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Abstract
Humans are protected against infection from most African trypanosomes by lipoprotein

complexes present in serum that contain the trypanolytic pore-forming protein, Apolipopro-

tein L1 (APOL1). The human-infective trypanosomes, Trypanosoma brucei rhodesiense in

East Africa and T. b. gambiense in West Africa have separately evolved mechanisms that

allow them to resist APOL1-mediated lysis and cause human African trypanosomiasis, or

sleeping sickness, in man. Recently, APOL1 variants were identified from a subset of Old

World monkeys, that are able to lyse East African T. b. rhodesiense, by virtue of C-terminal

polymorphisms in the APOL1 protein that hinder that parasite’s resistance mechanism.

Such variants have been proposed as candidates for developing therapeutic alternatives to

the unsatisfactory anti-trypanosomal drugs currently in use. Here we demonstrate the in
vitro lytic ability of serum and purified recombinant protein of an APOL1 ortholog from

theWest African Guinea baboon (Papio papio), which is able to lyse examples of all

sub-species of T. brucei including T. b. gambiense group 1 parasites, the most common

agent of human African trypanosomiasis. The identification of a variant of APOL1 with

trypanolytic ability for both human-infective T. brucei sub-species could be a candidate for

universal APOL1-based therapeutic strategies, targeted against all pathogenic African

trypanosomes.

Author Summary

African trypanosomes are protozoan parasites that affect both humans and animals in
poor rural areas of sub-Saharan Africa, and are a major constraint on health and agricul-
tural development. Disease control is principally dependent on the administration of
drugs, which are old and largely unsatisfactory. Humans are naturally resistant to infection
by most African trypanosomes species because of a lytic protein component in their blood,
called APOL1. However, human-infective trypanosomes, T. b. rhodesiense in East Africa,
and T. b. gambiense in West Africa, have evolved separate mechanisms to disarm this lytic
protein and cause disease. Recently, variants of APOL1 were discovered in some primates
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that are able to kill the East African human disease-causing sub-species. These APOL1 var-
iants form the basis of current attempts to create novel therapeutic interventions that can
kill both animal and human-infective trypanosomes. In this study, we show that another
variant of the same protein from aWest African baboon species is able to kill, not only
East African human-infective trypanosomes, but also the West African parasites, which
causes the majority of human African trypanosomiasis cases. This new APOL1 variant
could be a potential candidate for anti-trypanosomal therapies targeted at all pathogenic
trypanosome species.

Introduction
African trypanosomes continue to exert a significant barrier to agricultural production and
rural development across sub-Saharan Africa [1]. Due to a primate-specific innate trypanolytic
mechanism, the majority of trypanosome species are unable to infect man. However, two sub-
species of Trypanosoma brucei, T. b. rhodesiense and T. b. gambiense, have evolved distinct pro-
cesses to resist this lysis and cause the debilitating and often fatal human form of African try-
panosomiasis, known as sleeping sickness. The West African T. b. gambiense parasite typically
causes a chronic disease profile, while the zoonotic T. b. rhodesiense sub-species, located in
Eastern and Southern Africa, results in a more rapidly progressing, acute infection [2,3]. Sev-
enty-million people over an area of 1.55 million km2 are at risk of contracting either of the two
human-infective sub-species [4].

Current anti-trypanosomal drugs for medical and veterinary administration are largely
unsatisfactory due to high toxicity, difficult treatment regimens, and emerging resistance [5–7].
Decades of drug development for African trypanosomiasis has produced safer refinements of
existing therapies [7,8] and a number of promising novel drug candidates [9–11], but as yet no
new anti-trypanosomal therapy has successfully passed phase III clinical trials. Furthermore,
the adaptive immune response of vertebrates is rendered largely ineffective by the trypano-
some’s ability to cyclically evade detection through variant surface glycoprotein (VSG)-medi-
ated antigenic variation [12,13], placing a significant hurdle in the path of vaccine
development. Broad-spectrum, safe, easily administered, and effective therapies to treat African
trypanosomiasis are therefore still needed. The recent discovery of primate serum proteins that
are able to kill both animal and human-infective trypanosomes is now offering opportunities
for novel therapeutic approaches [14,15].

It has been known for over a century that the serum of humans and a small number of other
Catarrhine primates are highly toxic to most African trypanosome species [16,17]. The molec-
ular basis of this innate immunity in man has been elucidated and centres on two trypanolytic
serum complexes, Trypanosome Lytic Factor 1 (TLF-1) [18,19] and TLF-2 [20,21], which
share the same core protein components: haptoglobin-related protein (HPR) and apolipopro-
tein L1 (APOL1). HPR bound to haemoglobin mediates TLF-1 endocytosis via the haem-scav-
enging, haptoglobin-haemoglobin receptor (HpHbR) on the trypanosome’s surface [22–25].
Difficulty in purifying TLF-2 ex-vivo, has hindered discovery of exactly how this complex is
bound and internalised by the parasite but it is known that it does not require HpHbR [21,26].
Despite differences in uptake, both TLF-1 and TLF-2 utilize the same lytic component in the
form of the ionic channel-forming protein, APOL1 [22,27,28]. Following internalization,
APOL1 undergoes a pH-dependant conformational change in the endolysosome pathway
which releases it from the TLF complex [29,30], and promotes insertion into parasite mem-
branes [31,32]. The exact mechanism of APOL1-mediated lysis that follows remains to be
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elucidated. In one recent model APOL1 insertion was found to disrupt both lysosomal and
mitochondrial membranes, inducing an apoptosis-like cell death [33]. In contrast, an alterna-
tive model proposes that endosome recycling of APOL1 to the neutral environment of the par-
asite’s plasma membrane accelerates cation-selective channel activity and promotes lysis by
osmotic swelling [34].

