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Background: Understanding the action intentions of others is important for social

and human-robot interactions. Recently, many state-of-the-art approaches have been

proposed for decoding action intention understanding. Although these methods have

some advantages, it is still necessary to design other tools that can more efficiently

classify the action intention understanding signals.

NewMethod: Based on EEG, we first applied phase lag index (PLI) and weighted phase

lag index (WPLI) to construct functional connectivity matrices in five frequency bands

and 63 micro-time windows, then calculated nine graph metrics from these matrices

and subsequently used the network metrics as features to classify different brain signals

related to action intention understanding.

Results: Compared with the single methods (PLI or WPLI), the combination

method (PLI+WPLI) demonstrates some overwhelming victories. Most of the average

classification accuracies exceed 70%, and some of them approach 80%. In statistical

tests of brain network, many significantly different edges appear in the frontal, occipital,

parietal, and temporal regions.

Conclusions: Weighted brain networks can effectively retain data information. The

integrated method proposed in this study is extremely effective for investigating action

intention understanding. Both the mirror neuron and mentalizing systems participate as

collaborators in the process of action intention understanding.

Keywords: action intention understanding, phase lag index, weighted network metric, classification accuracy,

mirror neuron system, mentalizing system

INTRODUCTION

Understanding others’ intentions from their actions is thought to be an essential part of social
interaction (Satpute et al., 2005; Cacippo et al., 2010; Ortigue et al., 2010; Catmur, 2015; Pereira
et al., 2017; Pomiechowska and Csibra, 2017) and to play an important role in children’s
physiological growth and language learning (Fogassi et al., 2005; Ouden-Den et al., 2005; Brune
and Woodward, 2007; Kaschak et al., 2010; Casteel, 2011; Isoda, 2016). However, the complex
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mechanism underlying action intention understanding has not
been thoroughly decoded (Virji-Babul et al., 2010; Bonini et al.,
2013; Catmur, 2015; Tidoni and Candidi, 2016; Cacioppo et al.,
2017; Pomiechowska and Csibra, 2017; Cole and Barraclough,
2018; Cole et al., 2018). Exploring these neuronal mechanisms
would be very useful for application into research on intelligent
human-robot interaction (HRI) and brain-computer interface
(BCI) (Zhang et al., 2015; Liu et al., 2017; Ofner et al., 2017).

Machine learning is an extremely important tool that is
widely applied in biomedical engineering (Dindo et al., 2017;
Mcfarland and Wolpaw, 2017; Ofner et al., 2017; Pereira et al.,
2017; Bockbrader et al., 2018). For studying action intention
understanding, good classification accuracy is one of the most
critical factors (Dindo et al., 2017; Ofner et al., 2017; Bockbrader
et al., 2018). In recent years, many researchers have performed
numerous experiments with machine learning, but most of
the classification results are unsatisfactory (Zhang et al., 2015,
2017; Liu et al., 2017; Pereira et al., 2017). After investigating
these previous studies, we determined two important reasons
for these poor classification results. One is the extraction of
useless features, and the other is the selection of a small
number of samples for training classifier model. For feature
extraction, many methods (e.g., time domain and frequency
domain analyses) have been introduced to neuroscience (Ortigue
et al., 2010; Carter et al., 2011; Ge et al., 2017; Liu et al., 2017;
Pereira et al., 2017; Pomiechowska and Csibra, 2017; Zhang
et al., 2017), but these methods do not perform sufficiently well
in terms of the actual results. For sample collection, due to
limitations in recruiting participants, it is very difficult to obtain a
large number of samples (Zhang et al., 2015, 2017; Liu et al., 2017;
Pereira et al., 2017).

In view of the above introduction, we implement classification
tasks for EEG signals related to action intention understanding
from the perspectives of both feature extraction and sample
collection in this study. To extract useful features, we first aim
to obtain reliable time series in the source space by sLORETA.
And then, we use the phase lag index (PLI) (Stam et al., 2007) and
weighted phase lag index (WPLI) (Vinck et al., 2011) to construct
dynamic brain networks in multiple micro-time windows and
specific frequency bands. It is worth mentioning that many other
methods (synchronization likelihood Stam and Dijk, 2002, phase
lock value Lachaux et al., 1999, Pearson correlation, etc.) have
the weakness of volume conduction effect when computing the
brain network based on EEG signals (Stam et al., 2007; Niso et al.,
2013), whereas both the PLI and WPLI methods can solve this
problem well (Stam et al., 2007; Vinck et al., 2011). In recent
studies about action intention understanding, Zhang et al. (2017)
obtain better experimental results with the WPLI than the results
of Zhang et al. (2015) that based on phase synchronization and
Pearson correlation. Hence, we naturally think that select the PLI
and WPLI to construct brain network. Hard back to the subject,
we finally calculate a number of graph complexity measures as
the classification features. Notably, many studies attach great
importance to using a binary network to decode brain signals
related to action intention understanding (Zhang et al., 2015,
2017). However, others argue that network thresholding easily
results in the loss of some useful information (Phillips et al., 2015;

