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Post-translational modifications (PTMs) occur in almost all proteins and play an important role in numerous bi-
ological processes by significantly affecting proteins' structure and dynamics. Several computational approaches
have been developed to study PTMs (e.g., phosphorylation, sumoylation or palmitoylation) showing the impor-
tance of these techniques in predicting modified sites that can be further investigated with experimental ap-
proaches. In this review, we summarize some of the available online platforms and their contribution in the
study of PTMs. Moreover, we discuss the emerging capabilities of molecular modeling and simulation that are
able to complement these bioinformatics methods, providing deeper molecular insights into the biological func-
tion of post-translational modified proteins.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Post-translational modifications (PTMs) occur on a large number of
proteins de facto increasing the actual complexity of the proteome.
PTMs consist in a covalentmodificationof amino acids of theprimary pro-
tein sequence [1] and have the effect to create amuch larger array of pos-
sible protein species. In response to specific physiological requirements,
PTMs play a crucial role in regulating many biological functions [2], such
as protein localization in the cell [3,4], protein stability [5], and regulation
of enzymatic activity [6]. To datemore than 90,000 individual PTMswere
detected using biochemical and biophysical analyses [7]. In particular, it
was observed that almost 5% of the human genome encodes enzymes
in charge of catalyzing reactions leading to PTMs [8], highlighting once
more the importance of these chemical modifications of the proteome.

Enzymes often are responsible for regulating these chemical modifi-
cations in proteins, as in the case of phosphorylation, acetylation, meth-
ylation, carboxylation or hydroxylation [9]. For instance, protein kinases
can phosphorylate a given protein target to induce a signaling cascade,
while this PTMcan be further removed by specific protein phosphatases.
These enzymes are found indeed in important signaling pathways, like
G-protein [9,10] and Wnt signaling [11,12]. On the other side, PTMs
not induced by specific enzymes (e.g., carbonylation or oxidations)
were observed to be responsible of non-specific protein damage in-
volved in neurodegenerative diseases, cancer and diabetes [13–15].

During the past 30 years, experimental techniques used formapping
and quantifying PTMs have seen an impressive progress. In particular,
. on behalf of Research Network of C
liquid chromatography (LC) with mass-spectrometry (MS) protein-
based analysis allowed the detection of thousands of PTMs across entire
proteomes [16]. The study of PTMs in their biological context was
achieved thanks to advancements in fluorophore chemistry, fluores-
cence spectrometry, and peptide and antibody synthesis [17]. However,
the identification and characterization of PTMs are still limited by the
poor knowledge of the underlying enzymatic reactions and their final
effects on protein stability and dynamics. In this context, in silico
methods, often based on the current knowledge of PTMs, are a promis-
ing strategy to perform preliminary analysis and prediction that can
guide further in vivo and in vitro experiments, leading to expand our un-
derstanding of the role of PTMs in cellular processes.

In this review, we provide an overview of some of the existing com-
putational approaches used to study themost common PTMs,whichwe
classified based on the covalent attachment of (i) small chemical
groups, (ii) lipids or (iii) small proteins to the main peptide chain.
Most of these tools are presented as online webservers, providing a
user-friendly interface for PTM site identification. Although in this re-
viewwemainly focus our attention on this kindof resources, standalone
software, like for instance PEAKS PTM [18], GlycoMaster [19] or MODa
[20], are also available but won't be covered here.

2. Covalent attachment of small chemical groups

2.1. Phosphorylation

Phosphorylation is the most studied PTM that involves the covalent
addition of a small chemical group [21]. It is a reversible enzymatic
omputational and Structural Biotechnology. This is an open access article under the CC BY
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reaction, which consists in the attachment of a phosphate group to the
side chain of an arginine, lysine, histidine, tyrosine, serine or threonine
residue [22] (Fig. 1A). It plays a key role in almost every cellular process,
including metabolism, division, organelle trafficking, membrane
transport, immunity, learning and memory [23,24], and function
of target proteins [25]. It can activate [26,27] and inhibit [28,29] enzyme
activity through allosteric conformational changes, facilitate the recog-
nition of other proteins [30–33], promote protein-protein association
[34–36] or dissociation [37] and also induce order-to-disorder transition
[38,39] (Table 2).

It was estimated that 30% of the total proteome is phosphorylated at
least at one residue [40,41]. However, this simple switch mechanism is
in reality more complex since multiple enzymes can act on multiple
sites of the same protein creating a highly connected network of
interactions and modifications. For example, it was shown by high-
resolutionmass spectrometry that 37,248 phosphorylation sites are pres-
ent on 5705 proteins in adipocyte cells [42]. Other phospho-proteomic
Fig. 1. Schematic representation of
analyses demonstrated that proteins, on average, could be phosphorylat-
ed on at least five different sites, although these results could suffer from
biases coming from high stoichiometry of the complexes [43–45].

Advances in mass spectrometry, both in terms of speed and
sensitivity, allowed identifying and quantifying thousands of phosphory-
lation sites in different species [42,45]. The conservation of the functional
phosphorylation sites in species like mice, rats and flies is a feature used
by biologists for selecting specific sites of interest for functional character-
ization. Therefore, mapping the phosphorylation sites on proteins is an
important step in order to understand the catalytic process and the effects
of signal transduction events. However, it is still in general difficult to
identify specific phosphorylation sites. In silico predictions play an impor-
tant role in this field. Several methods (Table 1) were implemented in
order to predict the target phosphorylation sites from the sequence-
and structure-based analysis of the specific protein kinases' catalytic do-
main, such as KinasePhos2.0 [46] or GPS [47]. In particular, GPS is a
group-based phosphorylation algorithm, which predicts kinase-specific
PTMs discussed in this review.

Image of Fig. 1


Table 1
PTM predictionwebservers. Abbreviations: artificial neuronal network (ANN); support vector machine (SVM); random forest method (RFM); HiddenMarkovmodel (HMM);weightma-
trix (WM); group based phosphorylation scoring method (GPS); binary profile of patterns (BPP); composition profile of patterns (CPP); PSSM profile of patterns (PPM); average surface
accessibility (ASA); neuronal network (NN); knowledge-based (KB); conditional random field (CRF); group-based prediction (GBP); binary profile bayesian (BPB); information gain (IG);
Bayesian discriminant (BD); enrichment based method (EBM); binary-relative adaptive binomial score Bayesian (Bi-BSP); logistic regression model (LRM); synthetic minority
oversampling technique (SMOT); Markov chain clustering (MCC); particle swarm optimization (PSO); genetic variability (GV); position frequencymatrix (PFM); covariance discriminant
algorithm (CD): machine learning (ML).

