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Abstract

Motivation: In contemporary biological experiments, bias, which interferes with the measure-

ments, requires attentive processing. Important sources of bias in high-throughput biological

experiments are batch effects and diverse methods towards removal of batch effects have been

established. These include various normalization techniques, yet many require knowledge on the

number of batches and assignment of samples to batches. Only few can deal with the problem of

identification of batch effect of unknown structure. For this reason, an original batch identification

algorithm through dynamical programming is introduced for omics data that may be sorted on a

timescale.

Results: BatchI algorithm is based on partitioning a series of high-throughput experiment samples

into sub-series corresponding to estimated batches. The dynamic programming method is used

for splitting data with maximal dispersion between batches, while maintaining minimal within

batch dispersion. The procedure has been tested on a number of available datasets with and with-

out prior information about batch partitioning. Datasets with a priori identified batches have been

split accordingly, measured with weighted average Dice Index. Batch effect correction is justified

by higher intra-group correlation. In the blank datasets, identified batch divisions lead to improve-

ment of parameters and quality of biological information, shown by literature study and

Information Content. The outcome of the algorithm serves as a starting point for correction meth-

ods. It has been demonstrated that omitting the essential step of batch effect control may lead to

waste of valuable potential discoveries.

Availability and implementation: The implementation is available within the BatchI R package at

http://zaed.aei.polsl.pl/index.php/pl/111-software.

Contact: joanna.polanska@polsl.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Batch effect is systematic error seen in a variety of high-dimensional

molecular biology experiments, related to the existence of groups in

the analyzed dataset called batches (Scherer, 2009). Often batches

are defined as groups of samples processed together in an experi-

ment and their sizes are defined by the capacity of a machine. Other
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common sources of batch effect biases are uncontrollable changes of

some of the experimental conditions over time and using data

obtained with different machines, at different places (Leek et al.,

2010). In high-throughput experiments batch effect bias is unavoid-

able, occurs with different experimental platforms, survives stand-

ard normalization and correction procedures and leads to significant

errors in data analyses, like the decrease of sensitivity or increased

number of false discoveries (Chen et al., 2011; Luo et al., 2010).

Developing procedures for batch effect identification and correction

is therefore an important issue in high-throughput molecular experi-

mental data analysis. It has been demonstrated by several studies

that identification and correction of batch effects can substantially

improve results of data analyses (Auer and Doerge, 2010; Sims

et al., 2008; Sun et al., 2011).

Diverse techniques have been developed for the purpose of

detecting existence of batch effects, estimating the proportion of

variation in the data resulting from batch effects, and for batch ef-

fect correction. Alter et al. (2000) apply PCA to genome-wide ex-

pression data and propose removal of noisy components

(eigengenes) corresponding to low singular values. Under the as-

sumption that one (some) of the noisy eigengenes corresponds to

batch effect the use of the method by Alter et al. leads to batch effect

correction. Reese et al. (2013) present an extension of PCA to quan-

tify the existence of batch effects, called guided PCA (gPCA). They

derived a test statistic, based on the traditional PCA and gPCA, for

detecting batch effects. The test statistic, d, quantifies the proportion

of variance owing to batch effects. Benito et al. (2004) developed a

method called distance-weighted discrimination, based on support

vector machines (SVM) classification algorithm for detecting and

removing batch biases. SVM algorithm is used for computing a sepa-

rating hyperplane between data points corresponding to different

batches. Then the obtained parameters are used to remove batch

bias. Bylesjö et al. (2007) use a multivariate regression model with

hidden elements, called orthogonal projections to latent structures

(Trygg and Wold, 2002) for identification and correction of batch

biases. The case of gene expression data in microarray experiments

enabled the creation of a family of RUV (Remove Unwanted

Variation) methods, specifically for the purpose of handling these

data, based on applying negative control genes for batch effect ad-

justment (Gagnon-Bartsch and Speed, 2012). This knowledge driven

approach, however, limits the usability to a narrow group of experi-

mental techniques where such negative control features are possible

to describe. A method named ComBat (Combating Batch Effects

When Combining Batches) for removing batch effects in DNA

microarray data, based on using empirical Bayes approach, was pro-

posed by Johnson et al. (2007). They define and estimate additive

and multiplicative batch bias parameters and then use them to mod-

ify distributions of gene expressions. The approach was proven reli-

able, useful for datasets with multiple batches and robust to small

sample sizes and may be extended to other experimental techniques

(RNA-seq, genomics, proteomics) and shown to outperform the

above mentioned methods for batch effect correction Chen et al.