Ahmadlou and Adeli, 2017). This is mainly because weighted
brain networks are very sensitive to the threshold. Recently,
Ahmadlou and Adeli (2017) proposed a new approach that
adopted two weighted undirected graph complexity measures
to study autism and aging issues and achieved satisfactory
statistical results. Considering these facts, it is naturally thought
that a weighted brain network can be used to decode action
intention understanding. To collect more a larger number of
samples, we converted each subject in a certain class of brain
signals into two subjects by constructing two brain networks,
one from the PLI and the other from the WPLI. Because our
final goal is to classify the different kinds of brain signals
related to action intention understanding, the transformation
is feasible.

Our method is mainly based on the state-of-the-art dynamic
time-frequency brain network technique, which has numerous
advantages. For instance, it can consider both time and
frequency feature information, locate activated brain areas,
and discover potential topological relationships among regions
of interest (ROIs). These merits can help us decode action
intention understanding more comprehensively than single
time or frequency analyses (Rubinov and Sporns, 2010; Zhang
et al., 2015, 2017; Vecchio et al., 2017; Cignetti et al.,
2018). The scheme of sample reconstruction is very important
for this study, as it improves the classification accuracy
efficiently, especially for the classification of similar action
intention stimuli.

MATERIALS AND METHODS

Subjects
A total of 30 healthy subjects were recruited for EEG
data acquisition. All participants did not use any prescribed
medication, and they also did not have any neurological disease.
Before the start of the experiments, they were asked to read and
sign an informed consent form. When finished with the tasks,
all participants received monetary compensation. After deleting
the data from 5 subjects that had been heavily degraded by bad
channels, we finally collected EEG data from 25 subjects (17
males, 8 females; age 19–25 years, mean ± SD: 22.96 ± 1.54;
all right-handed). This study was supported by the Academic
Committee of the School of Biological Sciences and Medical
Engineering, Southeast University, China.

Experimental Paradigm
For data acquisition, all participants were told to view three
hand-cup interaction pictures that were shown on a computer
monitor with E-prime 2.0. The subjects were asked to only
silently judge the intention of the hand-cup interaction. The
three action intentions were drinking water, moving the cup and
simply touching the cup. This design comes from the research of
Ortigue et al. (2010).

Figure 1 shows the experimental stimuli and procedure. The
three kinds of hand-cup interaction stimuli are presented in
Figure 1A, where Ug (use grip) denotes a hand that is grasping
a cup with the intention of drinking water, Tg (transport grip)
represents a hand that is grasping a cup with the intention
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FIGURE 1 | Experimental stimuli and procedure. (A) Examples of the different stimuli. (B) Stimulus presentation in a trial.

of moving it, and Sc (simple contact) denotes a hand that
is touching a cup without any clear intention. Figure 1B

illustrates the experimental stimuli presented in a trial, which
are shown sequentially over the indicated time course. During
the experiment, a white cross first appeared in the center of
the screen for 150ms. Then, a cup was shown on the screen
for 500ms. After the cup disappeared, a hand-cup interaction
stimulus was displayed on the screen for 2,000ms. Once the
hand-cup interaction appeared on the screen, the subjects were
to immediately and silently judge the actor’s intention. Before the
next trial, the cross was shown again for a random time that varies
from 1,000 to 2,000ms.

All participants underwent a 12-trial practice session before
the formal experiment. Across all participants, the practice
session lasted for an average of approximately 24min. To alleviate
visual fatigue caused by repeated experimentation, we presented
the cups with a color chosen randomly among seven different
colors for each trial. Because before formal EEG signal acquisition
experiment, all participants are informed that they only need to
judge what is the intention of the actor’s gesture, and the color
of the cup has nothing to do with the performer’s intention.
Thereupon, the actor’s gesture is more important in the stimulus
procedure when comparing with the factor of cup color. The
mixture of color variables does not affect the classification effect.
In this research, each action intention condition was shown in
98 trials.

Data Collection
The signals were obtained by using 64 AgCl electrodes positioned
with the international 10–20 system. We set the sampling
rate to 500Hz. The M1 electrode served as a reference
electrode and was placed on the left mastoid, and the GND

electrode served as a ground electrode and was placed at the
center of the frontal scalp. Additionally, four other channels
(HEOR, VEOU, HEOL, and VEOL) were placed around the
eyes of the participants to record electrooculographic (EOG)
signals. All the data collection tasks were carried out in
Neuroscan 4.3.

Preprocessing the Raw Data
To obtain clean data, we applied two popular neuroscience
computer programs, Neuroscan 4.3 and EEGLAB 14.0 (Arnaud
and Scott, 2004), to implement several preprocessing steps for the
raw EEG signals.