PTM type Covalent attachment of small chemical groups
Web server and URL

Year Description Method Information

Phosphorylation NetPhos 3.1 http://www.cbs.dtu.dk/services/NetPhos/ 1999 K-specific and
K-independent

ANN Prediction based on 17 different kinases

Scansite http://scansite.mit.edu 2003 K-specific WM Identification of short protein sequence
motifs that are recognized by modular
signaling domains or mediated specific
interaction with proteins

PhosphoSitePlus http://www.phosphosite.org/
siteSearchAction.action

2004 K-specific – Repository of human and mouse
phosphorylation sites

GPS http://gps.biocuckoo.org/online.php 2005 K-specific GPS Prediction based on 71 PK groups
(e.g. Aurora-A, Aurora-B and NIMA)

KinasePhos 2.0 http://kinasephos2.mbc.nctu.edu.tw 2007 K-specific SVM SVM coupled with protein coupling pattern
PhosphoELM http://phospho.elm.eu.org 2010 K-independent – Repository of in vivo and in vitro

phosphorylation sites
PPRED http://biomecis.uta.edu/~ashis/res/ppred/ 2010 K-independent SVM Prediction based on evolutionary

information
PhosPhortholog http://www.phosphortholog.com 2015 K-independent – Database for cross-species comparison

Glycosylation bigPI http://mendel.imp.ac.at/gpi/gpi_server.html 1999 GPI-anchor KB Prediction for protozoa and metazoa
O-GlycBase http://www.cbs.dtu.dk/databases/

OGLYCBASE/
1999 O-glycosylated – Repository of O-glycosylated proteins

based on protein sequence database
and scientific literature

GlycoMod http://web.expasy.org/glycomod/ 2001 N-,O-glycosylated Experimental
determined

Match between the experimentally
determined masses and the predicted
protease (SWISSPROT and TrEMBL
databases)

YinOYang http://www.cbs.dtu.dk/services/YinOYang/ 2001 N-,C-,O-glycosylated NN Prediction based on eukaryotes protein
sequences

NetNGlyC http://www.cbs.dtu.dk/services/NetNGlyc/ 2002 N-glycosylated NN Prediction for procaryotes
GlyProt http://www.glycosciences.de/glyprot/ 2005 N-glycosylated SWEET-II 3D model of glycoproteins based on a

PDB structure without attached glycans
GPP http://comp.chem.nottingham.ac.uk/glyco/ 2008 N-,C-,O-glycosylated RF Prediction of glycosylation sites and the

propensity of association with modified
residues

NGlycPred https://exon.niaid.nih.gov/nglycpred/ 2012 N-glycosylated RF Combination of different structure and
residues pattern information

GLYCOPP http://www.imtech.res.in/raghava/
glycopp/submit.html

2012 N-,O-glycosylated SVM Prediction based on different approaches
(BPP, CPP, PPP, ASA + BPP)

NetOGlyC http://www.cbs.dtu.dk/services/NetOGlyc/ 2013 O-glycosylated NN Prediction for prokaryotes
S-nitrosylation GlycoMine http://www.structbioinfor.org/Lab/

GlycoMine/#webserver
2015 N-,C-,O-glycosylated RF Determination of the features important

for glycosylation site specificity
GPS-SNO http://sno.biocuckoo.org/online.php 2010 SNO sites GBP Prediction of putative SNO based on a

database of 504 experimentally verified
SNO

Methylation iSNO-PseAAC http://app.aporc.org/iSNO-PseAAC/ 2013 SNO sites CRF Identification of nitrosylated protein on an
independent data set (731 experimentally
verified SNO and 810 experimentally non
verified SNO)

MeMo http://www.bioinfo.tsinghua.edu.cn/
~tigerchen/memo.html

2006 R-,L-methylated SVM Prediction based on orthogonal binary
coding scheme for representing protein
sequence fragments

BPB-PPMS http://www.bioinfo.bio.cuhk.edu.hk/bpbppms/ 2009 R-,L-methylated BPB and SVM Prediction based on experimental data
MASA http://masa.mbc.nctu.edu.tw/ 2009 K-,R-,E-,N-methylated SVM Prediction based on structural information

(SASA and secondary structures)
PMes http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx 2012 R-,K-methylated SVM Prediction based on physiochemical

properties (VdW volume, position weight
aminoacid, composition, solvent, SASA)

MethK http://csb.cse.yzu.edu.tw/MethK/ 2014 K-methylated histone SVM Differentiation between K-methylated
Histone and K-methylated non-Histone

iMethyl-PseAAC http://www.jci-bioinfo.cn/iMethyl-PseAAC 2014 R-,K-methylated SVM Prediction based on physiochemical
properties, sequence evolution, biochemical
and structural disorder information

N-acetylation PSSMe http://bioinfo.ncu.edu.cn/PSSMe.aspx 2016 R-,L-methylated IGF Prediction based on species-specific models
NetAcet http://www.cbs.dtu.dk/services/NetAcet/ 2004 Nα-acetylated NN Prediction for yeast and mammalian
PAIL http://bdmpail.biocuckoo.org/prediction.php 2006 Nε-,K-acetylated BD Prediction based on dataset of 246

acetylated substrates
N-Ace http://n-ace.mbc.nctu.edu.tw 2010 K-,A-,G-,M-,S- and

T-acetylated
SVM Prediction based on physiochemical

properties
ASEB http://bioinfo.bjmu.edu.cn/huac/ 2012 K-acetylated EBM Prediction based on protein-protein

