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In recent years, many computational models have been designed to detect essential
proteins based on protein-protein interaction (PPI) networks. However, due to the
incompleteness of PPI networks, the prediction accuracy of these models is still not
satisfactory. In this manuscript, a novel key target convergence sets based prediction
model (KTCSPM) is proposed to identify essential proteins. In KTCSPM, a weighted
PPI network and a weighted (Domain-Domain Interaction) network are constructed
first based on known PPIs and PDIs downloaded from benchmark databases. And
then, by integrating these two kinds of networks, a novel weighted PDI network is
built. Next, through assigning a unique key target convergence set (KTCS) for each
node in the weighted PDI network, an improved method based on the random walk
with restart is designed to identify essential proteins. Finally, in order to evaluate the
predictive effects of KTCSPM, it is compared with 12 competitive state-of-the-art
models, and experimental results show that KTCSPM can achieve better prediction
accuracy. Considering the satisfactory predictive performance achieved by KTCSPM, it
indicates that KTCSPM might be a good supplement to the future research on prediction
of essential proteins.

Keywords: protein-protein interaction, essential protein, heterogeneous network, random walk with restart, key
target convergence set

INTRODUCTION

With the deepening of researches on proteins, accumulating evidences have demonstrated
that proteins are closely related to most of the life activities. Moreover, different proteins are
of different importance to different life activities. Among these proteins, essential proteins,
as a kind of important proteins, are essential for the survival, and development of life.
Therefore, in recent years, detection and recognition of essential proteins has become a
hot issue in the research and development of disease treatment. However, it is very time-
consuming and expensive to identify essential proteins by traditional biological experiments,
which leads to the emergence and development of computational prediction methods. For
instance, Zhao et al. (2019) designed a new random walk wandering based prediction
model to detect key proteins based on a heterogeneous network consisting of proteins and
protein domains. Jeong et al. (2001) found that PPI networks are scale-free and proposed
a center-lethal rule for PPI networks. Based on which, lots of methods including the
information centrality (IC) (Stephenson and Zelen, 1989), betweenness centrality (BC) (Joy
et al., 2014), degree centrality (DC) (Hahn and Kern, 2004), Closeness Centrality (CC) (Wuchty
and Stadler, 2003), subgraph centrality (SC) (Estrada and Rodriguez-Velazquez, 2005), and
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neighbor centrality (NC) (Wang et al., 2012) had been put
forward successively. In addition, Yu et al. (2007) proposed the
importance of network bottlenecks. Estrada (2006) found that a
small number of binary proteins were mostly essential proteins.
Chua et al. (2006) proposed to identify essential proteins by
calculating the weights of indirect neighbor nodes. Li et al. (2012)
designed a method to predict essential proteins by combining PPI
networks with gene expression data of proteins. Li et al. (2011)
find essential proteins by analyzing the relationship between
proteins and their neighbors, and define the method as LAC. Peng
et al. (2012) combined orthology information of proteins with
PPI networks to predict key proteins. Zhao et al. (2014) found
that combination of gene expression profiles and PPI networks
was of great help to the prediction accuracy of essential proteins.
Min et al. (2017) discovered that the complex information
of proteins can improve prediction accuracy and precision
of potential essential proteins. Zhao et al. (2016) proposed a
basic protein identification method based on protein gene time
expressions and protein domains. Zhang et al. (2019) proposed a
new protein prediction method called TEGS, which can identify
essential proteins by fusing the introduced multiple biological
information data. Lei et al. (2018) found that it can achieve
good results to adopt artificial fish swarm optimization algorithm
into key protein prediction. Peng et al. (2015) discovered that
combination of protein domain features and protein interaction
networks can effectively predict potential essential proteins. Li
et al. (2019) proposed a target convergence set (TCS) based
method for predicting potential lncRNA-disease associations.
Athira and Gopakumar (2020) proposed a multiplex network
to identifying essential proteins. Zhang et al. (2018) designed a
novel method by combining network topology, gene expression
profile and GO information to identifying essential proteins. Fan
et al. (2017) proposed a modified PageRank algorithm based on
subcellular information. Meng et al. (2021) predict the essential
protein by constructing a new weighted protein and protein
domain network, and performing a local random walk on this
basis. Xenarios et al. (2002) introduced a public database called
DIP for studying cellular networks of protein interactions. Gavin
et al. (2006) provided a complete and comprehensive eukaryotic
machine and biological data integration and modeling platform.