Based previous experimental experience, it remains difficult to
clean EEG data with ICA in EEGLAB. Hence, we applied ocular
processing to replace ICA in Neuroscan. Given that the mastoid
reference is active and effective in detecting somatosensory
evoked potentials, we re-referenced data from the unilateral
mastoid electrode (M1) to the average of the bilateral mastoid
electrodes (M1, M2). As with the ocular processing, the re-
referencing was also conducted in Neuroscan.

After finishing the ocular processing and re-referencing, we
chose the required electrodes (see Figure 2A, a total of 60
channels were preserved for each subject) with EEGLAB. Then,
we applied the Basic FIR filter in EEGLAB to extract the full
frequency band (1–30Hz) data. And then, we segmented the EEG
data with event types in discrete time windows (−0.65 s to 2.5 s)
and subtracted the baseline signal, obtained from−0.65 to 0 s. In
the end, we deleted artifacts with a threshold range that varied
from −75 to 75 µv; i.e., voltage signals between −75 and 75 µv
were retained and otherwise removed as artifacts. A total of 679
trials were deleted, and an average of 267 trials were retained for
each subject in this study.
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FIGURE 2 | Distribution of the chosen channels and regions of interest. (A) The retained electrodes cover most of the domains on the participant’s scalp, i.e., frontal,

occipital, left, right, and central. (B) A total of 84 regions of interest are selected, which are mainly distributed in the temporal, limbic, frontal, occipital, and parietal

lobes and the sub-lobar regions.

Construction of a Functional Connectivity
Matrix
For constructing a functional connectivity matrix, many
algorithms have been proposed by researchers in recent years
(Schreiber, 2000; Baccalá and Sameshima, 2001; Nolte et al., 2004;
Niso et al., 2013). However, most of these methods are unable
to contend with volume conduction. To effectively solve this
problem, Stam et al. (2007) proposed the phase lag index (PLI).

PLIAB =

∣

∣

∣
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1

N
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∑
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∣
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∣
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where 1θ denotes the instantaneous phase difference
between time series A(t) and B(t) at the nth sample time
point. We obtained the instantaneous phase by adopting the
Hilbert transform.

However, across many experiments, people find that the PLI
algorithm still has some shortcomings. A significant weakness
of the PLI is that it is easily affected by noise. Based on the
PLI, researchers designed a reinforcement method named the
weighted phase lag index (WPLI) (Vinck et al., 2011). Let S̃(X)
be the imaginary component of the cross-spectrum between time
series A(t) and B(t). Then, the WPLI is defined by:
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where 〈�〉 and |�| denote the mean and absolute value operations,
respectively, and sign is the signum function.

In order to carry out whole brain research, we first
transformed the time series of the 60 scalp electrodes into 84
brain regions of interest in the source space (see Figure 2B)
with sLORETA, and then used the PLI and WPLI to construct
functional connectivity matrices in 5 frequency bands and 63
time windows. Notably, we applied the filter of sLORETA to
extract the specific frequency band (1–4, 4–8, 8–13, and 13–
30Hz; i.e., delta, theta, alpha, and beta sub-bands, respectively)
data. Because many experiments in the following sections involve
time windows, we will illustrate the corresponding relations
among the sample points, time ranges and time window numbers
(see Figure 3).

As for the brain network, each brain region is defined as a
network node, and the functional connection between any two
regions denotes an edge of the network in this study.

Network Metrics
After obtaining the functional connectivity matrices that were
computed from the PLI and WPLI, we directly calculated the
network metrics for these matrices. In this study, we applied
nine graph measures-graph index complexity Cr (Kim and
Wilhelm, 2008), graph density GD (Gomezpilar et al., 2017),
Shannon graph complexity SGC (Gomezpilar et al., 2017),
average neighbor degree K (Barrat et al., 2004; Rubinov and
Sporns, 2010), efficiency complexity Ce (Kim and Wilhelm,
2008), global efficiency Ge (Latora and Marchiori, 2001; Rubinov
and Sporns, 2010), clustering coefficient C (Onnela et al., 2005),
characteristic path length L (Watts and Strogatz, 1998), and
small-world SW (Humphries and Gurney, 2008; Rubinov and
Sporns, 2010)-to decode action intention understanding.
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FIGURE 3 | The corresponding relation among sample points, time ranges, and time window numbers. The blue, green, and yellow rows denote the sample points,

time ranges and time window numbers, respectively. For example, the digit “1” in the yellow row corresponds to “−650 to −600” in the green row and “1 to 25” in the

blue row. That is, the first time window is from −650ms to −600ms, which contains the 1st to the 25th time points.