(2011). Surrogate variable analysis (SVA) (Leek and Storey, 2007) is

an algorithm for combined batch effect identification and correction

by means of effect estimation. Yi et al. (2018) proposed another ap-

proach for hidden batch effect identification based on data-adaptive

shrinkage, coupled with a regularization technique of non-negative

matrix factorization for batch effect correction. The most commonly

used tools (SVA, ComBat) have been incorporated into the

BatchQC software package (Manimaran et al., 2016).

Various methods of evaluating and comparing efficiency of

batch effect correction for different algorithms are possible. There

are studies in the literature focused on comparing different algo-

rithms for batch effect correction (Chen et al., 2011; Luo et al.,

2010), based on large sets of DNA microarray data either of spike-

in type or obtained in clinical experiments. In the case of spike-in

datasets direct comparisons between true and estimated levels of

gene expressions are possible to apply (Chen et al., 2011). For clinic-

al data coming from case–control comparisons, influence of batch

bias removal on efficiency of case versus control discrimination can

be used, formulated as cross-batch, group prediction performance

index (Luo et al., 2010), or by area under the curve (AUC) of the re-

ceiver operator characteristic (ROC) of true versus false positive

rates (Chen et al., 2011). Measures of sensitivity (true positive rate)

and specificity (true negative rate) or measures of intragroup corre-

lations can also be used as tools for measuring quality of batch cor-

rection. It is also possible to use biological consistency measures

obtained from gene ontology (GO) annotations of detected differen-

tially expressed genes.

In this paper we address the problem of detection of batch bias

of unknown structure, i.e. such that assignment of samples to differ-

ent batches is not known a priori for correction methods that require

such information. Such problems are encountered in analyses of

high throughput experimental data of molecular biology in at least

two (quite common) situations, when batches in experimental

results were not recorded and when some uncontrolled parameters

influence experiments performed over a period of time. Motivation

for researching the problem is that, as it follows from the reviewed

literature, reliable and efficient methods for batch effect removal,

such as ComBat (Johnson et al., 2007) require prior knowledge on

assignment of samples into batches. Methods, which do not require

the prior knowledge of batch [SVA by Leek and Storey (2007)] do

not rely on explicitly indicating the batch structure, i.e. which sam-

ples belong to which batches but rather estimate the size of a batch

effect and correct the data accordingly. In this sense, we propose a

new method for assignment of samples to batches without prior

knowledge, which uses the assumption that the analyzed data are

sorted on a time scale. This condition naturally leads to utility of the

method for samples processed in different laboratories and condi-

tions, but also enables the identification of batch effects for data

produced in one laboratory in seemingly identical conditions. As

presented below, the usual sources of bioinformatics data for valid-

ation purposes—public repositories—have strict policies regarding

submission file formats and that includes raw experimental data

with timestamps. This fact opens a wide range of sets to choose

from enabling the incorporation of numerous existing data to cur-

rently ongoing analyses by means of batch effect processing. Batches

are identified by partitioning the time range of the whole experiment

into segments, such that an appropriately defined quality index is

optimized. We propose a dynamical programming (DP) approach

that allows for finding the optimal partition without information

about the batch groups. We also use the previously published guided

PCA method (Reese et al., 2013) to construct a test statistic for esti-

mating existence of batch bias in the dataset and for estimating the

number of batches. The proposed method has been tested on a num-

ber of microarray gene expression, RNA-seq deep sequencing and

proteomics mass spectrometry experiments, where we have demon-

strated that without prior knowledge of batch structure we were,

nevertheless, able to obtain accurate batch effect identification

inducing valid correction.
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2 Materials and methods

2.1 Dynamic programming batch identification
The experiments analyzed in this paper include series of DNA

microarray, mass spectrometry (MS) and RNA-seq measurements.

To each of the microarray samples a quality index (QI) is assigned,

defined by the average intensities among all features. For the MS

data the Total Ion Current (TIC) for each sample is applied and for

the RNA-seq data the median number of counts is considered as the

quality index. The quality index may be any of the aforementioned

statistics, moreover, any statistic chosen by the user representing a

single sample. However, bearing in mind that the goal is to account

for sources of technical variation, it is important to note that the

summarizing quality index should be calculated on data at as early a

stage of processing as possible. The problem of batch identification

treated here involves partitioning the series of samples into a number

of batches, such that a sum of absolute deviations of the quality

indexes within batches, is minimized. Batch identification is done by

partitioning the range of indexes of samples into subranges (batches)

with use of the dynamic programming algorithm (Bellman, 1961;

Jackson et al., 2005).