The Trypanosoma parasites responsible for animal trypanosomiasis are rapidly killed by
this innate defence system, whereas the human sleeping sickness parasites, T. b. rhodesiense
and T. b. gambiense, are able to resist lysis. In T. b. rhodesiense, resistance is effected by the
VSG-derived, serum resistance associated (SRA) protein [35,36] which binds to the C-terminal
domain of APOL1 in the endolysosome pathway preventing channel-mediated lysis [27,37–
39], plausibly by impeding correct membrane insertion of APOL1 [34,40].

The mechanism of human serum resistance in T. b. gambiense has taken longer to unravel.
T. b. gambiense typically grows to very low parasitemia and is difficult to adapt to laboratory
models. An additional complicating factor is that T. b. gambiense shows two distinct "groups"
that differ in genotype and phenotype [41–44]. The classic, clonal T. b. gambiense type [45],
labelled “group 1” and found in West and Central Africa, is the predominant human-infective
sub-species, responsible for 97% of all reported human cases [46]. T. b. gambiense group 1
strains are invariably resistant even after prolonged passage in laboratory rodents [42,47] and
the mechanism underlying this resistance appears multifactorial, with at least three indepen-
dent contributing components so far identified. Firstly the reduction of TLF-1 uptake through
reduced expression and polymorphism of the HpHbR receptor that reduces binding affinity
[48–50]; secondly, expression of a VSG-related T. b. gambiense-specific glycoprotein (TgsGP)
which is essential, but not sufficient, for resistance [51] and which may increase resistance to
APOL1 pore-mediated lysis by stiffening trypanosomal membranes [52]; and thirdly, faster
APOL1 degradation has been proposed, through the action of cysteine peptidase [52,53]. A sec-
ond, more virulent type of T. b. gambiense was identified in Cote d’Ivoire and Burkina Faso in
the 1980’s [42,44] and defined as “group 2”, but has since virtually disappeared and may now
be extinct. Studies of the limited number of group 2 strains that have been isolated indicate
that these parasites are closely related to West Africa T. b. brucei [41,43,44,54] and exhibit a
variable human serum resistance phenotype, in a manner superficially similar to T. b. rhode-
siense [42,47,48]. Although the underlying resistance mechanism remains elusive it does not
appear to involve a reduction in TLF-1 uptake [48] or the SRA [55] or TgsGP gene [56,57].

Unlike humans and gorillas [58,59], from which they diverged around 25 million years ago
[60], several members of the Cercopithecidae (Old World monkey) family appear intrinsically
resistant to T. b. rhodesiense [58,59,61]. Both serum and APOL1 from the East African baboon
species, Papio hamadryas, has been demonstrated to effectively lyse human-infective T. b. rho-
desiense [14,58]. This difference in innate immunity between Homo sapiens and P. hamadryas,
has been pinpointed to the position of a single amino acid in the baboon APOL1 C-terminus
which prevents the parasite’s SRA protein from binding and neutralising APOL1 lytic activity
[62]. Furthermore, a nearly identical mutation has now also been detected in the C-terminus of
APOL1 variants of some humans with African ancestry whose serum exhibits lytic activity
against T. b. rhodesiense but not T. b. gambiense [63].

This led to the hypothesis that as T. b. gambiense is found only in West Africa, another vari-
ant of APOL1 may exist in someWest African primates that is able to kill T. b. gambiense. In
this study we examined the serum and APOL1 protein of a West African baboon species, Papio
papio, suggested to be refractory to T. b. gambiense infection, with the ability to eliminate para-
sites in a laboratory infection [64]. Here we demonstrate that serum and recombinant protein
from the P. papio APOL1 ortholog lyses representative strains of all sub-species of T. brucei in
an in vitro assay system. The identification of an APOL1 variant with broad trypanolytic ability
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against T. brucei sub-species, including the most prevalent T. b. gambiense type, may provide a
potential reagent for the development of universal APOL1-based therapeutic agents.

Methods

Trypanosoma brucei stocks
Representative bloodstream form cell lines were selected for each subspecies from a collection
at the University of Glasgow and have been previously described. STIB247 is a T. b. brucei
strain originally isolated from a hartebeest in Serengeti, Tanzania in 1971 [65]. The T. b. rhode-
siense strain EATRO98 was isolated by the East African Trypanosomiasis Research Organiza-
tion (EATRO) from a human in Nyanza, Kenya in 1961 [66]. T. b. gambiense group 2 strain
STIB386 (MHOM/CI/78/TH114) was originally isolated in 1978 from an infected patient in
Côte d'Ivoire [67]. ELIANE (MHOM/CI/52/ITMAP 2188) is a T. b. gambiense group 1 strain
isolated from a human in Côte d’Ivoire in 1952 [68]. Additional T. b. gambiense group 1 strains
tested were human isolates, PA (MHOM/CG/80/ITMAP1843/PA) from Republic of the
Congo in 1975 [43], BIM (MHOM/CM/75/ITMAP1789/BIM) from Cameroon in 1975 [43],
and TOBO (MHOM/CI/83/DAL596/TOBO) and S1/1/6 RI from Côte d'Ivoire in 1983 [69]
and 2002 [70], respectively. All bloodstream form culture lines were maintained in vitro in
modified HMI9 medium [71] supplemented by 1.5 mM glucose, 1 mMmethyl cellulose,
250 μM adenosine, 150 μM guanosine and 20% foetal bovine serum (FBS). Expression of the
SRA human serum resistance gene in T. b. rhodesiense EATRO98 was maintained under selec-
tion with 1% normal human serum. Ectopic expression of functional T. b. brucei HpHbR in
ELIANE was previously generated using the tubulin-targeting TbbHpHbR pTub-phelo con-
struct (strain ELIANE TbbHpHbR-/+) [51], and maintained under phleomycin selection.
Bloodstream form isolates BIM and S1/1/6 RI were grown from stabilate in donor BALB/C
mice (Harlan, United Kingdom) and trypanosomes purified from blood by differential centri-
fugation as previously described [72]. Cells were maintained as for bloodstream culture cells
lines at 37°C in 5% CO2 for up to 24 hours until use. All animal procedures were carried out in
accordance with the Animals (Scientific Procedures) Act of 1986. Subspecies classification for
T. b. gambiense group 1 strains was confirmed by a positive PCR result for the T. b. gambiense
specific glycoprotein (TgsGP) gene and T. b. rhodesiense by a positive PCR result for the sub-
species-specific serum resistance-associated (SRA) gene, as previously described [48]. T. b. bru-
cei and T. b. gambiense group 2 strains were confirmed by a combination of negative SRA/
TgsGP PCR results, the human serum sensitivity phenotype and their microsatellite genetic
profile [73].