interaction information

(continued on next page)
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http://protein.cau.edu.cn/others/SUMOhydro/
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http://bioinfo.ncu.edu.cn/SUMOAMVR_Prediction.aspx
http://bioinfo.ncu.edu.cn/SUMOAMVR_Prediction.aspx
http://www.jassa.fr
http://www.jci-bioinfo.cn/pSumo-CD
http://www.ubpred.org
http://bioinfo.ncu.edu.cn/ubiprober.aspx
http://www.jci-bioinfo.cn/iUbiq-Lys
http://140.138.144.145/~ubinet/index.php
http://www.cbs.dtu.dk/databases/OGLYCBASE/
http://www.cbs.dtu.dk/databases/OGLYCBASE/
http://web.expasy.org/glycomod/
http://www.cbs.dtu.dk/services/YinOYang/
http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.glycosciences.de/glyprot/
http://comp.chem.nottingham.ac.uk/glyco/
https://exon.niaid.nih.gov/nglycpred/
http://www.imtech.res.in/raghava/glycopp/submit.html
http://www.imtech.res.in/raghava/glycopp/submit.html
http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.structbioinfor.org/Lab/GlycoMine/%23webserver
http://www.structbioinfor.org/Lab/GlycoMine/%23webserver
http://sno.biocuckoo.org/online.php
http://app.aporc.org/iSNO-PseAAC/
http://www.bioinfo.tsinghua.edu.cn/~tigerchen/memo.html
http://www.bioinfo.tsinghua.edu.cn/~tigerchen/memo.html
http://www.bioinfo.bio.cuhk.edu.hk/bpbppms/
http://masa.mbc.nctu.edu.tw/
http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx
http://csb.cse.yzu.edu.tw/MethK/
http://www.jci-bioinfo.cn/iMethyl-PseAAC
http://bioinfo.ncu.edu.cn/PSSMe.aspx
http://www.cbs.dtu.dk/services/NetAcet/
http://bdmpail.biocuckoo.org/prediction.php
http://n-ace.mbc.nctu.edu.tw
http://bioinfo.bjmu.edu.cn/huac/


Table 1 (continued)

PTM type Covalent attachment of small chemical groups
Web server and URL

Year Description Method Information

BRABSB-PHKA http://www.bioinfo.bio.cuhk.edu.hk/bpbphka/ 2012 K-acetylated Bi-BSB Prediction for human-specific lysine
acetylated sites

PSKacePred http://bioinfo.ncu.edu.cn/inquiries_
PSKAcePred.aspx

2012 K-acetylated SVM Prediction based on amynoacid
composition, evolutionary similarity and
physiochemical properties

LAceP http://www.scbit.org/iPTM/ 2014 K-acetylated LRM Prediction based on physiochemical
properties

PTM type Covalent attachment of acyl chains
Web server and URL

Year Description Method Information

Palmitoylation CSS-Palm http://csspalm.biocuckoo.org/online.php 2008 Palmitoylated sites Clustering and
scoring algorithm

Prediction for budding yeast

CKSAAP-Palm http://doc.aporc.org/wiki/CKSAAP-Palm 2009 Palmitoylated sites SVM Prediction based on protein sequences
SwissPalm http://swisspalm.epfl.ch 2015 Palmitoylated sites – Repository of different palmitoylation-

proteomic studies
N-myristoylation SeqPalm http://lishuyan.lzu.edu.cn/seqpalm/ 2015 Palmitoylated sites SMOT Correlation between the disruption of

palmitoylation sites and diseases
NMT http://mendel.imp.ac.at/myristate/

SUPLpredictor.htm
2002 N-myristoylated sites PSIC algorithm Identification of the N-myristoylated sites

processing terminal glycine or internal glycine
Prenylation Myristoylator http://web.expasy.org/myristoylator/ 2004 N-myristoylated sites NN Supplementary tool for NMT.

PrePS http://mendel.imp.ac.at/sat/PrePS/ 2005 Farnesylated and
geranygeranylated

MCC Prediction based on first sequences and
physical properties

PTM type Small proteins
Web server and URL

Year Description Method Information

Sumoylation SUMOhydro http://protein.cau.edu.cn/others/SUMOhydro/ 2012 Sumoylated sites SVM Prediction based on amino acid hydrophobicity
GPS-SUMO http://sumosp.biocuckoo.org/online.php 2014 Sumoylated sites GPS and

PSO
Investigation on the relationship between
sumoylation and sumo interaction process

SUMOAMVR http://bioinfo.ncu.edu.cn/SUMOAMVR_
Prediction.aspx

2014 Sumoylated sites GV Investigation on the impact of sumo sites in
human diseases

JASSA http://www.jassa.fr 2015 Sumoylated sites PFM Identification of database hits, analysis of
physicochemical properties and systematic
pattern search

pSumo-CD http://www.jci-bioinfo.cn/pSumo-CD 2016 Sumoylated sites CD Prediction based on the integration of sequence-
coupled information into general pseudo-
aminoacid composition

Ubiquitylation UbPred http://www.ubpred.org 2009 Ubiquitylated sites RF Prediction based on first sequences and
structural information

UbiProber http://bioinfo.ncu.edu.cn/ubiprober.aspx 2013 Ubiquitylated sites ML Prediction of species-specific ubiquitinated
sites from experimental data

iUbiq-Lys http://www.jci-bioinfo.cn/iUbiq-Lys 2014 Ubiquitylated sites RF Prediction based on evolutionary information
UbiNet http://140.138.144.145/~ubinet/index.php 2016 E3 binding/recognition

sites
- Repository of experimental data, ubiquitylated

substrates and protein-protein interactions
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phosphorylation sites in 71 protein kinase groups, such as Aurora-A,
Aurora-B andNimA-like protein kinases. Othermethodswere instead im-
plemented in a way to predict the phosphorylation sites simply from the
substrate primary sequences. For example, Scansite [48] is built on com-
bined experimental binding and/or substrate information to derive a
weighted matrix-based scoring that predicts protein-protein and
protein-phospholipid interactions, as well as phosphorylation sites.
NetPhos [49] instead is based on an artificial neuronal network that
allows the users to choose between a generic predictions based only on
the substrate protein sequence or kinase-specific predictions.

Recently, in order to overcome the limitations due to a training set
based only on the same type of kinases, two general predictors were
developed: PPRED [50], which incorporates evolutionary information,
and PhosphOrtholog [51] that enables cross-species comparison of
large-scale phosphorylation sites. Finally, several online databases are
also available in order to curate and organize information about phos-
phorylation sites studied in vivo and in vitro in human and mouse
proteomes (PhosphositePlus [52]), as well as rat, fly, yeast and worm
(PhosphoELM [53]).

2.2. Glycosylation

Protein glycosylation is one of the most relevant and complex post-
translational modifications in the cell [54,55], which is thought to
influence almost half of all proteins in nature [56]. It consists of a cova-
lent interaction between a glycosyl donor of a glycan and a glycosyl ac-
ceptor amino acid side chain of a protein [57] (Fig. 1B). Protein
glycosylation can be divided in four main categories based on the link-
age between the amino acid and sugar: N-linked glycans, O-linked gly-
cans, GPI anchors and C-mannosylation. In N-glycosylation, a sugar is
attached to an amino group of an asparagine [58], while O-
glycosylation is characterized by the interaction of a sugar with the hy-
droxyl group of a serine or threonine [59]. GPI anchors consist of the at-
tachment of glycophosphatidyl-inositol near to the C-terminal of a
protein chain anchoring the protein to the membrane [60]. C-
mannosylation occurs when an α-mannopyranosyl moiety is attached
to the indole of the tryptophan via C\\C link [61].