Indexes of samples in the experiment are i ¼ 1; 2; . . . N.

Partitioning involves defining K batches, B1;B2; . . . BK, where the

kth batch is the range of indexes Bk ¼ Bði; iþ 1; . . . jÞ ¼ i; iþ 1; . . . j.

The quality index is denoted by QIi. Absolute deviation of the QI

within batch Bk is:

AbsDevðBkÞ ¼
X

l2Bk

jQIl �QIBk
j (1)

The minimization index for the dynamic programming partition-

ing algorithm is the sum of absolute deviations

IðKÞ ¼
XK

k¼1

AbsDevðBkÞ (2)

Optimal partition Bopt
1 ;Bopt

2 ; . . . Bopt
K leads to a minimal value of

the sum of absolute deviation indexes corresponding to all batches:

Iopt
1...NðKÞ ¼ min1...N

partitions½
XK

k¼1

AbsDevðBkÞ� (3)

The upper index of the minimization operator in the above,

1 . . . N, stands for the range of time indexes of samples, while the

lower one indicates that minimization is over all possible partitions.

In order to formulate dynamic programming recursion an optimal

partial cumulative index for the range of samples 1; 2 . . . ; j is

calculated:

OCI1...jðkÞ ¼ min1...j
partitions½

XK

v¼1

AbsDevðBvÞ� (4)

Dynamic programming recursive procedure, called Bellman

equation, can be written in the following form:

OCI1...jðkþ 1Þ ¼ mini¼1...j�1½OCI1...i�1ðkÞ
þAbsDevðBði; iþ 1; . . . ; jÞÞ� (5)

Iterating the above Bellman equation leads to obtaining the opti-

mal partition Bopt
1 ;Bopt

2 ; . . . Bopt
K and to optimal (minimal) value of

the sum of absolute deviations index Iopt
1...NðKÞ. The algorithm is

designed so as to secure the fulfillment of the condition that one

batch cannot contain less than three samples. This is necessary in

order to calculate statistics such as the variance in subsequent stages

of analysis. This parameter is also modifiable by the user if for any

reason more samples are needed.

2.2 Choosing number of batches
In the proposed algorithm the parameter that remains to be deter-

mined is the number of batches present in the data. This is per-

formed by dividing the data into a number of batches from 1 to K

and in each case calculating the d gPCA statistic as described in

Reese et al. (2013), which is the proportion of total variance due to

batch and may be calculated as the ratio of variance of the first prin-

cipal component from guided PCA to the variance of the first princi-

pal component from unguided PCA. To estimate the sampling

distribution of the d statistic we create M permuted datasets by ran-

domly shuffling the assignment of samples to batches and for each

of them we perform calculation of dPERM permuted gPCA statistic.

The ranking of the real test statistic d among the shuffled dPERM test

statistics gives an appropriate P-value, which indicates if d is signifi-

cantly larger than would be obtained by chance. There is an option,

when the statistic does not appear to be significant, it may be

assumed that batch effect is negligible and batch division is not per-

formed. Otherwise, the division with the lowest P-value is chosen as

the optimal number of batches. The maximal number of investigated

batches corresponds to the number of samples, while abiding the

rule of at least three samples per batch to enable dispersion estima-

tion. However, in most cases it is not feasible to expect many more

than a dozen batches that introduce significant batch effects. This

may be observed by calculating the average U-Mann-Whitney test

statistic for pairs of adjoining batches in divisions with increasing

batch number. As illustrated in the Supplementary Material, even

though the d P-values decrease at high numbers of batches, the bet-

ter partitioning indicated by the U-Mann-Whitney statistic average

level occurs with low batch numbers.