After we obtained the network metrics, we then applied them
to decode action intention understanding, include classifying
different intentions and exploring how brain activity changed
with time. Figure 4 shows the steps of our method. The key
point of our new method is that combining the two methods
(PLI and WPLI) for constructing the brain network increases
the number of training samples and features, which is different
from the single methods that only use PLI or WPLI to extract
features. Our binary classification task is performed at the group
level. Each stimulus has 25 samples (the number of participants),
9 graphmetrics and 63 time windows. Hence, for a single method
(PLI or WPLI) using the fusion time windows, the dimensions
of the dataset are 50 × 567 (50 samples, 567 features) for each
frequency band and 50 × 2,835 (50 samples, 2,835 features) for
the fusion bands. For the new method (PLI+WPLI) using the
fusion time windows, the dimensions of the dataset are 100 ×

567 (100 samples, 567 features) for each frequency band and
100 × 2,835 (100 samples, 2,835 features) for the fusion bands.
Similarly, for the dynamic time windows, we obtain the dataset
dimensions: 50 × 9 for PLI or WPLI for single bands, 50 ×

45 for PLI or WPLI for the fusion bands, 100 × 9 for the new
method for single bands and 100 × 45 for the new method for
the fusion bands.

RESULTS

In this section, we describe the experimental results obtained
mainly by using the weighted brain network metrics. Our
experimental results consist of four parts: time series analysis,
feature selection, binary classification and brain network analysis.
Details of the four parts are given in the following subsections.

Time Series Analysis
To determine whether differences exist under different stimuli,
we analyzed the voltage signals from 650 milliseconds before

to 2,500 milliseconds after formal stimulation. Figure 5 shows
the average ERPs of the three hand-cup interactions across all
subjects and all trials. As indicated by t-tests (p < 0.05), we can
see that the three ERPs are often significantly different between
−650 and 2,500ms; in particular, the amplitudes around P300
(∼0–600ms) of the Ug, Tg, and Sc ERPs are extremely different.
Additionally, we can also see that each kind of ERP has an exact
and significant P300 component (see the magenta dotted line).

Feature Selection
In this study, we selected the weighted brain network metrics
to use as classification features. As introduced previously, all
the functional connectivity matrices were constructed with the
PLI and WPLI, and the nine metrics-Cr, GD, SGC, K , Ce, Ge,
C, L, and SW-were computed in the delta, theta, alpha, beta
and full frequency bands. Figure 6 shows the dynamic changes
in the nine metrics in both the alpha and beta bands. After
applying t-tests (p < 0.05), we can see that each metric has
a different effect, with some reflecting greater differences than
others between the two specific frequency bands. For instance,
GD, Ge, K, and L are better than Cr, SGC, Ce, C, and SW in the
alpha band. Additionally, we can also see that most of the metrics
can effectively reflect the differences of the paired intentions in
many time windows, especially in the time windows around some
specific components, such as C100, N170, and P300.

Classification Accuracy
In this study, we adopted weighted brain network (PLI and
WPLI) metrics to carry out action intention understanding
classifications. Binary classification, i.e., a one-vs.-one strategy,
was implemented. We designed three pairwise action intention
understanding tasks, “Ug-vs-Tg,” “Tg-vs-Sc,” and “Ug-vs-Sc.”
The classical classifier, SVM, was chosen for data classification.
For the parameters of the classifier, we selected a polynomial
kernel function with the order set as 1. For each classification
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FIGURE 4 | Procedures of the new method.

task, we used 5-fold cross-validation to avoid overfitting, and
each 5-fold cross-validation was implemented 50 times. The
classification results are the means of the 50 implementations of
the 5-fold cross-validation.

Figure 7 shows the classification results in different time
windows. From subfigures 1–15, we can see that there are some
peak accuracies around the specific components, e.g., C100,
N170, and P300, especially in the alpha and beta frequency bands.

Additionally, we can also see that the classification accuracies
for both “Tg-vs-Sc” and “Ug-vs-Sc” are better than for “Ug-vs-
Tg” in most cases. However, except for a few time windows, the
classification results in all other time windows are unsatisfactory.
Most of the classification accuracies are lower than 60%. For
the three methods, PLI, WPLI, and PLI+WPLI, there is no
obvious advantage to any one of them. Figure 8 demonstrates
the classification accuracies in the fusion time windows (i.e.,
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FIGURE 5 | Average ERP at the group-level under different stimulus conditions. The yellow, cyan, and magenta vertical lines represent the end time of the symbol “+,”

cup, and hand-cup interaction presentations, respectively. The magenta, blue, and green curves denote the average amplitudes across all subjects for the three

stimulus conditions Ug, Tg, and Sc, respectively. The magenta dotted line denotes the start of the P300 component. The red, yellow and cyan “*” symbols at the

bottom of the plots denote p < 0.05 according to t-tests, where the colors, respectively, correspond to Ug-vs-Tg, Ug-vs-Sc, and Tg-vs-Sc.