Inspired by above methods, in this manuscript, a
computational model named KTCSPM was proposed to
predict essential proteins. In KTCSPM, a weighted PDI network
was first constructed by integrating a weighted PPI network and
a weighted domain-domain interaction (DDI) network. And
then, each node in the weighted PDI network would be assigned
a unique key target convergence sets (KTCS) according to the
network distance information of the weighted PDI network,
which could reflect the specificity of different nodes in the
process of random walk with restart and improve the predictive
performance of KTCSPM. Next, for an arbitrarily selected walker,
considering that there may still be some nodes that are essential
proteins but not included in KTCS while KTCS reached the
final convergence state, each node in the heterogeneous network
would be further assigned a unique Intact Set (IS) to ensure that
the predicted results would not be omitted as far as possible.
Next, we will construct a random walk probability matrix and

calculate the stable walk probability of all nodes, and then rank
each protein based on the initial protein score vector. Finally, in
order to evaluate the predictive performance of KTCSPM, we
compared it with 12 advanced predictive methods based on two
kinds of yeast PPI networks, and experimental results showed
that KTCSPM can achieve reliable predictive accuracy of 90.19,
81.96, 70.72, 62.04, 55.83, and 51.13% in top 1, top 5, top 10,
top 15, top 20, and top 25% of predicted key proteins separately,
which are better than all these 12 competing predictive models.

MATERIALS AND METHODS

Construction of the Weighted PPI
Network
In this section, we will download known PPI data from two
different public databases such as the DIP database (Xenarios
et al., 2002) and the Gavin database (Gavin et al., 2006),
respectively. Obviously, based on these known PPI network
downloaded from any given public database, an original PPI
networkPPIN =< DPP, EPP > can be constructed as follows: Let
DPP = {p1, p2, . . . , pNP

} represent the set of newly downloaded
proteins and EPP denote the set of edges between proteins in
PPIN, here, for any two given proteins pi and pj in DPP, if and
only if there is a known interaction between them, then we define
that there is an edge between them in PPIN. Thereafter, based
on the newly constructed original PPI network PPIN, we can
further obtain an NP × NP dimensional adjacency matrix MPPIN
as follows: for any two given protein nodes pi and pj in PPIN,
if and only if there is an edge between them in PPIN, there is
MPPIN (pi, pj)= 1, otherwise there is MPPIN (pi, pj)= 0.

In previous studies, the Gaussian interaction profile kernel
similarity has been widely used to measure the similarity between
similar nodes (Chen et al., 2016). In this section, for any two given
proteins pi and pj in MPPIN , we define the Gaussian interaction
profile kernel similarity between them as follows:

GKS(i, j) = exp
(

-γp||IP(pi)− IP(pj)||
2
)

(1)

γp = γ′p

/ NP∑
k

= 1||IP(pk)||
2 (2)

Here, IP(pt) represents the vector of elements in the t-th row
of the matrix MPPIN, and γp denotes the normalized kernel
bandwidth based on the bandwidth parameter γ

′

p. In addition,
according to the methodology proposed by Vanunu et al. (2010),
we will further optimize above Gaussian interaction profile kernel
similarity of protein by introducing a logistics function as follows:

LGKS(pi, pj) =
1

1+ e(−12GKS(i,j)+log9999)
(3)

This logistic function can make the calculated results of Gaussian
interaction porofile kernel similarity more influential in the
identification of essential proteins. Additionally, considering that
while analyzing the topology structure of PPI network, the

Frontiers in Genetics | www.frontiersin.org 2 July 2021 | Volume 12 | Article 721486

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-721486 July 24, 2021 Time: 17:13 # 3

Peng et al. Method for Essential Protein Identification

PPI network can be weighted to show the interaction between
proteins, therefore, based on above newly obtained matrixLGKS,
for any two given proteins pi and pj, we can weigh the relationship
between them as follows:

WPP(pi, pj) =
LGKS(pi, pj)+

|N(pi)∩N(pj)|2

(|N(pi)+1|)∗(|N(pj)+1|)

2
(4)

Here, N(pi) and N(pj) represent the sets of protein nodes directly
adjacent to pi and pj in PPIN, respectively, and N(pi) ∩ N(pj)
denotes the set of protein nodes adjacent to both pi and pj in
PPIN. Obviously, based on above Equation (4), we can obtain a
weighted PPI network WPIN = < DPP,EWPP> easily by taking
WPP(pi, pj) as the weight of the edge between nodes pi and pj in
WPIN, where DPP and EWPP denote the sets of nodes and edges
in WPIN separately.