Glycosylation modulates several protein biophysical properties
influencing their native functions [2]. In particular, it was observed
that it could alter not only protein thermodynamic and kinetic proper-
ties, but also influence the structural features of the proteins [62]. The
covalent attachment of large hydrophilic carbohydrates modulates pro-
tein stability, oligomerization and aggregation [62–64], host cell-surface
interactions [65], enzyme activity [66] and protein trafficking [67]
(Table 2).

Several analytical tools were developed over the past 2–3 decades
facilitating glycan analysis. In particular, capillary electrophoresis,
liquid chromatography, mass spectrometry and microarray-based are
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Table 2
Schematic relationship between PTMs and their implication in biological functions.
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extensively used in grycoproteomics [68–70]. None of these tools can
produce, however, a detailedmolecular characterization of glycosylated
proteins. The high heterogeneity of glycans and the difficulty of
obtaining them in large amounts still preclude investigating the role of
glycosylation at the molecular level. In the past years, the number of
glycoconjugates' crystallographic protein structures have increased
[71–76], nevertheless, a complete chemical and structural description
of a glycan structure is still challenging. Mass spectrometry as well as
different web-servers (Table 1) currently provide information about
existing glycosylation sites. Indeed, in the last decade, several algo-
rithms, trained with sequences or sequence-based information, have
been developed to improve prediction of glycosylation sites. Some of
these resources are based on neuronal network algorithms, such as
NetNGlyc, NetOGlyc [77] for prokaryotes, or YingOYang [78] for eukary-
otes. Other useful tools are the GlycoMod [79] server for prediction of
glycans' structure based on experimental determined masses, and the
NGlyPred [80] server, which incorporates both structure and residue
pattern information. More recent developments include prediction
of glycosylation sites based on machine learning algorithms (i.e.,
GlycoMine [81]), an approach that has produced a significant improve-
ment with respect to prediction performances of NetNGlyc [82] and
NectOGlyc [77].

2.3. S-nitrosylation

S-nitrosylation (SNO) consists in the covalent attachment of a nitric
oxide (NO) to cysteine thiol moieties (Fig. 1C). Compared to phosphor-
ylation, SNO is not catalyzed by an enzyme, but it depends on the chem-
ical reactivity between the nitrosylation agent and the target, thus the
specific residues' environment influences the reactivity of the target
protein. Concentration of the nitrosylation agent and the protein, as
well as the stability of the S\\NO bond under physiological conditions,
influences in turn the specificity of this reaction.

Over the past 2 decades, hundreds of soluble [83–91] or membrane
[92,93] proteins have been identified to be S-nitrosylated. The
SNO modification not only modulates protein stability and activities
[94,95], but also plays an important role in a variety of biological pro-
cesses, such as cell signaling, transcriptional regulation, apoptosis and
chromatin remodeling [96] (Table 2). Increasing evidences indicate
that aberrant S-nitrosylation is implicated in various diseases like can-
cer [97], Parkinson's [98,99], Alzheimer's [100] and amyotrophic lateral
sclerosis [101]. Thus the identification of SNO sites in proteins can be
also very important for the development of drugs.

Although S\\NO bonds are highly labile and redox-sensitive, several
techniques managed to detect SNO in cells. There are methods for the
direct detection of S-nitrosylated sites, such as the measurement of
S\\NO characteristic absorbance at 340 nm, electrospray ionization
mass spectrometry (ESI-MS) [102] and NMR with 15N [103]. Ozone
chemiluminescence [104] and specific reduction with Cu+/cysteine
[105] at pH 6 are indirect chemical methods that are instead based on
the analysis of the cleavage products of SNO. Biotin switch assays and
chemical reduction/chemiluminescence assays are specific and sensi-
tive methods for measuring low levels of intracellular S-nitrosylated
proteins. These experiments are laborious and low-throughput due to
the labile nature and low abundance of SNO. Therefore, computational
methods represent again a valid alternative to timely and reliably iden-
tifying SNO protein sites for further experimental verification. Several
benchmark datasets were developed during the past years. SNOSID
[106] tests the prediction performance on 65 positive and 65 negative
samples, while GPS-NO [107] was developed based on 549 experimen-
tally verified SNO sites. A support vector algorithm machine (SVM)
[108] and a nearest neighbor algorithm(NNA) [109]were also proposed
to predict SNO sites. However, no web server was later developed for
any of these methods, so that their current usage is quite limited.
Alternative web-servers are iSNO-PseAAc [110], which identifies
nitrosylated proteins on an independent dataset, predicting sites with
90% accuracy [110], and GPS-SNO [107], which also represents a valid
tool for an experimentalist providing information for hundreds of po-
tentially S-nitrosylated substrates that have not been yet experimental-
ly determined [110] (Table 1).
2.4. Methylation

Protein methylation is a reversible PTM that modifies the nitrogen
atoms of either the backbone or side-chain of several types of amino
acids, such as lysine, arginine, histidine, alanine and asparagine
[111–117]; methylation has been also reported at cysteine residues
(S-methylation) [118] (Fig. 1D). Despite this variability, most studies
have been predominantly focused on lysine and argininemodifications.
Methylation research dates back to 1939, but just recently has attracted
more and more attention [111] with the identification of new methyl-
transferases, like protein arginine methyltransferases (PRMTs)
[119–121] or histone lysine methyltransferases (HKMTs) [122–124],
which catalyzemono [125] or double [111,126]methylation. In particu-
lar, the methylation of the N-terminal tails of the histone plays an im-
portant role in gene expression regulation [127], genome stability
[128] and nuclear architecture [129] influencing several biological pro-
cesses such as transcription [130,131] and chromosome maintenance
[132] (Table 2).Methylation can also occur on the C-5 position of the cy-
tosine ring of the DNA (DNA methylation) resulting in its association
with several human diseases such as cancer, mental retardation
(Angelman syndrome) or diabetesmellitus [133]. Although different bi-
ological processes are linked to DNA and histone methylation, there
seems to be a mutual relationship between these processes, which
could play an important role in gene expression [134].