Serum stocks
Sera Laboratories International, UK, provided pooled adult P. papio baboon serum derived
from two individuals. Additional P. papio baboon serum, derived from a single adult male indi-
vidual, was provided by Matrix Biologicals, UK. Normal human serum was obtained from a
consented human donor and subject to appropriate ethical approval. The APOL1 protein levels
in all serum samples are unquantified.

Serum resistance assays
Trypanosomes were diluted to 5 x 105 parasites per ml in modified HMI9, with the addition of
human serum or P. papio serum serially diluted in foetal bovine serum (FBS), or FBS only, to a
total concentration of 20%. Assays were performed in a final volume of 200 μl in a standard 96
well plate at 37°C in a CO2-equilibrated incubator. The number of viable motile trypanosomes
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was quantified at 24 hours by haemocytometer counts under the microscope in triplicate, for at
least three independent experiments. The percentage viability of parasites in human or P. papio
serum was normalised relative to the FBS control for each cell line to account for inherent dif-
ferences in strain growth rate. Dose–response curves and IC50 values were determined using
GraphPad Prism software (version 7.0).

Cloning and expression of recombinant APOL1
TheH. sapiens (accession no. CCDS13926.1) or P. papio (accession no. KC197810) APOL1
open reading frame (ORF) was synthesised and supplied by GeneArt life technologies in an
Invitrogen Gateway-compatible entry vector. The entry vector containing the APOL1 cDNA
sequence, minus the N-terminal signal peptide (H. sapiens, residues 28–398; P. papio, residues
28–288) was cloned into pDest17 destination vector, which added an N-terminal 6xHis-tag,
and transformed into BL21- AI competent E. coli. Protein expression was induced using 0.2%
L-Arabinose for 16 hours at 37°C. Cells were lysed with urea lysis buffer (8 M urea, 20 mM
Tris-HCl, 0.5 M NaCl, 5 mM imidazole, pH 8) and the cellular detritus removed by centrifuga-
tion at 5000g for 15 minutes. A small aliquot was removed for analysis by SDS-PAGE and
Western blot with 1:5000 HRP-conjugated mouse anti-His antibody (Qiagen) and the remain-
der was used for protein purification under denaturing conditions. Denatured 6x His-tagged
APOL1 protein was purified by passing the cell lysate through a gravity-flow Ni-Sepharose col-
umn (Gravitrap, GE Healthcare), and washing several times with urea lysis buffer pH 8 supple-
mented with increasing concentrations of Imidazole (5 mM-50 mM). Finally, bound protein
was eluted with urea lysis buffer pH 8 containing 500mM imidazole. The eluate was dialyzed
overnight against 20mM acetic acid and 0.05% tween and concentrated using 10,000 MW
Vivaspin columns (Sartorius). Purity and concentration of the final purified protein was
checked using a Qubit fluorometer (Thermo fisher) and SDS-PAGE (S1 Fig), then the concen-
tration adjusted to 1 mg/ml and stored in aliquots at 4°C.

Recombinant APOL1 lysis assay
To assess survival in recombinant APOL1, trypanosomes were diluted to 5 x 105 parasites per
ml in modified HMI9 containing 20% FBS and incubated with a dilution series of recombinant
human or P. papio APOL1. The recombinant APOL1 was formulated in protein-free buffer
(20mM acetic acid, 0.05% tween) and added in a volume of 10 μl to a final assay volume of
200 μl in a standard 96 well plate. A control containing an equivalent volume of protein-free
buffer was also prepared. Assays were performed at 37°C in a CO2-equilibrated incubator, and
the number of viable motile trypanosomes in each well was quantified at 24 hours by haemo-
cytometer counts under the microscope in triplicate for at least three independent experiments.
Cell counts in recombinant APOL1 were compared to control wells containing protein-free
buffer only to determine percentage survival. In each assay, cells were incubated in 20% normal
human serum as a positive control. Dose–response curves, IC50 values and one-way ANOVA
were determined using GraphPad Prism software (version 7.0). Where indicated, trypano-
somes were pre-incubated with 10 mM ammonium chloride (NH4Cl), a weak base, for 30 min-
utes at 37°C to reverse acidification of the endolysosome system prior to the addition of
recombinant APOL1.