In our experiments, when we set the value of M to 1000, which

was the default value recommended by Reese et al. (2013), we do

not get any dPERM greater than d. In that case it is impossible to

choose a suitable number of batches in the dataset. Increasing the

number of permutations M leads to a drastic increase in computing

time. Moreover, the distribution of d statistic is different for each

dataset, number of batches and can take multimodal shapes. As a so-

lution to this problem we propose to use a kernel density estimation

that might provide a reasonable approximation of d statistic distri-

bution. Given a permuted gPCA statistic dPERM the underlying prob-

ability density function f used to generate this sample, can be

approximated by the kernel density estimator given by:

f̂ ðdÞ ¼ 1

K

Xk

i¼1

kernelðd; diÞ (6)

where kernel is a kernel function. In our application kernel is chosen

to be a standard Gaussian function:

kernelðd; diÞ ¼
1ffiffiffiffiffiffi
2p
p e

�ðd�di Þ2

2h2 (7)

where h is the bandwidth that controls the degree of smoothness of

f̂ ðdÞ. When h is small, the resulting estimate is usually over-fitted to

the actual samples available. When h is too large, the computed

density will be over-smoothed, but its variance across different sam-

ples is reduced. To select the bandwidth parameter we use a rule-of-

thumb method available in the R stats package (Silverman, 2018).

Final P-value is found by calculating the area under the estimated
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distribution to the right of the observed d statistic value (Table 2).

This approach used for estimation provokes a small portion of the

estimated distribution to fall below zero. The issue was investigated

on three exemplary datasets and it was demonstrated that the prob-

lem is marginally small compared to the resulting P-values, and

therefore, may be considered negligible. The summarizing table for

this issue is presented in the Supplementary Material.

2.3 Data
The developed method for batch identification was tested for

performance on various datasets acquired through the

ArrayExpress (Kolesnikov et al., 2014) repository for microarray

and RNA-seq data and an MS dataset acquired from the Center

of Oncology—Maria Sklodowska-Curie Memorial Institute in

Gliwice.

Initially, two sets of microarray data with known batch struc-

ture were investigated, E-GEOD-19419 (Walter et al., 2010)

including gene expression profiles from peripheral blood of patients

affected by neurological movement disorder DYT1 dystonia, and

E-GEOD-36398 (Rahimov et al., 2012) including gene expression

profiles of tissues of two distinct muscles in patients suffering from

facioscapulohumeral muscular dystrophy and their unaffected first

degree relatives. The former contains 60 samples: 15 controls, 23

symptomatic and 22 carriers. The latter contains 50 samples: 24

controls and 26 FSHD. Both experiments were performed on

HuGene 1.0 ST microarrays with 32321 measured probes. In the

datasets E-GEOD-19419 and E-GEOD-36398 all samples were

assigned to batches due to the differences in time of sample process-

ing. They include, respectively, three (E-GEOD-19419) and five

batches (E-GEOD-36398).

The set of RNA-seq measurements was obtained under the E-

GEOD-65683 identifier and produced in an experiment involving

sperm from male partners of couples undergoing fertility treatment.

The study contained 72 samples divided into 3 groups: 7 in group I,

56 in group II and 9 in group III. The metadata contained dates of

the sequencing run performances, which pointed to a division of the

data into three batches.

The MS data was collected in a study examining pulmonary can-

cer among smokers and due to an unfortunate design of experiment

where the samples were processed in three distinct batches according

to date (Pietrowska et al., 2012). The data consisted of 377 samples:

282 controls and 95 cancer and a total of 700 proteins was

identified.

Afterward, studies without the information about batch assign-

ment were investigated. Experiments chosen for the analysis, E-

GEOD-2034, E-GEOD-4183 and E-GEOD-10927, have been

described as demonstrating a high proportion of variance due to

batch effects in Parker et al. (2014). The experimental study E-

GEOD-2034 (Wang et al., 2005) concerned prediction of distant

metastasis in patients suffering from lymph-node-negative primary

breast cancer based on gene expression profiles obtained from fro-

zen tumor samples. Experimental data E-GEOD-4183 (Galamb

et al., 2008) included gene expression profiles measured for samples

of colon biopsies using high-density oligonucleotide microarrays in

order to predict local pathophysiological alterations and functional

classification of adenoma, colorectal carcinomas and inflammatory

bowel diseases. Dataset E-GEOD-10927 (Giordano et al., 2009)

was collected in the clinical study on molecular classification and

prognostication of adrenocortical tumors by gene expression profil-

ing. For all three of these datasets, the timestamps were available

and served as an ordering factor.