Methylated proteins, as well asmethylation regulatory enzymes, are
involved in several human diseases such as cancer [126,135,136], car-
diovascular diseases [137], multiple sclerosis [138] and neurodegenera-
tive disorders [139]. Thus, the inhibition of these enzymes with small
molecules could be an effective therapeutic means of intervention
[140]. Moreover, as it is key to identifying methylation sites, under-
standingmethylationmechanistic and dynamic features is as important.
In the past years several experimental methods were developed to
study the molecular mechanism of methylation. Mutagenesis of
potential methylated residues, methylation of a specific antibody
[141], aswell as Chip-Chip [142]were extensively used for this purpose.
Recently, mass spectrometry experiments have been also applied

Unlabelled image
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allowing the identification of 249 arginine methylated protein sites in
131 proteins from T cells [143]. However, these techniques are usually
very expensive and laborious limiting the research of potential methyl-
ation sites.

Computational predictions of methylation sites have helped handle
these limitations providing an important resource for reducing the
number of experiments needed to determine protein methylation
sites. Eight web-servers for prediction ofmethylation sites are currently
available (Table 1).MeMo [144] is one of thefirst online tools to become
available. It uses a support vector machine (SVM) as a prediction algo-
rithm. Its dataset is based on a curated selection of all methylated resi-
dues annotated in SWISS-PROT [145], 264 experimentally manually
verifiedmethyl-lysine and 107methyl-arginine extracted from roughly
1700 scientific articles. MeMo [144] appears to be a powerful tool for
predicting methylated-arginine sites when compared to methylated-
lysine. However, its accuracy is affected by the lack of training data
available at the time of development. Lately, the reliability of the predic-
tion was improved by BPB-PPMS [146], where a Bi-Profile Bayesian ap-
proach was used to define methylated and non-methylated sites based
on known experimental data [147,148]. The data set was increased to
363 candidates containingmethylated arginines and 977methylated ly-
sine proteins. The combination of Bi-Profile Bayesian features with a
larger data set improved the methylation prediction accuracy up to
92% for methylated lysine proteins and 88% for methylated arginine
proteins [149]. It was observed that protein methylation mainly occurs
in regions that are easily accessible and intrinsically disordered, thus
MASA [149] used Solvent Accessible Surface Area (SASA) and secondary
structure information for predicting methylated sites. This web-server
allows the prediction not only of methylated lysines andmethylated ar-
ginines, but also methyl-glutamates. However, most of these methods
use only primary sequence information without taking into account
any physicochemical property of residues. With the aim of improving
the quality of the prediction, a novel approach called PMes [150]was in-
troduced, which considers physiochemical properties of amino acids
surrounding methylation sites. A specific lysine-methylation prediction
tool for histones was also proposed: METhK [151] uses amino acids'
composition, SASA, amino acid pair composition (i.e., the frequency of
amino acid pairs in the primary sequence), amino acid index and pro-
tein disorder regions for discriminating between methylated lysine
sites in histones and in non-histone proteins. More recently, another
web-server has been introduced for in vivo or in vitro species-specific
methylation sites' identification: PSSMe [152] was tested on a large-
scale experimental methylated site dataset originated from different
species, revealing that methylation patterns are indeed species
dependent.

2.5. N-acetylation

Protein acetylation is a covalent post-translational modification
where the acetyl group from acetyl coenzyme A (acetyl CoA) is trans-
ferred either to theα-amino group of terminal residues (Nα-acetylation)
or to the ε-amino groupof internal lysine at specific sites (Nε-acetylation)
[153–157] (Fig. 1E). Although Nα-acetylation is more common (roughly
85% in eukaryotic proteins), Nε-lysine acetylation is more biologically
important [156–163]. Indeed Nε-acetylation on internal lysines is a
reversible post-translational modification involved in several biological
processes, such as transcription regulation [159,161], protein expression
and stability [153,164–167], DNA repair [162], apoptosis [160,163]
and nuclear import [158] (Table 2). Aberrant lysine acetylation is linked
with cancer [157,168–170], neurodegenerative disorders [171–173] and
cardiovascular diseases [174–178]. Thus, the identification of acetylation
sites is important for shedding light on the acetylation mechanism at
the basis of numerous diseases [179].

Experimentally several techniques were applied to explore
N-acetylation, such as radioactivity detection [180], immunity affinity
detection and chromatin immunoprecipitation [181]. The development
of high-throughput technologies like immune-precipitation combined
to mass spectrometry increased also the number of detected acetylated
proteins [182]. However, the experimental detection of acetylated sites
is inefficient, expensive and have implicitly low throughput [183].
Therefore, computational tools represent alternativemethods for study-
ing the acetylation modifications and provide information for further
experiments. Some web-servers (Table 1) dealt only with one specific
type of acetylation such as NetAcet [184] for instance. NetAcet [184]
attempted to predict onlyNα-acetylation sites using a neuronal network
trained on yeast data and extendable only to mammalian acetylated
substrates. However, NetAcet [184] suffered from the limited size of
the training dataset available at that time of development. Several
web-servers aimed to predict acetylated lysine. PAIL [185] was the
first in silico tool for Nε-lysine acetylation sites' prediction. The Bayesian
discriminant algorithm [186] was employed on a training set of 246
experimentally verified acetylated sites. Despite a small data set, PAIL
[185] is able to achieved an accuracy of 85%. BRABSB-PHKA [187] is a
human-specific lysine acetylation predictor, which combines a
bi-relative adaptive binomial score Bayesian algorithm with a support
vector machine. Another method in lysine acetylation prediction is
PSKace-Pred [188], where a position-specific view was considered for
the characterization of acetylated proteins.

Protein sequences' information, evolution similarity and physio-
chemical properties can help in discriminating between acetyl-lysines
and non-acetyl-lysines, improving lysine sites' evaluation. LAceP [189]
is based on a logistic regressionmodel, where the physiochemical prop-
erty of the amino acids and the transition probability of adjacent amino
acids were considered during the prediction process. It also allows
predicting acetylated sites not only for lysines, but also for glycine, me-
thionine serine and threonine residues. This is actually done by N-Ace
[190], where physiochemical properties (e.g., non-bonded energy,
absolute entropy) and solvent accessibilitywere included in the original
prediction code.

The status of lysine acetylation can also be influenced by the en-
zymes that catalyze the reaction. Although lysine acetyltransferases
(KATs) act usually on a multiple-subunit complex, it is still difficult to
determinewhichKATs are responsible for the acetylation of a given pro-
tein. ASEB [191] was the first server for KAT-specific human acetylated
lysine prediction that not only evaluates possible lysine acetylation
sites, but also provides information about the responsible KAT enzyme.