Construction of the Weighted DDI
Network
In this section, we will first download known domain data from
the Pfam database (Peng et al., 2012; Bateman et al., 2014), and
for convenience, let DDD = {d1, d2, . . . , dND} represent the set
of newly downloaded domains, then for any given protein pi ∈
DPP, and domain dj ∈ DDD, it is obvious that we can estimate
the relationship between them as follows:

WPD(pi, dj) =

∑
pk∈dj

WPP(pi, pk)

|dj|
(5)

Here, |dj| represents the number of different proteins belonging
to dj. Furthermore, according to above Equation (5), for any two
given domains di and dj in DDD, we can calculate the relationship
between them as follows:

WDD(di, dj) =

∑
px∈di

WPD(px,dj) +
∑

py∈dj
WPD(py, di)

|di| + |dj|
(6)

Obviously, based on above Equation (6), we can easily construct
a weighted DDI network WDIN =< DDD, EDD > as follows: Let
EDD denote the set of edges between domains in WDIN, here, for
any two given domains di and dj in DDD, if and only if there is
WDD(di, dj) > 0, we define that there is an edge between them
in WDIN, and at the same time, the weight of the edge between
di and dj is WDD(di, dj).

Construction of the Weighted PDI
Network
Based on above Equations (4)–(6), it is obvious that we can
construct a new (NP + ND)×(ND + NP) dimensional matrix
MPD as follows:

MPD =

[
WPP WPD
WT

PD WDD

]
(7)

Here, WT
PD is a transport matrix of WPD. Based on above

matrix MPD, we can easily construct a novel weighted PDI
network WPDIN = < DPD, EWPD > as follows: Let DPD =

{pd1, pd2, . . . , pdNP
, pdNP+1, pdNP2, . . . , pdNP

+ ND} = {p1,
p2, . . . , pNP

, d1, d2, . . . , dND} represent the set of nodes in
WPDIN, and EWPD denote the set of edges in WPDIN, then, for
any two given nodes pdi and pdj in DPD, if and only if there is
WPP(pdi, pdj) > 0 or WPD(pdi, pdj) > 0 or WDD(pdi, pdj) > 0,
there is an edge between them in EWPD, and moreover, the
weight of the edge between them is MPD(pdi, pdj).

Calculation of Initial Scores for Proteins
For any given protein node pi in WPDIN, in this section, we
will assign an initial score for it based on the functional features
extracted from the subcellular localization information of
proteins, and the conservative features provided by orthologous
information of proteins. Firstly, we will download the
orthologous information of proteins from the InParanoid
database (Mewes et al., 2006; Gabriel et al., 2010) and the
subcellular localization information of proteins from the
COMPART-MENTS database (Binder et al., 2014; Min et al.,
2017). And then, for convenience, let Np(i) represent the total
number of proteins relating to the i-th subcellular localization,
NL denote the total number of different subcellular localizations
downloaded above, and S(pi) represent the set of subcellular
locations associating with pi. Hence, we can calculate a score for
pi based on the subcellular localization information as follows:

Subcell _ Score (pi) = maxj∈S(pi)Subcell(j) (8)

Where,

Subcell (j) =
Np(j)

max1≤k≤NL(Np(k))
(9)

Next, let Hom(pi) denote the score of pi in the downloaded
homologous information and NH denote the total number of
proteins with homologous information, then, we can calculate
another score for pi based on the homologous information as
follows:

Hom_Score (pi) =
Hom(pi)

max1≤j≤NH Hom(pi)
(10)

Finally, through integrating above two kinds of scores together,
we can obtain an initial score for pi as follows:

Initial_Score (pi) =
Subcell_Score(pi)+Hom_Score(pi)

2
(11)

Construction of the Prediction Model
KTCSPM
Establishment of the Key Target Convergence Sets
Before implementing random walk with restart on WPDIN, as
shown in Figure 1, each node in WPDIN will establish a unique
KTCS first according to the following steps:

Step 1: For any given protein node pi in WPDIN, we
define its original KTCS as the set of all domain nodes
associating with pi, that is the original KTCS of pi is
KTCS0(pi)= {dk | MPD(dk, pi)= 1, dk ∈ DDD}. Similarly, for any
given protein domain node dj, we can define its original KTCS as
KTCS0(dj)= {pk| MPD(dj, pk)= 1, pk ∈ DPP}.
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FIGURE 1 | Flow chart of constructing KTCS for any given protein node pi in WPDIN.

