

Elevated oxidative damage leads to apoptosis91. Thus, the immune system would be activated in response 
to mtDNA released from apoptotic mitochondria92. Moreover, misfolded proteins that have resulted from high 
pressure also induce an immune response93. In the present study, a total of 13 up-regulated DEGs were grouped 
in immunity, including crustin Pm5 and lysozyme, both of which have antimicrobial activities and serve as part 
of the innate immune system65,66. Genes involved in immunity were positive selected in the deep-sea urchin 
Allocentrotus fragilis genome compared with shallow-water urchin Strongylocentrotus purpuratus19, and was 
up-regulated in the deep-sea shrimp Rimicaris sp. compared with the same species maintained at atmospheric 
pressure for 10 d94. However, hsp70 was not significantly induced by hydrostatic pressure exposure in the present 
study. Heat shock proteins play essential roles in heat shock tolerance and the refolding of denatured proteins. 
They also respond to a variety of stressors, such as pathogen infection, oxidative stress, heavy metals, and other 
xenobiotics95. A study on the gene hsp70 of shrimp Palaemonetes varians found that the expression level measured 
in 1 h was three times higher than that observed in shrimp maintained for 7 d under similar temperature and high 
pressure conditions10. Therefore, the expression level of hsp70 is related to time period under hydrostatic pressure 
exposure, and its up-regulation is probably a universal stress response in a short time period.

High pressure leads to a reduction of membrane fluidity21–25. The brain gangliosides of the deep-living fish are 
rich in mono-unsaturated fatty acids and low in saturated fatty acids96. The homeoviscous adaptation of mem-
branes is an important component of adaptation to depth97. Moreover, studies on homeoviscous acclimation to 
pressure on microorganisms found that the increasing proportion of unsaturated fatty acid and branched-chain 
fatty acid can remit the reduction of membrane fluidity imposed by high pressure and low temperature27,31. In our 
studies, four genes were grouped in lipid metabolism, and two of them are involved in the synthesis of unsatu-
rated fatty acids, including fatty acid desaturase68 and ELOVL69. Thus, homeoviscous acclimatisation is important 
for the deep sea acclimation of shallow-water species.

Almost all membrane-based functions are affected by high pressures98, and transmembrane ion flux is extraor-
dinarily sensitive to pressure. The tansmembrane protein Na+-K+-adenosine triphosphatase (Na+-K+-ATPase), 
which plays a key role in osmoregulation, varies its activity in accordance with the fluidity of the surrounding 
membrane lipids99. Studies about Na+-K+-ATPase of teleost gills found that the enzyme from the deep-living 
fishes is far less inhibited by pressure than the homologous enzymes of shallow-living species. The evolution 
of Na+-K+-ATPase of deep-sea fish might be a consequence of homeoviscous adaptation of membranes. In our 
results, thirteen genes belong to ion transmembrane transportation genes, five of which involved in Na+ trans-
membrane transportation. This tendency reflects that ion transportation in E. possjeticus was impeded under high 
pressure, and the maintenance of its normal function is of great importance for pressure acclimatisation.

Conclusions
This study reveals that the shallow-water amphipod E. possjeticus can survive 100% under 20 MPa for at least 
16 h at temperature conditions from 5 °C to 20 °C. Decreasing temperature results in a reduction of pressure 
tolerance of E. possjeticus. We identified several genes and biological processes involved in the acclimatisation of 
shallow-water invertebrates in deep-sea environments, including energy metabolism, antioxidation, immunity, 
lipid metabolism, membrane-related process, genetic information processing, and DNA repair.

Ethical approval and informed consent.  This study did not involve any endangered or protected species and 
followed all relevant ethical guideline. The samples examined in this study were used as aquacultural feed in China.

Data Availability
Relevant data supporting this manuscript are contained within the tables of this manuscript or provided in the 
supplementary material. The clean data of RNA-seq were available from National Center for Biotechnology In-
formation Sequence Read Archive database (SRA accession numbers: SRR7205161, SRR7205163, SRR7205164, 
SRR7205158, SRR7205159, SRR7205160).The unigenes were submitted to the Transcriptome Sequencing Assem-
bly database (TSA accession number: SUB4070551).
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