3. Covalent attachment of acyl chains

Protein lipidation is a unique post-translational modification, which
has the result of directly controlling the interaction of soluble protein
with biological membranes affecting in turn cellular organization and
trafficking. In this section we give an overview of several types of
lipidation, their mechanism, involvement in diseases and the computa-
tional resources used for predicting lipidation sites.

3.1. Palmitoylation

Palmitoylation consists in the attachment of a 16-carbon acyl chain
to cysteine residues via a thioesteric bond [192,193] (Fig. 1F). Among
all PTM lipidations, palmitoylation is the only reversible one and
can dynamically regulate protein function, as in the case of H-Ras and
N-Ras [3,194]. Two families of enzymes regulate the palmitoylation/
depalmitoylation process: palmitoyltransferases (PATs), which catalyze
the attachment of a palmitate from CoA to specific cysteines, and Acyl
Protein Thioesterases (APTs), which remove the palmitate acyl chain.
Palmitoylation occurs both in soluble and membrane proteins playing
a critical role in the regulation of key biological processes, such as pro-
tein membrane trafficking, signaling, cell growth and development
[195] (Table 2). Aberrant palmitoylation is associated to a variety of
human diseases including neurological disorders (e.g., Huntington
disease's [196] or Alzheimer's disease [197]) and cancer [198–203].
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However, the S-palmitoylated proteome is not yet well defined and
little is known about the mechanism that regulates S-palmitoylation
and its consequences. In fact, the identification of palmitoylation sites
is not simple due to the lack of a distinct sequence motif on the sub-
strates [204]. Mass spectrometry allows the identification of several
palmitoylated proteins in cells and tissues, which can be further exper-
imentally characterized using Acyl Biotin Exchange (ABE) or Acyl Resin
Assisted Capture (Acyl-RAC) techniques [205–207]. Metabolic labeling
and click chemistry probes [208,209] were developed to recognize
palmitoylation sites in order to shed light on the molecular mechanism
and dynamics of palmitoylation. All these experimental techniques are
time and money consuming, thus computer-aided methods are a
necessary alternative for predicting palmitoylation sites (Table 1).
CSS-palm [210] was one of the first methods to be developed for
searching novel palmitoylated proteins in budding yeast. It is based on
a clustering and scoring algorithm, where 263 experimentally verified
palmitoylation sites are used as a training set, manually collected from
the scientific literature. CKSAAP-PALM [211] is another computational
method to predict palmitoylation sites based on protein sequences. An
encoding scheme composed by k-spaced amino acid pairs is at the
basis of this approach [211], which improved accuracy compared to for-
mer strategies. SwissPalm [212] has been recently introduced, which
provides information from the comparison of different palmitoyl-
proteomic studies and allows the users to easily search for the protein
of interest, determine the predicted S-palmitoylation sites, identify
orthologues and compare them across palmitoyl-proteomes. SeqPalm
[213] has been recently developed in order to get insights into the cor-
relation between the disruption of palmitoylation sites and diseases.
This new computational method allows for the identification of
palmitoylation sites based on amino acid compositions, autocorrelation
of amino acid physicochemical properties and amino acid position-
weighted matrices.
3.2. N-myristoylation

Myristoylation is a covalent and irreversible attachment of a
14-carbon fatty acid to N-terminal Gly residues [214] of eukaryotic or
viral proteins (Fig. 1G). This PTM facilitates in turn the interaction
withmembranes or a hydrophobic protein domain [215–219]. The sub-
strates involved in myristoylation are generally characterized by the
consensus motif Met-Gly-X-X-X-Ser/Thr at the N-terminus. This PTM
acts predominantly by removal of the main methionine residues in
order to expose the subsequent glycine [220]. Less frequently, it can
also expose an internal glycine by proteases' cleavage [221]. These
mechanisms are both catalyzed by the N-myristoyl transferase (NMT),
a 50 kDa enzyme expressed in most organisms [222,223].

Myristoylation is involved in several critical cellular processes,
such as signaling pathways, apoptosis [221] and extracellular protein
export [224] (Table 2). Usually myristoylation acts with other post-
translational modifications like palmitoylation [225–227], or in
combinationwith positively charged residues [228] in order to enhance
membrane-protein interactions. Several diseases are linked to N-
myristoylation like cancer, epilepsy, Alzheimer's disease and viral
and bacterial infections [229]. The experimental detection of N-
myristoylation includes radioactive techniques like the use of 3H
or 14C radioactive myristate that requires a long exposure period
(weeks to months). To the best of our knowledge only two online
web-servers are available to predict myristoylation sites (Table 1).
NMT [230] uses a trial set that combines experimentally proved
myristoylated proteins with potential myristoylated candidates. Based
on structural and biochemical characterization of the N-myristoyl-
transferase, a set of descriptors was suggested for better predicting
myristoylated sites. This protocol improved the previous pattern
suggested in PROSITE [231] (pattern code: PDOC00008), which gave
numerous false negative predictions.
Another N-myristoylated site predictor is calledMyristoylator [232],
which is based on amachine learningmodel that uses several combined
neuronal networks and a test set of positive and negative sequences.
Although this predictor seems to increase the specificity, it was trained
to predict myristoylation only on terminal glycines, thus a priori
knowledge of the proteolytic scission site is necessary when using this
web-server.

3.3. Prenylation

Prenylation is a PTM leading to the attachment of a 15-carbon
(farnesylation) or a 20-carbon (geranylgeranylation) lipid to cysteines
catalyzed by farnesyltransferases or by protein geranlygeranyl transfer-
ases I, respectively (Fig. 1H). These isoprenyl anchors promote not only
protein-membrane [233–237], but also protein-protein interactions
[238–240] (Table 2). Several diseases are correlated to this PTM, like
cancer [241,242], premature aging disorders [243,244], neurite [244]
and hepatites C and D [245]. Protein prenylation occurs also in a wide
range of parasites, leading to the use of protein farnesyltransferase in-
hibitors in protozoan parasitic diseases [246].

The most common approach for detecting prenylation is to use
expensive radiolabeling techniques [203,204]. Initially, the prenylation
motif was suggested to be CaaX, i.e. consisting of a cysteine
(C) followed by two aliphatic residues (aa) and a terminal residue X.
However, further kinetic studies and mutation experiments showed a
more flexible and complex recognition motif for prenylation [247].
PrePS [248] is the only online tool available, which is based onmodeling
of the substrate-enzyme interactions for each prenyltransferase.