Step 2: For any given protein node pi in WPDIN, ∀dk ∈
KTCS0(pi) and ∀dt ∈ DDD, we define the network distance
between dk and dt in WPDI as follows:

AD(dk, dt) =
1

WDD(dk, dt)
(12)

Similarly, for any given domain node di in WPDIN, ∀pk ∈
KTCS0(di) and ∀pt ∈ DPP, we can define the network distance
between pk and pt in WPDI as follows:

AD(pk, pt) =
1

WPP(pk, pt)
(13)

Step 3: According to the above Equations (13, 14), for any
given protein node pi or domain node dj in WPDIN, we define
the KTCS (dj) of dj as the set of first 200 protein nodes in
WPDIN that have the minimum average network distance to
nodes in KTCS0(dj), and the KTCS (pi) of pi as the set of first
200 domain nodes in WPDIN that have the minimum average
network distance to nodes in KTCS0

(
pi
)
. Therefore, it easy to

know that these 200 protein nodes in KTCS (dj) may belong
to KTCS0

(
dj
)

or may not belong to KTCS0
(
dj
)
, and these 200

domain nodes in KTCS(pi) may belong to KTCS0
(
pi
)

or may not
belong to KTCS0

(
pi
)

as well.

Random Walk With Restart in WPDIN
The transition process of a walker from a starting node in the
network to other nodes with a given probability is called the
method of Random walk. Based on the assumption that there is
a correlation between essential proteins and domains, as shown
in Figure 2, the random walk process of KTCSPM can be mainly
divided into the following steps:

Step 1: For a walker, before it starts to walk randomly in
WPDIN, we can first obtain a transition probability matrix W for
it as follows:

W(i, j) =
MPD(i, j)∑NP+ND

k=1 MPD(i, k)
(14)

Step 2: Moreover, for any given node pdi in WPDIN, we can as
well obtain an initial probability vector Ri(0) for the walker as
follows:

Ri(0) = (Ri,1(0),Ri,2(0), . . .Ri,j(0), . . .Ri,NP+ND(0)) (15)

Ri,j(0) =W
(
i, j
)
, j = 1, 2, 3, . . .NP + ND (16)

Step 3: Next, while starting a walk, the walker will select a node
(for convenience, let it be pd0) in WPDIN randomly as its initial
location of this walk, where pd0 may be a protein node or a
domain node. Supposing that after walking t-1 hops, the walker
reaches the current node pdi in WPDIN, then, we can further
calculate a new walking probability vector Ri(t) for it as follow:

Ri(t) = (1− α) ∗WT
∗ Ri(t− 1)+ α ∗ Ri(0) (17)

Here, α(0 < α < 1) is a parameter for adjusting weights
between Ri(0) and Ri(t-1). Moreover, for convenience, let
Ri(t) = (Ri,1(t),Ri,2(t), . . . ,Ri,j(t), . . . ,Ri,NPND(t))T , where
Ri,j(t) denotes the walking probability that the walker will walk
from its current location pdi to the node pdj at its t-th hop.
Here, it is worth noting that for the starting node pd0, since
the walker can be considered to reach pd0 from pd0 after zero
hops, therefore, for the starting node pd0, the walker can obtain
an initial probability vector R0(0), and a walking probability
vector R0(1).

Step 4: Assuming that the walker has walked from a node pdi
to a current node pdj after t-1 hops during its random walk in
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FIGURE 2 | Schematic diagram of the construction process of KTCSPM, where green nodes represent proteins and red nodes represent domains.

WPDIN, the walk probability vectors calculated by the walker
at pdi and pdj are Ri(t-1) and Rj(t), respectively, if the L1 norm
between Ri(t-1) and Rj(t) satisfies ||Rj(t)− Ri(t − 1)||1 ≤ 10−6,
then we define that the walking probability vector Rj(t) has
reached a stable state at its current location. Moreover, after the
walker having obtained a stable walking probability at each node
in WPDIN, for convenience, we will define the stable probability
obtained by the walker at any given node pdk in WPDIN as
Rk(∞), and then, we can construct a stable walking probability
matrix K (∞) as follows:

K(∞) =

[
K1 K2
K3 K4

]
= (R1(∞),R2(∞),R3(∞).....,RNPND(∞))T

(18)

where, K1 is a NP × NP dimensional matrix, K2 is a NP × ND
dimensional matrix, K3 is a ND × NP dimensional matrix, and K4
is a ND × ND dimensional matrix. Thereafter, it is obvious that K2
and K3 will be the final result matrices, which can be adopted to
predict potential essential proteins.