FIGURE 6 | T-tests of brain network metrics. The red, green, and blue curves denote the values of the metrics under the Ug, Tg, and Sc conditions, respectively. The

cyan, black and magenta “*” symbols denote significant differences determined by t-tests (p < 0.05) for the Tg-vs-Sc, Ug-vs-Sc, and Ug-vs-Tg paired intentions,

respectively. The horizontal and vertical axes represent the time window number and graph metric value, respectively.
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FIGURE 7 | Classification accuracies in different time windows. The subfigure 1–5 are the classification results that applied graph metrics which obtained by using the

PLI to construct brain network in five bands, subfigure 6–10 are the results obtained by WPLI on the same conditions as 1–5, and subfigure 11–15 are the results that

calculated by combining both PLI and WPLI.

the merging of the brain network metric features from the 63
time windows into a large dataset). As shown in Figure 8A,
the PLI, PLI+WPLI, and WPLI methods have different average
accuracies for the different frequency bands. The low frequency
band performance is the worst for both WPLI and our new
method. Notably, all methods perform well on the alpha band.
Additionally, the Ug-vs-Tg classification reaches levels that
are not worse than those of both Ug-vs-Sc and Tg-vs-Sc.
Figure 8B shows the comparisons of the classification accuracies
among the three different methods. From the six subpictures
in Figure 8, we can see that our new method performs better
than the other two methods except for the low frequency band,
where the new method performs worse than PLI. In terms of
concrete results, most of the average classification accuracies
of the novel method-are over 60%, with some approaching
80%, while some of the maximum classification accuracies
approach 90%; for example, see the results for 4–8, 8–13, and
1–30Hz. More details on the classification accuracy are shown
in Table 1.

To estimate our classification model, we also calculated two
important estimation measures in machine learning, sensitivity
and specificity, for each classification that was computed for the
fusion time windows. As shown in Table 1, the two estimation
metrics are also satisfactory, which is consistent with the results
of the classification accuracies.

Brain Network Analysis
To more effectively decode the brain signals related to action
intention understanding, we also implemented experiments on

brain network analysis with our novel method. In this study,
we mainly carried out the experiments from two perspectives:
analyzing the difference in the whole brain network between two
kinds of action intentions by the rank-sum test and finding the
connectivity edges that are obviously uncommon. It is important
to note that these two perspectives are based on the dynamic time
windows and the two specific frequency bands, alpha and beta.

Figure 9 shows the results of the pairwise statistical test for the

whole brain. We can see that there are many time windows that
are significantly different for both the alpha and beta frequency
bands (red domains). In general, the alpha band outperforms

the beta band in this regard. We can also see that the time
windows for the specific ERP components exhibit significant
differences (see both Figures 3, 9), e.g., the 19th time window.
We first performed the rank-sum test at a significance level of
0.01, and then carried out strict FDR correction at the same
significance level.

Figure 10 shows the results of the t-tests for the connectivity
edges in multiple time windows. Because we have 63 time
windows in total, it is difficult to display all the brain
graphs. Hence, for both the alpha and beta bands, we chose
8 time windows that all showed significant differences for
all three pairwise intentions from the whole brain network
rank-sum test (see Figure 9), for example, the 49th time
window in the alpha band and the 55th time window in
the beta band. These 8 time windows contain the signals
obtained before and after presentation of the formal stimuli
(see Figures 1, 3, 5, 10), which can sufficiently satisfy our
study task.
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TABLE 1 | Five estimation measures under different conditions.