APOL1 localisation immunofluorescence assays
Samples for IFA were prepared as follows. All incubation steps unless stated otherwise were
performed in a humidor at room temperature. Bloodstream form trypanosomes were diluted
in HMI9 medium containing 20% FBS at a concentration of 106 parasites/ml and incubated
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with 50 μg/ml purified recombinant H. sapiens or P. papio APOL1 for two hours at 37°C. After
this period, cells were washed once in serum-free HMI9 medium, and settled onto glass slides
before fixing in 1% paraformaldehyde for 10 minutes. Samples were permeabilised using 0.1%
Triton X-100 in PBS for 20 minutes then incubated in blocking solution (2% BSA in PBS) for
20 minutes. After washing three times in PBS, slides were incubated for 40 minutes with 1:500
mouse anti-p67 antibody (gift from Jay Bangs, Department of Microbiology and Immunology,
University at Buffalo, NY, USA) in blocking solution. Washes were repeated and then primary
antibody was detected using 1:1000 goat anti-mouse AlexaFluor594 secondary antibody (Life
technologies) incubated for 40 minutes in blocking solution. To detect His-tagged APOL1
slides were washed three times in PBS and then incubated for 40 minutes with 1:500 Alexa-
Fluor488 mouse anti-penta-His antibody (Molecular Probes, Invitrogen) in blocking solution.
Following a final three washes the cells were treated with 50% glycerol, 0.1% DAPI, 2.5% 1,
4-diazabicyclo [2.2.2] octane (DABCO) in PBS, protected with a coverslip and sealed with ace-
tone. Slides were imaged using the Deltavision Core system and SoftWorx package (Applied
Precision) with standard filter sets (DAPI/FITC/Texas-Red and Light transmission). Approxi-
mately 30 serial sections through each trypanosome were taken for each filter. The images were
composited and the brightness, contrast and color levels normalised between samples and
exposures using the ImageJ software package (US National Institute of Health).

Ethics statement
The University of Glasgow ethical review board approved the use of human serum in this
study. The human serum volunteer gave written informed consent.

Results

P. papio serum is lethal to T. b. rhodesiense and T. b. gambiense groups
1 and 2
Trypanolytic activity against the human-infective East African T. b. rhodesiense sub-species has
been demonstrated for sera from several members of the Cercopithecidae family, including
baboons, mandrills and sooty mangabeys [14,37,58,59]. To date however, no primate has been
identified with lytic activity against West African T. b. gambiense parasites. To determine the try-
panolytic ability of serum from theWest African Guinea baboon, P. papio, representative exam-
ples of the different T. brucei sub-species, were incubated for 24 hours in vitro, with a dilution
series of P. papio or human serum. The strains selected included five different isolates of classic
T. b. gambiense group 1, the cause of 97% of reported HAT cases [46], from a number of different
disease foci inWest Africa. As illustrated in Fig 1A, normal human serum efficiently lysed T. b.
brucei bloodstream parasites (IC50; 0.0005%) in a 24 hour assay, but not strains of the human-
infective T. b. rhodesiense or T. b. gambiense subspecies. In contrast, P. papio (pooled sera) was
completely lytic to all tested strains, including both T. b. gambiense group 1 and 2 isolates, at
concentrations� 10% (Fig 1B). The sensitivity of T. b. brucei to P. papio pooled serum (IC50;
0.00035%) was comparable to that of T. b. rhodesiense (IC50; 0.00038%). T. b. gambiense group 1
and 2 strains however, were killed significantly less potently, with an IC50 approximately 70-fold
(IC50; 0.024% serum, T. b. gambiense group 2) or 2000-fold (IC50; 0.46–1.68% serum, T. b. gam-
biense group 1) higher than that of the other sub-species, although still at a sub-physiological
concentration. The trypanolytic activity of P. papio was also confirmed against a smaller collec-
tion of T. brucei strains using an alternative source of P. papio sera derived from a single male
individual, which killed T. b. gambiense at a lower concentration> 2% (S2 Fig), presumably
reflecting variation between individual animal samples.
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Lytic activity of P. papio recombinant APOL1
APOL1 has been demonstrated to be the lytic factor in normal human serum [22,27,28],
and T. b. rhodesiense-lytic orthologs of APOL1 have now been identified in the serum of a
number of Old World monkey species, including species of the Papio baboon genus [14,37,58].

Fig 1. Titration of the trypanolytic activity of Human (H. sapiens) and Guinea baboon (P. papio) sera against representative examples of the T.
brucei sub-species. The percentage of viable trypanosomes was determined following a 24-hour exposure to serial dilutions of (A) Human (H.
sapiens) or (B) Guinea baboon (P. papio) sera. Representative T. brucei sub-species strains were tested: T. b. brucei (strain STIB247), T. b.
rhodesiense (strain EATRO98), T. b. gambiense group 2 (strain STIB386), and T. b. gambiense group 1 (strains ELIANE, TOBO and S1/1/6 [Côte
d'Ivoire], PA [Republic of the Congo], and BIM [Cameroon]). Mean percentage cell survival ± SD is expressed relative to FBS control, calculated from
three independent experiments. Dose–response curves and IC50 values with 95% confidence intervals (CI) were determined using GraphPad Prism
software version 7.