According to above steps of KTCSPM, it is easy to see that,
for any node pdi in WPDIN, a stable walking probability vector
Ri(∞) = (Ri,1(∞),Ri,2(∞), . . . ,Ri,j(∞), . . . ,Ri,NP+ND(∞))T

will be obtained by the walker. For convenience, we denote the
node set DPD in WPDIN as the IS. Therefore, we can redefine
the stable probability Ri(∞) as RISi(∞). However, through
observing RISi(∞), it is easy to find that the walker will stop
its random walking only after the walking probability vector
calculated at each node in WPDIN is stable. In the face of
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FIGURE 3 | (A) Top 1% ranked proteins. (B) Top 5% ranked proteins. (C) Top 10% ranked proteins. (D) Top 15% ranked proteins. (E) Top 20% ranked proteins.
(F) Top 25% ranked proteins. In this Figure shows the predictive accuracy between KTCSPM and 12 competitive methods including IC, CC, BC, SC, NC, LAC, EC,
PeC, CoEWC, POEM, and TEGS.
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large data, this mechanism is obviously very time-consuming.
Hence, in order to speed up the convergence speed of KTCSPM
and reduce the experimental execution time, based on the
concept of KTCS defined above, when constructing the vector
Ri(t) = (Ri,1(t),Ri,2(t), . . . ,Ri,j(t), . . . ,Ri,NP+ND(t))T at the
node pdi, if the j-th node pdj ∈ KTCS (pdi) in WPIND, then
Ri,j(t) will be remained unchanged, otherwise we will redefine
Ri,j(t) =0. Thus, the walking probability vector at pdi will be
changed to RiKTCS(t) and the stable walking probability at pdi
will be changed to RiKTCS(∞). Obviously, the stable state of
RiKTCS(∞) can be achieved faster than that of RiIS(∞). However,
considering that there may be some nodes not belonging to KTCS
(pdi) but relating to the target, therefore, in order to avoid any
omissions, at any given node pdi in WPIND, we will construct
a novel final stable walking probability vector RANSi (∞) =

(RANSi,1 (∞),RANSi,2 (∞), . . . ,RANSi,j (∞), . . . ,RANSi,NP+ND
(∞))

T by
combining RiIS(∞) with RiKTCS(∞) as follows:

RANSi (∞) =
RISi (∞)+ RKTCSi (∞)

2
(19)

Step 5: For any protein node pi in WPIND, according to the final
stable walking probability vector RANSi (∞) and the initial protein
score Initial_Score (pi) obtained above, it is obvious that a novel
final feature score Final_Score (pi) can be calculated as follows:

Final_Score(pi) =

∑NP+ND
j=1 RANSi,j (∞)+ Initial_Score(pi)

2
(20)

Algorithm KTCSPM
Input
Original PPI network, original protein-domain network, domain
data, subcellular data, orthologous data, and the proportion
regulation parameters α.

Output
Proteins final score Final_Score(pi).

Step 1: Establishing the heterogeneous network according to
formulas (1–7);

Step 2: Calculating proteins initial score by orthologous data
and subcellular data according to formulas (8–11);

Step 3: Establishing the KTCS according to formulas (12, 13);
Step 4: Establishing the transition probability matrix W

according to formula (14);
Step 5: Calculating a stable walking probability vector Ri(t)

according to formulas (15–17);
Step 6: Establishing stable walking probability matrix K (∞)

according to formula (18); and
Step 7: Outputting the final score of protein according to

formula (19);

RESULTS

Experimental Data
In this section, extensive experiments will be done to compare
KTCSPM with representative methods. And during experiments,
the domain data is downloaded from the Pfam database
(Bateman et al., 2014). The subcellular location data is derived
from the COMPARTMENTS database (Binder et al., 2014), in