Frequency band Classification

strategy

Method Maximum

accuracy

Average

accuracy

Standard

deviation

Sensitivity Specificity

1–4Hz Ug-vs-Tg PLI 64.00 55.36 14.43 55.66 57.71

PLI+WPLI 59.00 50.04 10.74 53.54 47.54

WPLI 52.00 39.00 13.53 42.03 38.79

Ug-vs-Sc PLI 70.00 58.72 12.60 61.69 58.43

PLI+WPLI 60.00 51.12 9.74 55.56 47.40

WPLI 62.00 46.72 15.05 50.07 47.10

Tg-vs-Sc PLI 74.00 63.32 12.52 63.70 65.87

PLI+WPLI 59.00 50.26 10.41 47.89 53.67

WPLI 52.00 40.16 13.58 42.06 40.96

4–8Hz Ug-vs-Tg PLI 68.00 52.28 13.70 58.73 48.37

PLI+WPLI 78.00 70.24 8.86 71.74 70.04

WPLI 56.00 44.04 12.95 47.47 43.50

Ug-vs-Sc PLI 60.00 48.68 14.07 49.30 51.75

PLI+WPLI 82.00 71.86 8.72 72.09 72.73

WPLI 70.00 55.40 14.15 61.85 52.50

Tg-vs-Sc PLI 64.00 53.48 14.33 53.40 55.73

PLI+WPLI 82.00 76.06 8.85 76.50 76.29

WPLI 48.00 35.56 13.24 37.52 35.59

8–13Hz Ug-vs-Tg PLI 70.00 56.44 14.81 57.78 56.53

PLI+WPLI 84.00 75.24 8.82 77.65 73.90

WPLI 62.00 50.36 14.66 46.87 55.17

Ug-vs-Sc PLI 58.00 48.04 13.93 47.54 50.74

PLI+WPLI 74.00 66.96 9.47 69.46 65.83

WPLI 58.00 48.56 13.44 48.03 51.94

Tg-vs-Sc PLI 68.00 58.64 14.03 59.33 60.03

PLI+WPLI 78.00 71.32 7.97 71.78 72.75

WPLI 68.00 56.96 13.14 55.47 60.24

13–30Hz Ug-vs-Tg PLI 64.00 50.68 13.44 52.42 51.50

PLI+WPLI 77.00 67.68 10.84 67.67 68.50

WPLI 60.00 46.72 13.87 46.91 48.88

Ug-vs-Sc PLI 68.00 51.88 13.75 53.63 52.62

PLI+WPLI 76.00 67.08 10.03 68.43 66.74

WPLI 58.00 42.40 14.64 51.43 46.05

Tg-vs-Sc PLI 56.00 44.28 13.75 42.70 47.79

PLI+WPLI 59.00 50.26 10.41 47.89 53.67

WPLI 50.00 39.36 13.67 40.69 40.67

1–30Hz Ug-vs-Tg PLI 60.00 49.16 14.43 50.36 51.17

PLI+WPLI 87.00 77.18 9.93 79.00 76.38

WPLI 54.00 40.68 14.40 44.08 39.11

Ug-vs-Sc PLI 70.00 58.44 14.42 60.33 59.51

PLI+WPLI 82.00 75.28 8.73 75.06 76.14

WPLI 66.00 45.56 13.76 45.39 48.09

Tg-vs-Sc PLI 62.00 46.44 15.38 47.11 47.99

PLI+WPLI 84.00 72.80 9.35 74.86 72.30

WPLI 54.00 39.52 13.04 34.90 46.93

5 bands fusion Ug-vs-Tg PLI 50.00 38.12 14.88 41.93 38.28

PLI+WPLI 80.00 70.72 10.36 72.35 70.34

WPLI 40.00 26.88 12.00 31.36 24.78

Ug-vs-Sc PLI 64.00 46.56 14.52 49.02 49.07

PLI+WPLI 75.00 68.04 10.11 68.84 68.23

WPLI 50.00 38.12 14.58 41.62 38.57

Tg-vs-Sc PLI 62.00 45.00 14.89 40.66 52.07

PLI+WPLI 78.00 69.12 10.21 68.21 71.14

WPLI 42.00 31.96 12.86 30.30 37.15
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FIGURE 8 | Classification accuracies in fusion time windows. (A) Comparison in a special method (PLI, WPLI, or PLI+WPLI). The bar denotes the average accuracy

on a special combination condition (frequency band and pair-intentions). (B) Comparison among the three methods (PLI, WPLI, and PLI+WPLI). The external layer bar

is the maximum classification accuracy and the inner layer bar represents the average classification accuracy.

FIGURE 9 | Rank-sum test for the whole brain network. The red domains denote significant differences (p < 0.01), and the blue domains represent no significant

differences. Each row contains 63 micro-time windows.

From both Figures 10A,B, we can see that there are a greater
number of significant connectivity edges in the alpha band, while
the beta band is sparser. Additionally, for the alpha band, there
are more connectivity edges in the 24th, 41st, 49th, and 63rd time
windows than in the others shown. Ug-vs-Tg and Ug-vs-Sc have
more connectivity edges than Tg-vs-Sc. In both the alpha and
beta frequency bands, many of the larger nodes are found in the
frontal, parietal, and occipital lobes. A few larger nodes are found
in the limbic lobe and sub-lobar regions.

DISCUSSION

The main aim of this study was to estimate the performance of
the novel method, which uses weighted brain network metrics
obtained from both the PLI and WPLI to classify different
action intention understanding signals and explore neuronal
correlation mechanisms. Some important findings are obtained
by the abundance of experimental results. The details of these
findings are discussed in detail in the following subsections.
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FIGURE 10 | Results of t-tests for connectivity edges. (A) Comparisons within the alpha frequency band. (B) Comparisons within the beta frequency band. The red,

yellow, green, cyan, blue, and purple-red nodes are from the temporal lobe, the limbic lobe, the frontal lobe, the occipital lobe, the sub-lobar region, and the parietal

lobe, respectively. The size of the node denotes its degree; the larger the size is, the greater the degree. The digits under the blue arrow represent the time window

numbers. All connectivity edges were obtained by t-test after FDR correction (p < 0.01).