doi:10.1371/journal.pntd.0004903.g001
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Furthermore this lytic activity of Papio APOL1 against T. b. rhodesiense has been demonstrated
to be the result of a single polymorphism [62]. We therefore hypothesize that the broad lytic
ability of P. papiomay be attributable to a functional variant of this protein. Sequenced APOL1
cDNA was used as a template for the production of recombinant variants of P. papio and
human APOL1 protein (S3 Fig-Amino acid alignment). Representative strains of the different
T. brucei sub-species were incubated in the presence of purified P. papio and human recombi-
nant protein to determine if APOL1 alone had demonstrable trypanolytic ability. Titrated
human recombinant APOL1 protein completely lysed T. b. brucei parasites after 24 hours
(IC50; 1.013 μg/ml), at concentrations comparable to the physiological levels of APOL1
reported for normal human serum [74–76], but had no lytic effect on strains of the human
serum resistant parasites, T. b. rhodesiense, T. b. gambiense group 1 or T. b. gambiense group 2
(Fig 2A). In contrast, recombinant P. papio APOL1 protein exhibited trypanolytic activity
against representative strains of all T. brucei sub-species (Fig 2B with additional T. b. gambiense
group 1 strains assays provided in S4 Fig). Furthermore, strains of all sub-species tested
appeared equally susceptible to the effect of recombinant P. papio APOL1, with no significant
difference in IC50 observed (one-way ANOVA, F (3, 24) = 1.741, p = 0.19). Notably, as has
been observed for human APOL1, this lytic activity is inhibited by the addition of the acidotro-
pic agent ammonium chloride to the assay (Fig 2A and 2B). Ammonium chloride is a weak
base that raises endolysosomal pH, thereby preventing pH-dependant conformational changes
to APOL1 that are predicted to be essential to efficient ion-channel mediated lysis [32,34,77].
This corresponding inhibition of APOL1-mediated lysis for both orthologs is further indicative
of a conserved mechanism of action. In summary these assays demonstrate that the P. papio
APOL1 ortholog in isolation exhibits trypanolytic ability against all tested examples of the
human-infective T. brucei sub-species. Although there may be other, as yet uncharacterized
factors that contribute to the lytic ability of P. papio serum, the APOL1 ortholog is a significant
trypanolytic component.

T. b. gambiense group 1 HpHbR reduces sensitivity to P. papio serum
lysis
A reduced sensitivity to lysis was observed for both the predominant T. b. gambiense group 1
and minor group 2 strains, relative to T. b. brucei and T. b. rhodesiense, when incubated with P.
papio serum, but not recombinant APOL1 protein. We postulated that for T. b. gambiense
group 1, this difference might be the result of disparity in the rate of uptake of APOL1 versus
APOL1–containing trypanolytic factors by these parasites. In normal human serum, HPR
bound to haemoglobin, acts as ligand to facilitate TLF-1 uptake via the T. bruceiHpHbR recep-
tor [23,78]. However, a defining feature of T. b. gambiense group 1 strains is a decrease in TLF-
1 internalisation as a result of reduced HpHbR expression and a conserved L210S substitution
that reduces the binding affinity of HpHbR for its ligand [50,79]. Reduced TLF uptake via
HpHbR contributes to the invariant human serum resistant phenotype of these parasites,
although alone is insufficient to impart resistance to human serum [78] due to the existence of
other speculated receptors for TLF-1 [80,81], and the additional TLF-2 particle in human
serum for which the uptake mechanisms remain unknown [21,82,83]. In contrast, recombinant
APOL1 is internalised by non-specific fluid phase endocytosis and trafficked through the endo-
lysosome pathway, thus completely circumventing the HpHbR receptor [27,48].

The number of molecules in the TLF complex and its exact structural composition in
baboon serum is currently unresolved, but a representative baboon species, P. hamadryas, has
been demonstrated to have similar constitutive components (HPR and APOL1) to human TLF
[14]. As T. b. gambiense group 1 parasites have a reduced uptake of human TLF-1 but the other
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subspecies do not we postulated that a similar mechanism could reduce the uptake of P. papio
TLF particles by T. b. gambiense group 1 strains, which is corrected by direct incubation in
recombinant APOL1 protein. To investigate this we repeated the serum resistance assays using
a T. b. gambiense ELIANE strain expressing a functional T. b. bruceiHpHbR receptor (ELIANE

Fig 2. Trypanolytic activity of recombinant APOL1. The percentage of viable trypanosomes was determined following a 24-hour exposure to media
containing serial dilutions of A) recombinant Human APOL1 protein and B) recombinant P. papio APOL1 protein. Representative T. brucei sub-species
strains were tested: T. b. brucei (strain STIB247), T. b. rhodesiense (strain EATRO98), T. b. gambiense group 1 (strain ELIANE), and T. b. gambiense
group 2 (strain STIB386). Additional assays were performed with different strains of T. b. gambiense group 1 and are provided in S4 Fig. The mean
percentage cell survival ± SD, relative to protein-free control, was calculated from at least three independent experiments. Dose–response curves and
IC50 values with 95% confidence intervals (CI) were determined using GraphPad Prism software version 7. APOL1-mediated lysis of each isolate was
prevented by the inclusion of an acidotropic agent (10 mM NH4Cl) in the assay.

doi:10.1371/journal.pntd.0004903.g002
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TbbHpHbR -/+), that was previously generated by our laboratory and demonstrated to take up
comparable amounts of TLF-1 to T. b. brucei [51]. As previously observed, expression of the
functional T. b. bruceiHpHbR receptor alone was insufficient to convert the phenotype of T. b.
gambiense to human serum sensitivity and this clone (TbbHpHbR -/+ T. b. gambiense) retains
full resistance to normal human serum (Fig 3A). However, it exhibits a 1000-fold increased
sensitivity to P. papio serum (relative to the wild-type T. b. gambiense group 1 ELIANE strain),
producing an IC50 value (0.0005%) comparable to that observed for the T. b. brucei and T. b.