4. Small proteins' modifications

An important field in cell signaling is the characterization of the co-
valent and reversible attachment of ubiquitin (ubiquitylation) and
small ubiquitin-related modifiers (sumoylation). This peculiar class of
PTMs provides new protein-protein interfaces remodeling the target
proteins [249]. In this section we review the latest findings on
sumoylation and ubiquitylation with a particular attention on the
in silico tools recently developed.

4.1. Ubiquitylation

Ubiquitylation is a three step process where, first, the ubiquitin is
activated by a ubiquitin-activating enzyme (E1), then conjugated to a
ubiquitin-conjugating enzyme (E2), and finally transferred by a
ubiquitin-ligase enzyme (E3) to a substrate molecule via an isopeptide
bondwith an internal lysine (Fig. 1I). This reversiblemodification is im-
plicated in the regulation of several cellular processes, like protein deg-
radation [250–252], cell cycle division, the immune response [253],
lysosomal trafficking [254] and control of insulin [255] (Table 2). The
aberration of ubiquitylation is linked to human pathologies varying
from inflammatory neurodegenerative diseases to different forms of
cancers [253,256].

Despite the availability of several ubiquitin-protein ligase complex
structures [257–261], the ubiquitylation reaction mechanism is still
poorly understood. It has been recently hypothesized that structural
disorders of the substrate could actually facilitate this process. Analysis
of sequences by mutant yeast strain experiments [262] showed that
most of the ubiquitylation sites are in the disordered and flexible
regions of a protein. On the basis of this observation UbPred was devel-
oped [262] (Table 1): a ubiquitylation site predictor based on a support
vectormachine algorithm (SVM), which allows studying the correlation
between ubiquitylation and protein half-life. In order to overcome the
lack of accuracy and training data deficiency, UbiProber [263] and
iUbiq [264] were designed (Table 1). UbiProber predicts both general
and species-specific ubiquitylation sites using large-scale experimental
data as training set, while iUbiq is based on evolutionary information
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incorporated into the general form of pseudo-amino acid composition.
However, all these in silico tools do not account for E3 binding/
recognition sites, although it was shown to be an important feature
for ubiquitylation. UbiNet [265] (Table 1) is the first server that allows
studying the regulatory network among E3 and ubiquitylated proteins.
4.2. Sumoylation

Sumoylation is a PTM characterized by a covalent attachment of the
Small Ubiquitin-like Modifier (SUMO) to specific lysine residues via an
enzymatic reaction (Fig. 1L). Sumoylation sites are identified by a
canonical consensus sequence Ψ-K-X-E (where Ψ is a hydrophobic
amino acid, such as A, I, L, M, P, F, V or W; X any amino acid residue)
[266,267], and by SUMO-interacting motifs (3–4 aliphatic residues
linked to acid and/or phosphorylatable amino acids) called SIM [268].
Both these features are essential for characterizing the biological signif-
icance of sumoylation. This modification is involved in several cellular
processes, like protein binding, subcellular transport, gene expression,
DNA repair, chromosome assembly and cellular signaling [269–272]
(Table 2). Aberrant sumoylation is correlated not only to Alzheimer's
and Parkinson's diseases [273], but also to cancer [274] and diabetes
[275], highlighting the importance of detecting sumoylation sites.
Mass spectrometry-based proteomic studies allow mapping hundreds
of proteins identifying different sumoylation and SIM sites [276–279].
However, the limitations due to the reversibility of this modification
and the difficult identification of peptides from trypsin digestion impose
some limitations to the use of this technique. Computer-aided predic-
tion represents a good alternative to reduce the number of potential tar-
gets to explore for further experimental verifications (Table 1).

While web-servers available for SIM prediction are only GPS-SUMO
[280] and JASSA [281], several online methods for sumoylation sites'
prediction are currently available. SUMOhydro [282] is based on a sup-
port vector machine (SVM) combined with amino acid hydrophobicity,
while SUMOAMVR [283] considers also other structural features, like
average accessible surface area (AASA), secondary structure and evolu-
tionary information of amino acids. Recently, a new in silico tool based
on the covariance discriminant (CD) algorithm was developed in
order to avoid errors caused by disparity in training data sets [284].
5. PTMs cross-talk

The hypothesis of a correlation between PTMs within the same pro-
tein (PTMs cross-talk) [285] has emerged in the proteomic field in re-
cent years. For instance, the regulatory interplay among PTMs was
observed for histones [286] and other proteins like p53 [287,288],
RNA polymerase II [288] or β-tubulin [289]. In particular, the impor-
tance of PTM cross-talk was recognized in several biological pathways
(e.g. DNA damage response [290] and protein stability regulation
[291–293]) pointing to a strong relationship between PTM cross-talk
and protein functions.

While the structural and functional understanding of combinatorial
PTMs has been initially limited by technological limitations, recent ad-
vances in proteomics have allowed integrating information on different
types ofmodifications [294,295]. However,with the latest experimental
methods it is also difficult to identify the whole set of PTM sites in the
proteins. In this emerging context, computational methods are poised
to support the study of PTM cross-talk. The first unified tool for a simul-
taneous prediction of PTM sites wasModPred [296], which predicts and
analyses simultaneously multiple types of PTM sites in order to gain
structural and functional information on the protein regulatory mecha-
nism of multiple PTMs. Recently, a newwebserver, PTM-X [297], allows
the prediction of PTM cross-talk based on experimentally published
data. The difference compared toModPred is represented by the neces-
sity to know a priori the PTM candidate sites.
6. Structural and dynamical characterization of PTMs

Despite the important role played by PTMs, their structural and dy-
namics effects of protein function remain poorly understood from amo-
lecular point of view, due to the labile transient nature of most of these
modifications and the lack of adequate experimental techniques able to
detect and characterize them and the underlying chemical mechanism
of formation. The online tools previously discussed are valid methods
to overcome some of these experimental limitations and predict puta-
tive PTMed sites, but they do not usually provide any information
about the impact of post-translational modifications from amechanistic
point of view.