Analyses of Time Series and Feature
Extraction
There are several specific ERP components (e.g., C100, N170)
in EEG time series, especially P300 (see Figure 5). This suggests
that cognition of action intention understanding is closely
correlated with these specific components, which is consistent
with other authors’ studies (Dong et al., 2010; Ortigue et al., 2010;
Deschrijver et al., 2017; Zhang et al., 2017). For the five frequency

bands, many significant differences (p < 0.05) occur at the

time points of these components, which indicates that different

intention understandings cause different degrees of brain activity

in the same band (Zhang et al., 2017). Aside from these specific

components, some significant differences appear at the other

time points, e.g., from 400 to 2,000ms. Beudt and Jacobsen (2015)

find that the mentalizing system is activated later than the mirror
neuron system, which often responds to early ERP components
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(e.g., C100 andN170). Ge et al. (2017) and Zhang et al. (2017) also
found that the mentalizing system deeply processes the stimulus
following the reaction of the mirror neuron system. Thus, there
are many significant differences after 400ms. Overall, Figure 5
proves that our data are clean and reliable and can be used to
implement the other experimental tasks.

Our study is mainly based on micro-time windows. Each
window was set with a width of 50ms, and a total of 63
time windows were constructed. In general, the greater the
difference between features, the more useful they are (Rodríguez-
Bermúdez et al., 2013; Zhang et al., 2015; Miao and Niu, 2016;
Ahmadlou and Adeli, 2017; Urbanowicz et al., 2018). From
the number of significant “∗” symbols (p < 0.05) shown in
Figure 6, we can see that we successfully extracted features that
are uncommon between pairs of action intention understanding
brain signals. Many significant differences were found between
the corresponding time windows for these pairs for the nine
graph measures, and each measure has a different efficiency (Kim
and Wilhelm, 2008). Both the alpha and beta bands showed
satisfactory statistical results, which suggests that action intention
understanding is closely correlated with these two bands (Hari,
2006; Ortigue et al., 2010; Avanzini et al., 2012).

Analyses of Classification Results
Some previous studies on action intention understanding
indicate that some differences in the signals occur over time (Ge
et al., 2017; Zhang et al., 2017), especially for the special ERP
components. Although the classification accuracies in Figure 7

are not very high, the information concerning the change in
accuracy is still consistent with previous studies.

The results in Figure 8 and Table 1 suggest that combining
PLI with WPLI to produce fusion time windows is a successful
method for classifying brain signals. A feasible explanation is that
the new approach effectively increases the number of training
samples and features, which is extremely important for machine
learning (Zhang et al., 2015; Kumar et al., 2016; Miao and
Niu, 2016; Pippa et al., 2017; Kang et al., 2018; Urbanowicz
et al., 2018). Obviously, compared with PLI or WPLI alone,
the combination method has more samples; compared with
single time windows, the combination method has more features.
Therefore, the new method is more suitable for classification.

Recently, Ahmadlou and Adeli (2017) pointed out that the
weighted brain network can retain useful information better than
the binary network in neuroscience research. The main reason
is that the binary network is sensitive to the threshold (Phillips
et al., 2015). Using similar EEG data, other authors’ approaches
in classifying action intention understanding signals with binary
networks (Zhang et al., 2015, 2017) perform worse than our
new method, especially for classifying extremely similar stimuli.
Notably, these comparisons are indirect. In a word, adopting
weighted brain network metrics as the classification features is
another good method for improving classification accuracy.

Regarding the accuracies for different frequency bands, we
know that the alpha band and whole frequency band (1–30Hz)
yield the best results (see Figure 8). Some previous studies have
indicated that major reactions during action observation depend
on the alpha and beta bands over the motor areas, especially

in the alpha band over the occipito-parietal areas (Hari, 2006;
Ortigue et al., 2010; Avanzini et al., 2012). The strong reaction
in the alpha band caused a significant difference between the
responses to the pairwise stimuli. The t-test results in Figures 5, 6
prove this point. Hence, satisfactory accuracies can be obtained,
as shown in Figure 8. Why does the whole frequency band also
achieve satisfactory result similar to those of the alpha band? We
think that this is due to the whole frequency band capturing both
alpha and beta band information.

Analyses of the Dynamic Brain Network
This study is mainly based on multiple micro-time windows, a
total of 63 windows from 650ms before formal stimulation to
2,500ms after formal stimulation, which can make full use of
the signal differences in every time period. Figures 5, 6 present
some differences that vary with time, and the results of statistical
tests illustrated in both Figures 9, 10 also tell us that action
intention understanding is closely correlated with some specific
time periods (Ortigue et al., 2010; Ge et al., 2017; Zhang et al.,
2017). In Figures 9, 10, compared with the beta band, a greater
number of statistically significant p-values are illustrated for the
alpha band (p< 0.01). According to previous studies (Hari, 2006;
Ortigue et al., 2010; Avanzini et al., 2012), reactions in the alpha
band are more easily induced in response to observing others’
actions. Hence, these actions result in the greater number of
differences in this band.