Fig 3. Expression of T. b. brucei HpHbR in T. b. gambiense group 1 increases sensitivity to P. papio serum lysis. The percentage of viable
trypanosomes following a 24-hour exposure to serial dilutions of A) human serum and B) P. papio serum was determined for T. b. gambiense (strain
ELIANE) and T. b. gambiense expressing a functional T. b. brucei HpHbR receptor (strain ELIANE TbbHpHbR-/+) alongside representative T. brucei sub-
species strains T. b. brucei (STIB247) and T. b. rhodesiense (EATRO98). Mean percentage cell survival ± SD is expressed, relative to FBS control. Dose–
response curves and IC50 values with 95% confidence intervals (CI) were determined using GraphPad Prism software version 7.

doi:10.1371/journal.pntd.0004903.g003
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rhodesiense sub-species (Fig 3B and S2 Fig). Taken together, the serum and APOL1 assays indi-
cate that diminished TLF uptake via the HpHbR receptor, rather than higher innate resistance
to P. papio APOL1-mediated lysis underlies the increased resistance to P. papio serum observed
for T. b. gambiense group 1 strains.

In T. b. gambiense group 2, in contrast, an as yet uncharacterised HpHbR–independent
mechanism/s determines human infectivity. T. b. gambiense group 2 strains, including the
STIB386 isolate used in this study, have been shown to express theHpHbR gene at level compa-
rable with T. b. brucei, with no demonstrable reduction in TLF-1 uptake [48]. Consequently,
the reduced sensitivity to P. papio serum lysis, but not APOL1 protein, also observed for these
HpHbR-functional parasites, further indicates that important differences exist in the cell biol-
ogy of between T. b. gambiense group 2 and T. b. gambiense group 1 strains that determine sen-
sitivity to these primate lytic factors.

Localisation of P. papio APOL1
Human recombinant APOL1 is taken up by fluid phase endocytosis and trafficked through the
endocytic pathway to the endolysosome, the initial activation site of APOL1, in all T. brucei
sub-species [27,48]. This results in lysis of T. b. brucei but not of T. b. rhodesiense or T. b. gam-
biense [48], which each possess mechanisms to resist the lytic effects of APOL1 [35,48,51,52].
To determine if P. papio APOL1 is localised through the parasite endolysosome pathway in a
similar manner to that demonstrated for human APOL1, uptake of both recombinant proteins
was compared in T. b. brucei and T. b. gambiense group 1 parasites using a fluorescent antibody
to detect the His-tagged recombinant APOL1 protein. The cells were then examined by micros-
copy, in conjunction with the lysosomal marker p67. In order to achieve images of APOL1
uptake we used high concentrations of APOL1 (material and methods) to counteract possible
degradation of APOL1 in the lysosome. Consistent with previous experiments of serum and
APOL1 uptake in our laboratory [48,49,51], no lysosomal swelling was observed. As shown in
Fig 4, both human and P. papio APOL1 are internalised by T. b. brucei and T. b. gambiense
after a two hour incubation and are observed to co-localise with an antibody directed against
the lysosomal membrane protein p67, indicative of the parasite endolysosome pathway
[84,85]. These observations, in parallel with the ablation of lysis observed after co-incubation
with acidotropic agent, ammonium chloride in APOL1 lysis assays, suggest that as previously
demonstrated for human APOL1, exposure of the protein to the low pH of the endolysosomal
pathway is also a requirement for trypanolytic activity of the baboon APOL1 ortholog.

Discussion
The ancient co-evolutionary engagement of African trypanosomes with their mammalian
hosts has shaped an innate lytic molecule in man that protects from infection with most Afri-
can trypanosomes. In response, the extensive antigenic repertoire of T. brucei [86] has provided
a rich resource from which to evolve counter-measures to APOL1-mediated lysis on at least
two occasions; SRA in T. b. rhodesiense in East Africa [35,36,87], and TgsGP in T. b. gambiense
group 1 in West Africa [51,52,88]. In this study we present a novel APOL1 variant from a spe-
cies of West African baboon that killed examples of all T. brucei sub-species, including T. b.
rhodesiense, T. b. gambiense group 2, and T. b. gambiense group 1, the agent of most current
cases of human African trypanosomiasis. The identification of such genetic variants, capable of
killing both animal and human-infective parasites presents new opportunities for unconven-
tional approaches to disease treatment and control, using APOL1-based biological therapies.

Previous studies have identified APOL1 orthologs in a subset of Old World monkeys
[14,62], and an APOL1 variant with a key similarity in some humans with African ancestry
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[63], that encode proteins lytic to T. b. rhodesiense. In both variants, evidence suggests protec-
tion is mediated by the position of a single lysine residue in the C-terminal protein domain
that obstructs coiled-coil interactions with SRA, thus allowing APOL1-directed lysis to proceed
unimpeded [62]. Unfortunately in humans, the two amino acid deletion that alters the SRA-
binding region in this APOL1-G2 variant come with an associated fitness cost: a 7–29-fold
increased risk of developing a wide spectrum of kidney disorders in individuals carrying two
copies of a variant allele [63,89–92]. The exact biological mechanism underlying this APO-
L1-associated nephropathy is not yet known but appears to be specific to the human variants.
Engineered versions of the human APOL1 variant transiently expressed in a mouse model
caused significant toxicity to the organ of expression (liver), which was not observed with
baboon APOL1 or human APOL1 modified to introduce only the protective baboon lysine to
the C-terminus [62]. This is an encouraging result, and such baboon-like APOL1 variants are
now the focus of efforts to create suitable mechanisms of delivery, such as the conjugation of
APOL1 protein to an antibody fragment targeted to parasite surface antigens [93] and an ambi-
tious project to create targeted transgenic cattle expressing variant APOL1 [15].