FIGURE 4 | The comparison results between key target convergence sets based prediction model (KTCSPM) and 12 competitive methods based on the DIP
database under the jackknife methodology. (A) Comparison results between KTCSPM and DC, IC, EC, SC, BC, and CC. (B) Comparison results between KTCSPM
and NC, PeC, CoWEC, POEM, LAC, and TEGS.
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FIGURE 5 | Comparisons of performance between key target convergence sets based prediction model (KTCSPM) and 12 competitive models under the PR curve
and ROC curve based on the DIP database. Panels (A1–C1) are comparison results of PR curves between KTCSPM and 12 competitive models. Panels (A2–C2)
are comparison results of ROC curves between KTCSPM and 12 competitive models.
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FIGURE 6 | Comparison results between KTCSPM and 12 competing methods, where the X axis denotes the competing methods including DC, IC, EC, SC, BC,
CC, NC, PEC, COEWC, POEM, LAC, TEGS, and the Y axis represents the proportion of true essential proteins predicted by each method.

which, the following classifications of the subcellular interstitium
related to the basic proteins of eukaryotic cells are included:
Golgi bodies, endoplasm, cytoplasm, cytoskeleton, vacuoles,
endosomes, mitochondria, plasma, peroxomes, and nuclei, etc.
Besides, the reference bases of the essential genes of Scerevisiae
are collected from MIPS (Mewes et al., 2006), SGD (Cherry et al.,
1998), DEG (Zhang and Lin, 2009), and SGDP (Saccharomyces
Genome Deletion Project, 2012). In the dataset downloaded from
the DIP database, there are 5,093 proteins in total, in which,
1,167 are essential and 3,526 are non-essential. In the dataset
downloaded from the GAVIN database, there are a total of 1,855
proteins, in which, 714 are essential proteins.

Comparison Between KTCSPM and
Competitive Methods
In order to verify the predictive performance of KTCSPM,
in this section, we will compare it with several representative
methods such as DC (2001), IC (1989), And So-called Centrality
(CC) (2014), Bee-tweenness Centrality (BC) (2005), SC (2003),
NC (2005), PeC (2012),LAC (2011), CoEWC (2014), POEM
(2017), and TEGS (2019) based on the DIP database and the
Gavin database separately. Figure 3 shows the comparison
results between KTCSPM and these competitive methods. From
observing Figure 3, it is obvious that the prediction accuracy of
KTCSPM is significantly better than that of all these competing
methods in from top 1 to 25% predicted essential proteins. In

particular, KTCSPM can achieve a reliable prediction accuracy
rate of 90.21% in the top 1% ranked key proteins.

Validation With Jackknife Methodology
For a comprehensive and accurate comparison, in this section,
we will adopt the Jackknife methodology (Holman et al., 2009)
to compare the predictive performances between KTCSPM and
above mentioned competing methods. Experimental results are
shown in Figure 4, from which, it can be clearly seen that the
jackknife curve of KTCSPM is higher than that of all these
state-of-the-art predictive methods. Although in Figure 4B,
the jackknife curves of KTCSPM and TEGS have multiple
intersections, however, when the number of ranked proteins
is bigger than 600, the predictive results of KTCSPM will
become continuously higher than that of TEGS. Therefore,
according to both Figures 4A,B, we can draw a conclusion that
KTCSPM can achieve better predictive performance than all these
representative methods in predicting essential proteins.

Validation by Precision-Recall Curves
and ROC Curves
In this section, ROC curve (receiver operating characteristic)
and precision-recall curves (PR) will be adopted to measure
the performance of KTCSPM. Researches show that the larger
the area under the ROC curve (AUC), the better the model
performance, and in addition, when AUC = 0.5, the model
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TABLE 1 | Comparison results between KTCSPM and 11 state-of-the-art
methods including DC, IC, CC, BC, NC, EC, PeC, CoEWC, ION, and POEM
based on the Gavin database, where the Gavin database consists of 1,855
essential proteins.

Method 1%(19) 5%(93) 10%(196) 15%(279) 20%(371) 25%(464)

DC 7 36 101 158 222 264

IC 16 55 119 163 213 254

CC 11 45 93 135 180 221

BC 9 40 85 122 162 201

SC 9 36 87 130 190 240

NC 11 51 123 170 213 259

EC 0 38 94 134 166 209

PeC 15 69 142 193 238 285

CoEWC 16 69 136 190 237 275

ION 17 73 150 207 263 312

POEM 17 74 148 199 249 296

KTCSPM 17 75 160 216 269 315

TABLE 2 | Influence of the parameter α on prediction accuracy of KTCSPM based
on the DIP database.