Theories concerning the mirror neuron and mental systems
indicate that the purposes of others’ actions are possibly
discriminated by the observers’ natural perceptions or indirect
inferences (Gallese and Goldman, 1998; Rizzolatti et al., 2001;
Rizzolatti and Craighero, 2004; Fogassi et al., 2005; Brass
et al., 2007; James, 2008; Liew et al., 2011). Other studies
on neuroimaging note that not only mirror neurons but
also mental areas take part in action intention understanding
(Blakemore and Decety, 2001; De Lang et al., 2008; Van
Overwalle and Baetens, 2009; Becchio et al., 2012; Oztop
et al., 2013; Catmur, 2015; Tidoni and Candidi, 2016; Ge
et al., 2017; Zhang et al., 2017). In the last figure, many large
nodes appear in the frontal, occipital, parietal, and temporal
cortexes, which suggests that action intention understanding
is correlated with these domains. Rizzolatti and Craighero
(2004) found that some regions respond when humans observe
each other’s action behaviors. These regions mainly consist of
the inferior parietal lobule, the ventral premotor cortex, the
inferior frontal gyrus and the Broca area of the left frontal
lobe. Fogassi et al. (2005) find that there is a significant
difference in the response in the inferior parietal lobule when
monkeys observe actions that look the same but actually denote
different intentions. Interestingly, the results in Figure 10 are
consistent with this study (Rizzolatti et al., 2001; Rizzolatti
and Craighero, 2004; Fogassi et al., 2005), which reconfirms
that the mirror neuron system takes part in action intention
understanding. Both Figures 10A,B show that the temporal
domain has some large nodes under the Ug-vs-Sc and Ug-
vs-Sc conditions. Amodio and Frith (2006) and Saxe (2006)
note that the mentalizing brain networks mainly consist of
the medial prefrontal and temporoparietal junctions and the
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superior temporal cortexes. Hence, it can be inferred that the
action intention understanding in our experiment also involves
the mentalizing brain network. Compared with the Ug and Tg
stimuli, the action behavior Sc is more abnormal. Therefore, this
stimulus can easily cause the significant differences observed in
the pairwise Ug-vs-Sc and Tg-vs-Sc comparisons. The essential
reason for this is that the mentalizing areas play an important
role in responding to abnormal action behaviors (Blakemore and
Decety, 2001; Liew et al., 2011; Becchio et al., 2012; Catmur,
2015).

Overall, from the experimental results in Figures 5, 10, we can
conclude that both the mirror neuron and mentalizing systems
participate in the process of action intention understanding,
which is consistent with the results of previous studies (De Lang
et al., 2008; Becchio et al., 2012; Catmur, 2015; Ge et al., 2017;
Zhang et al., 2017). Whether the relationship between the mirror
neuron and mentalizing systems is independent or cooperative
in the process of brain activity is debated by many researchers
(Van Overwalle and Baetens, 2009; Virji-Babul et al., 2010; Libero
et al., 2014; Catmur, 2015; Tidoni and Candidi, 2016; Zhang
et al., 2017). Actually, from the experimental results obtained
here, we can conclude that the relationship between the mirror
neuron and mentalizing systems is cooperative and is capable of
encoding the complex dynamical brain signals related to action
intention understanding.

Limitations
Obviously, the new method has many merits in decoding
action intention understanding. However, it still needs to be
improved. First, an abundance of graph metrics have been
proposed for studying network properties in recent years (Kim
andWilhelm, 2008; Rubinov and Sporns, 2010; Gomezpilar et al.,
2017). We adopted nine graph measures in total, but other
measures (Newman, 2004; Claussen, 2007; Rubinov and Sporns,
2010) might be more useful for exploring action intention
understanding. In follow-up research, we will aim to apply
new graph measures as classification features. Additionally, we
adopted one of the most popular classifiers, SVM, to carry out
binary classification. Previous machine learning experience has
shown that many classifiers typically obtain different results with
the same dataset (Rodríguez-Bermúdez et al., 2013; Miao and
Niu, 2016; Urbanowicz et al., 2018). Whether there exist some
other classifiers that perform better than the SVM for action
intention understanding classification needs to be determined
with experimental data. Therefore, this is another future research
goal. Finally, which system is the most important in the
process of an agent observing another’s actions, i.e., whether the
mirror neuron or the mentalizing system dominates the action
intention understanding, has not been thoroughly decoded
(Becchio et al., 2012; Marsh et al., 2014; Catmur, 2015; Tidoni
and Candidi, 2016; Ge et al., 2017; Pomiechowska and Csibra,
2017). Therefore, a more comprehensive study on the neuronal
mechanism underlying action intention understanding needs to
be implemented in the future.

CONCLUSION

In summary, this study highlights a combination method
that decodes the brain signals related to action intention
understanding by combining the weighted brain network
metrics of both the PLI and WPLI. Sample and feature
fusion efficiently improve the classification accuracy, especially
for similar action intention stimuli. Compared with the low
frequency and beta bands, the differences in the action
intention understanding brain signals are more obvious in
the alpha band. The new approach can be universally applied
for many studies. Brain activity signals collected by MRI,
fMRI, MEG, and NIRS can be analyzed with our novel
method. Other psychological and cognitive behavior data (e.g.,
mathematical deduction and emotion recognition) analyses
can also use the new method. Overall, it has the advantage
of generality.
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