These variants could be used to protect the reservoir host species from zoonotic T. b. rhode-
siense sleeping sickness in addition to animal trypanosomiasis, which places severe restrictions
on agricultural production and rural development in Sub-Saharan Africa [1]. Unfortunately,

Fig 4. Recombinant APOL1 uptake and localisation. The localisation of Alexa488 (green) labelled anti-
pentaHis antibody (APOL1), AlexaFluor594 (red) labelled anti-p67 (lysosomal membrane protein) and DAPI
after a two-hour exposure to recombinant Human and P. papio APOL1 featuring an N-terminal 6xHis-tag. The
panels represent human serum sensitive T. b. brucei, strain STIB247, and human serum resistant T. b.
gambiense group 1, strain ELIANE.

doi:10.1371/journal.pntd.0004903.g004
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they will have a limited effect on the overall burden of human sleeping sickness. None of the
APOL1 variants used in these experiments are able to kill the major human pathogen T. b.
gambiense group 1 which places a population of 57 million people in West and Central Africa
at risk of disease [4], less than 5% of whom are currently under surveillance [94]. Furthermore,
there is a risk that the proposed interventions could result in the creation of a vacant ecological
niche that increases the incidence of T. b. gambiense group 1 in domestic livestock through
selective removal of susceptible competitor species such as T. b. brucei, T. congolense, T. vivax
and T. b. rhodesiense.

We have addressed these concerns directly in this study by examining the serum of a West
African baboon species P. papio that overlaps in distribution with that of T. b. gambiense, and
which had been suggested to self-cure T. b. gambiense group 1 infection [64]. In that study pri-
mates infected with T. b. gambiense group 1 parasites exhibited a serological response that
decreased throughout the course of the experiment and had no detectable parasitemia, consis-
tent with an initial infection, followed by rapid parasite clearance and self-cure. In our study P.
papio serum is able to lyse T. b. gambiense in 24 hours in vitro. The difference in timing of para-
site killing between the in vivo and in vitro experiments, which could be due to a number of dif-
ferent factors such as parasite sequestration, is a well-recognised phenomenon. It is possible
that parasites avoid lysis by residing in sites of low APOL1 concentrations (for example at the
bite site in the skin) in the animal before eventually being cleared. This factor must be taken
into account when attempting to develop APOL1-based therapies as in vitro assays do not
always reflect the complexity of in vivo cell biology. The introduction of improved biolumines-
cent imaging to quantify parasite burden could be used to test in vivo for complete parasite
clearance.

We have shown that the lytic effect of P. papio serum can be reproduced with an ortholog of
the trypanolytic primate defence protein, APOL1, which demonstrates the uptake and localisa-
tion characteristics of other previously identified APOL1 proteins [27,48]. The trypanolytic
action of this P. papio APOL1 variant against T. b. rhodesiense can be attributed to the C-termi-
nal lysine mutation that is conserved among several members of the Cercopithecine subfamily
that includes baboon, mandrills and mangabeys [62]. However the mechanism by which it
counters T. b. gambiense, which has evolved multiple contributing mechanisms of human
serum resistance, remains more elusive. All T. b. gambiense group 1 parasites share a mutated
HpHbR with reduced affinity for one of the human APOL1-containing particles (TLF-1) via
the HPR ligand [48–50], although a second particle, TLF2, appears to have alternative, as yet
unresolved, mechanism(s) of internalisation [24,80,81,83]. The exact composition of TLF in
baboon serum has not been clarified. However analysis of an HPR-affinity purified HDL sub-
fraction from P. hamadryas baboon serum detected a TLF-equivalent particle that contains the
same structural components as human TLF [14]. Furthermore, when transiently expressed in
mice, all three components were required for maximum lytic activity against T. b. rhodesiense
[14], suggesting HPR-HpHbR may play a role in uptake of baboon TLF. Here we show that T.
b. gambiense group 1, although still fully susceptible to sub-physiological concentrations of P.
papio serum, was 1000-fold less sensitive than T. b. brucei sub-species. This difference was
ablated when functional T. b. bruceiHpHbR was restored to the T. b. gambiense parasite, sup-
porting a role for P. papio TLF uptake via both HpHbR-mediated endocytosis as well as
unidentified alternative mechanisms, possible shared with those already proposed for human
TLF [24,80,81,83].

Secondly, the TgsGP gene has been demonstrated to be essential for human serum resistance
in T. b. gambiense group 1, as gene deletion renders the parasites sensitive to human serum
lysis [51,52]. In contrast to the T. b. rhodesiense SRA protein, TgsGP and APOL1 do not appear
to interact directly. Instead, TgsGP is proposed to bolster T. b. gambiense resistance to human
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APOL1 pore-forming activity through a process of plasma membrane stiffening [52]. A third
mechanism by which T. b. gambiensemight resist the actions of NHS, through enhanced
APOL1 degradation within the endolysosomal system, has also been proposed [52]. Modula-
tion of expression levels of the cysteine protease Cathepsin L and its inhibitor (ICP) has dem-
onstrated an important role for cathepsin-mediated degradation of APOL1 in human serum
resistance [53]. Difference in expression levels of these genes has not been detected in T. b.
gambiense, however a lower pH is observed within the early endosomes that is predicted to
accelerate their proteolytic activity relative to T. b. brucei [52]. Intriguingly, we observed equal
sensitivity of all strains tested to P. papio APOL1-directed lysis, suggesting that the activity of
TgsGP, and APOL1 degradation by cysteine peptidases, that effectively hinders human APOL1
in T. b. gambiense, poses no such barrier to the P. papio variant. This raises interesting ques-
tions about how exactly P. papio APOL1 is able to overcome these factors? Many details of the
action of the TgsGP protein in particular remain cryptic. Despite its essential role in human
serum resistance in T. b. gambiense, ectopic expression of T. b. gambiense TgsGP alone in T. b.
brucei is insufficient to confer resistance to human serum [51,88]. There is evidently a role for
other, as yet unidentified processes, in T. b. gambiense human serum resistance, which are
absent or incomplete in T. b. brucei.