Rank α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top 1% 46 46 46 46 46 45 45 44 45

Top 5% 200 200 202 201 200 199 202 200 202

Top 10% 347 247 348 346 340 347 348 350 348

Top 15% 468 468 470 466 468 465 460 467 467

Top 20% 550 550 552 549 545 550 552 551 550

Top 25% 618 620 621 620 619 619 620 619 621

performance will be in a random state. Moreover, when PR curves
are adopted to evaluate predictive models, more comprehensive
feedbacks on performances of predictive models can be obtained
by using different validation methods. And as a result, Figure 5
shows the comparisons of performance between KTCSPM and
12 competitive prediction models under the PR curve and ROC
curve separately. From the Figures 5A1,2,B1,2, it can be seen
that when KTCSPM is compared with SC, EC, DC, IC, BC,
CC, NC, PeC, the area under the PR curve (AUC), and ROC
curve display results show that KTCSPM is superior. For these
methods, by observing a3 and b3, it can be seen that when
KTCSPM is compared with TEGS and POEM methods, the gap
becomes smaller and there is overlap, but even so, the prediction
performance of KTCSPM is still better than the 12 methods.

Analysis of the Differences Between
KTCSPM and Competitive Methods
It can be seen from above descriptions that KTCSPM can achieve
satisfactory predictive effects. In this section, we will further
analyze the differences between KTCSPM and 12 competing
methods by calculating the number of overlaps of first 200
predicted proteins. comparison results are shown in Figure 6,
where Mi represents one of these 12 competitive methods,
| KTCSPM-Mi| denotes the number of proteins detected by
KTCSPM but not by Mi, | Mi-KTCSPM| means the number
of proteins detected by Mi but not by KTCSPM. Obviously,
according to the curve trends in Figure 6, we can see that the ratio
of essential proteins predicted by KTCSPM is much higher than

that predicted by anyone of these 12 competing methods, which
means that KTCSPM can screen out more essential proteins not
found by Mi, and demonstrates that KTCSPM can achieve much
better predictive performance as well.

Prediction Performance of KTCSPM
Based on the Gavin Database
In this section, in order to further verify the adaptability of
KTCSPM, we will further compare it with 11 competitive
methods based on the Gavin database, and comparison results
are shown in the following Table 1.

Effects of Parameters on Performance of
KTCSPM
In this section, we will estimate the effects of parameters on the
prediction performance of KTCSPM. First, as for the parameter
γp in Equation (1), we will set its value to one based on precedents
(Twan et al., 2011). However, as for the parameter in Equation
(17), as illustrated in Table 2, we will set its value from 0.1 to
0.9, and evaluate its impacts on the prediction performance of
KTCSPM. Through observing Table 2, it is easy to see that when
is set to 0.3, KTCSPM can achieve the best prediction effect.
Moreover, it can be clearly seen that KTCSPM remains robust
to different values of, which means that KTCSPM is not sensitive
to the values of α.

DISCUSSION

It is time consuming and energy consuming to predict essential
proteins through traditional biological experiments, so it has
become a hot topic in the field of bioinformatics to build
mathematical models to predict essential proteins. In this
manuscript, a new prediction model called KTCSPM is proposed,
in which, a weighted PDI network constructed by integrating
a weighted PPI network and a weighted DDI network first,
and then, based on the concepts of KCS and IS, a predictive
method is further designed to infer potential key proteins in the
weighted PDI network based on the random walk with restart.
Finally, extensive experiments have demonstrated the predictive
superiority of KTCSPM. At present, some methods have been
proposed to infer potential disease related miRNAs such as
RWRMDA (Chen et al., 2012), RLSMDA (Chen and Yan, 2014)
and RBMMMDA (Chen et al., 2015), in the future, KTCSPM
may also be applied to predict potential associations between
miRNAs, and diseases.

CONCLUSION

In this manuscript, the main contributions are as follows: (1)
A novel weighted PDI network is designed by combining a
weighted PPI network with a weighted DDI network. (2) The
concept of network distance is introduced, and the KTCS and
the IS are established for nodes in the weighted PDI network.
(3) Based on the concepts of KTCS and IS, an improved random
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walk with restart algorithm is proposed to recognize essential
proteins. By comparing with existing state-of-the-art predictive
models, it is proved that KTCSPM can achieve better predictive
performance in detecting essential proteins.
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