Molecular modeling and molecular simulation (such as molecular
dynamics, MD), which are based on empirical atomistic force fields
[298–301], are a powerful strategy for studying biological systems at
single molecule resolution and nanosecond-to-millisecond time scales.
Although this computational approach allows nowadays the study of
protein processes and properties that are not easily accessible experi-
mentally, there are still some apparent limitations regarding the avail-
ability of accurate parameters that would allow the investigation of
PTMed proteins. In the past years several improvements have
been made in order to expand this approach also to non-standard bio-
molecules. Within the AMBER force field atomic charges and parame-
ters were developed for phosphorylated residues as phosphoserine,
phosphothreonine, phosphotyrosine, phosphohistidine [302], and
S-nitrosylated residues (S-nitrocysteine [303]) and methylation
(trimethyllysine [304,305]). Similarly, within the CHARMM force field
there are parameters for methylated lysines and arginines, as well as
acetylated lysines and palmitoylated cysteines [306]. There are also ad
hoc comprehensive atomistic force field parameters for treating the de-
scription of the link between carbohydrates and proteins such as in
GLYCAM for AMBER [307]/CHARMM [308] and a modified version of
GROMOS [309,310]. In theory, within these schemes, there are existing
strategies to parameterize virtually any kind of non-standard amino
acids, as for the case of PTMs; in practice, the development of new
force field models always involves time-consuming parameterization
protocols and rigorous a posteriori validations of the quality and robust-
ness of the new models.

Moving to lower resolution, coarse-grained force fields can be also
very useful for studying the impact of PTMs on protein function. In
this domain there are no specific parameters for the description of
PTMed residues. TheMartini force field [311], for instance, provides pa-
rameters for treating non-covalently bound sugar molecules or phos-
phate groups but a complete general representation of modified
residues is not yet available. However, a recent work described new pa-
rameters for modeling palmitoylated cysteines [312] that were used to
study H-Ras, and contributed to show the influence of this PTM in reg-
ulating the partition of the protein with the membrane.

While for a long time PTMswere not usually considered inmodeling
and molecular simulation works, the recent availability of more com-
prehensive experimental data along with accurate force field parame-
ters have thus allowed investigating protein properties taking also
into account the effect of PTMs on their structure and stability. Recent
examples of this approach have revealed the impact of PTMs for the
HIV-1 fusion peptide structure [313], rhodopsin [314], calnexyn [315]
and phosphatidylinositol 4-kinase [316].

Answering to the need of new and better molecular models to more
realistically describe proteins, some automatic tools for generating force
field parameters for newmolecular species have become available, such
as ParaChem or SwissParam [317] compatible with the CHARMM force
field, q4md-forcefieldtools for AMBER [318] andATB for GROMOS [319].
However, none of them directly focus on the parameterization of PTMs,
likely because of the complexity of the development of parameters
required for most PTMs. Therefore, the necessity of having computa-
tional tools allowing an automatic parameterization of PTMed
protein structures to be used in MD simulations resulted in the
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development of some newweb-servers, such as FF_PTM (http://selene.
princeton.edu/FFPTM/) and Vienna-PTM (http://vienna-ptm.univie.ac.
at). FF_PTM focuses on expanding the existing AMBER force field
(i.e., ff03) including parameters for 32 PTMs. In particular, it is charac-
terized by parameters that describe the attachment of small molecules
(e.g., phosphorylation, methylation or acetylation) and the covalent in-
teraction with acyl chains such as palmitic acid (palmitoylation) and
geranylgeranyl pyrophosphate (geranylgeranylation). On the other
hand, Vienna-PTM is a web platform designed for introducing PTMs
on PDB structures to run simulations using the GROMOS 54A7 and
45A3 force fields.
7. Summary and outlook

The chemical modification of amino acids plays an important role in
a myriad of cellular processes that range from protein localization to
disease development and aging. Enormous efforts, which combine the
development of both experimental and computational methods, have
been put in the past 2 decades in order to understand PTMmechanisms
and effects for protein structure, dynamics and function.

In this review we summarized the main in silico tools mainly avail-
able as anonlinewebserver for studying PTMs (Table 1). Recently, an in-
tegrative platform (dbPTM: http://dbptm.mbc.nctu.edu.tw/) has also
become available. Originally developed as a comprehensive database
of experimentally verified PTMs, dbPTM collects all available databases
andwebserver resources considering also other PTMs, like succinylation
and S-glutathionylation. Although this platform does not provide an ex-
haustive description for the case of lipidation, it includes also standalone
software (not discussed here), offering thus a complementary source of
information to this review.

With an increasing amount of experimental data available every day,
we think that, as the existing ones will keep improving their perfor-
mance, many other methods will emerge in the future. Although most
of the web-servers available are based on a sequence-based analysis
of training data sets, some of them have also started to take into
account other interesting properties, such as evolutionary information
(e.g., PhosphoOrtholog, iUbiq), SASA (e.g., MASA, METhK, SUMOAMVR)
and physiochemical properties (e.g., Pmes, SUMOhydro).

Altogether, these approaches are only rarely considering the molec-
ular features associated with PTMs and themolecular impact they have
for protein function in general. Within this context, molecularmodeling
and simulations have the capability to complement experimental and
bioinformatics techniques providing a molecular description of the ef-
fect of PTMs on protein structures and stability. However, the lack of
suitable tools and parameters for treating PTMs in proteins has limited
so far the characterization of these covalent modifications. As some au-
tomatic tools (e.g., FF_PTM and Vienna-PTM) have recently appeared
providing an online platform to parameterize post-translational modi-
fied proteins suitable for running atomistic MD simulations with
AMBER or GROMOS force fields, for most PTMs ad hoc parameteriza-
tions still need to be developed. Similarly, coarse-grained force fields
still lack reliable and robust models for dealing with PTMs, as well as
systematic protocols to produce accurate parameters.

Nowadays, with the constant increment of computing power and
the availability of always more accurate force fields for biomolecules,
which accompany the tireless advances on the experimental side, it is
possible to achieve a more precise and faithful description of biological
systems in their physiological conditions usingmolecularmodeling and
simulation. For instance, the advances in lipidomic analyses have pro-
vided a much more detailed view of membrane composition, allowing
the construction ofmore realisticmembranemodels [320,321] to better
investigate membrane biophysical properties and their interplay
with integral and peripheral membrane proteins [322,323]. Several
computational tools have been developed with this aim in mind, such
as CHARMM-GUI [308] and LipidBuilder [324].
Along the same lines, it is also clear that protein PTMs are another
important layer of complexity that integrally defines and modulates
protein function and, for this reason, needs to be considered at all levels
of both experimental and computational investigation. Therefore, the
computational advances of bioinformatics and physics-basedmolecular
modeling and simulation techniques appear as a fundamental require-
ment to complement the experimental investigation of PTMs' impact
on cellular processes.
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