Sequence analysis has revealed that baboon and human APOL1 orthologs share only 58%
amino acid sequence identity [14]. Despite this, in the recently elucidated example of baboon
serum lysis of T. b. rhodesiense it was demonstrated that a single amino acid substitution con-
served between baboon species is responsible for APOL1 evasion of SRA binding [62]. Uncov-
ering the mechanism by which P. papio has developed its broad trypanolytic ability may offer
further insights into the workings of T. b. gambiense human serum resistance, as well as aid in
the design of an improved APOL1 therapy that could target all pathogenic trypanosomes
across Sub-Saharan Africa. Such universal therapies that can treat both animal and human
pathogens are particularly appropriate to the “one health” approach, currently advocated by
WHO, FAO, and OIE, that integrates medical and veterinary health policy and research for
addressing zoonotic diseases.

The Guinea baboon P. papio is found only in a limited area of western equatorial Africa,
where its range overlaps with that of T. b. gambiense group 1. Five other baboons are repre-
sented in the Papio genus of which serum for only one, the east African P. cynocephalus (yellow
baboon) has been previously tested against T. b. gambiense parasites, and was reported to be
non–lytic [37]. Unfortunately APOL1 sequence is currently unavailable for comparative analy-
sis with this species or the southern African P. ursinus (Chacma baboon) and P. kindae (Kinda
baboon) species from Central Africa. Of the remaining Papio species, APOL1 sequences from
cDNA have been successfully obtained for P. hamadryas (Hamadryas baboon) from North
East Africa, and Central African P. anubis (Olive baboon) [62], the closest related species to P.
papio in a recent phylogenetic study of mitochondrial DNA [95]. Amino acid alignments of P.
papio APOL1 with these available sequences indicate ~98.5% identity to P. hamadryas and
93.5% to P. anubis (S3 Fig). A study in which C-terminal polymorphisms of P. anubis were
incorporated into human recombinant APOL1 were observed to be lytic to T. b. rhodesiense
but not T. b. gambiense [37], however full length APOL1 transcripts, unavailable at the time of
the study, have not been tested. For P. hamadryas, serum and APOL1 have not yet been tested
against T. b. gambiense, however a laboratory infection of two individual baboons with a strain
of T. b. gambiense group 1 suggested hamadryas baboons to display a level of trypanotolerance
to infection [64]. Future studies in which the sensitivity of T. brucei subspecies to serum and
APOL1 from the other baboon species, followed by the construction of chimera mutants are
now needed to help resolve the crucial polymorphisms responsible for T. b. gambiense lysis, as
has been successful for T. b. rhodesiense.
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Supporting Information
S1 Fig. Purification of recombinant human and P. papio APOL1 protein variants. APOL1
variants were produced in E. coli, based onAPOL1 cDNA sequenceH. sapiens (accession no.
CCDS13926.1) and P. papio (accession no. KC197810), minus the N-terminal signal peptide (H.
sapiens, residues 28–398; P. papio, residues 28–288) and with the addition of an N-terminal 6xHis-
tag. Proteins were purified using Ni-Sepharose under denaturing conditions and dialyzed against
20mM acetic acid and 0.05% tween. Purity and concentration of the final purified protein was
checked using a Qubit fluorometer (Thermofisher) and SDS-PAGE (P = P. papio, H = human
APOL1) stained with Brilliant blue G solution (Sigma-Aldrich) alongside SeeBlue Plus2 protein stan-
dards (Thermofisher). APOL1 concentration was adjusted to 1 mg/ml and stored in aliquots at 4°C.
(TIF)

S2 Fig. Trypanolytic activity of serum from an adult male Guinea baboon (P. papio) against
representative examples of T. brucei sub-species. To confirm the lytic ability of P. papio sera,
the percentage of viable trypanosomes was determined following a 24-hour exposure to serial
dilutions of an alternative Guinea baboon serum, sourced from an individual adult male
(Matrix Biologicals, UK). Representative T. brucei sub-species strains were tested: T. b. brucei
(strain STIB247), T. b. rhodesiense (strain EATRO98), T. b. gambiense group 1 (strain ELIANE)
and T. b. gambiense group 1 expressing a functional T. b. bruceiHpHbR receptor (ELIANE
TbbHpHbR -/+). Mean percentage cell survival ± SD is expressed relative to FBS control, calcu-
lated from three independent experiments. Dose–response curves and IC50 values with 95%
confidence intervals (CI) were determined using GraphPad Prism software version 7.
(TIF)

S3 Fig. Amino acid alignment of Human and baboon APOL1 orthologs. APOL1 amino acid
sequence of the Old World monkey baboon species, Papio papio, was aligned with P. anubis, P.
hamadryas and human (Homo sapiens) sequences. Dashes represent gaps introduced into the
alignment by nucleotide deletions, and shading indicates amino acid differences. The position
of the lysine (K) residue in the APOL1 C-terminus, implicated in resistance to T. b. rhodesiense,
and present in several species of Old World monkey and the G2 APOL1 human variant is indi-
cated (arrowhead).
(TIF)

S4 Fig. Trypanolytic activity of recombinant P. papio APOL1 protein against additional
strains of T. b. gambiense group 1. The percentage of viable trypanosomes was determined fol-
lowing a 24-hour exposure to media containing serial dilutions of P. papio recombinant APOL1
protein. T. b. gambiense group 1 strains (ELIANE, TOBO and S1/1/6 [Côte d'Ivoire], PA
[Republic of the Congo], and BIM [Cameroon]) were tested. The mean percentage cell
survival ± SD, relative to protein-free control, was calculated from at least three independent
experiments. Dose–response curves were determined using GraphPad Prism software version 7.
(TIF)
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