3 Results and discussion

In this section we first present results of batch structure identifica-

tion obtained using the dynamic programming algorithm. We also

present results of batch effect correction based on combining our al-

gorithm of batch effect identification with an algorithm for batch

bias removal. On the basis of summarizing results of comparisons

studies (Chen et al., 2011; Luo et al., 2010) we concluded that the

ComBat algorithm (Johnson et al., 2007) is a reliable, state-of-the-

art method for batch effect removal and we use it in combination

with our method of batch identification, as a tool for batch effect

correction. For all DNA microarray datasets we used RMA normal-

ization algorithm (Irizarry et al., 2003) as the preprocessing step.

The RNA-seq data was aligned and counts were obtained using

STAR (Dobin et al., 2013). The MS data serum samples were ana-

lyzed using MALDI-ToF mass spectrometer in the mass range be-

tween 1, 000 and 14, 000 Da. Data pre-processing included outlier

spectra detection, global linear alignment, baseline correction, nor-

malization and spectra alignment (Pietrowska et al., 2012). To iden-

tify peptide ions present in the spectra and calculate their relative

abundances a Gaussian mixture model based algorithm was used

(Polanski et al., 2015).

The experimental data with known status of batches, E-GEOD-

19419 and E-GEOD-36398, RNA-seq and proteomics, were first

investigated in terms of estimation accuracy of the known, true

structure of batches obtained by application of the dynamic pro-

gramming algorithm described in Section 2. Further, for these data-

sets, we also compared qualities of batch effect removal in terms of

intragroup correlation.

Next, DNA microarray datasets E-GEOD-2034, E-GEOD-4183

and E-GEOD-10927, with unknown batch structure were analyzed.

In each set, the date of the experiment was known and used for sort-

ing. For evaluating results of batch effect correction we used the

index of intragroup correlation and the Information Content of gene

ontology terms for differentially expressed genes.

3.1 Known structure of batches
3.1.1 Batch division reproducing

The division into batches using dynamical programming was juxta-

posed against the original batch grouping. Weighted average pair-

wise Dice-Sorensen Index (Dice, 1945) was used in order to measure

the efficiency of batch effect identification. Comparisons of true and

estimated batch structures are also shown graphically, in Figure 1.

True batches are shown by using different symbols, while the struc-

ture of estimated batches is represented by vertical lines, which par-

tition samples.

• Microarray data

In the first experiment the reproduction of batches is identical to

the original division. In the second experiment the batch assign-

ment reconstruction is also at a highly satisfactory level

(weighted average Dice Index: 94.05%). Only three samples

belonging to the third batch fell into the fourth.

• RNA-seq data

In case of the sequencing data the original batches are sufficient-

ly well reconstructed with the value of a weighted average Dice

Index of 93.02%. Two samples from batch 2 were assigned to

batch 1 and three samples from batch 3 to batch 2.

• Mass spectrometry data

The mass spectrometry data batches were mapped with a

weighted average Dice Index value of 99.78%. One of the
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samples from batch 1 and five from batch 3 were classified as

batch 2.

3.1.2 Batch effect correction

The studies examined in terms of algorithm performance where the

batch effect was previously identified and on record were assessed in

two steps. Firstly, correlation was measured within groups of sub-

jects belonging to one biological condition investigated in the study.

95% confidence intervals for mean Spearman’s correlation coeffi-

cients were calculated. The results are present in Figure 2. In case of

both examined microarray experiments there may be observed a sig-

nificant increase in intragroup correlation after batch effect removal.

The RNA-seq experiment had a strongly imbalanced design in terms

of the number of samples, however, it may be observed that even in

the less numerous groups mean correlation within groups does not

deteriorate significantly. In the proteomics data, which in contrast

to the previous experiments was obtained by means of quantitative

MALDI-ToF measurements, there is a clear increase in within group

correlation, though larger differences may be observed.

Moreover, as another qualitative measure of change between

data with handled batch effects versus no correction, the d gPCA

statistic was calculated. Its significance with relation to no batch

correction was assessed using P-values obtained in the course of per-

mutation tests (Table 1). In the microarray experiments, the change

of d gPCA statistic is significant in both cases when applying batch

effect correction based on identified batches. When considering

RNA-seq data the change after correction becomes significant due

to the use of partitioning information from the dynamic program-

ming algorithm. In proteomics data as the samples are numerous

and the overall variation observed is weak, there is not a visible dif-

ference after batch effect correction neither with the original batch

label, nor the ones assigned using dynamic programming.

3.2 Detecting and correcting batch effect of unknown

structure
The three experiments chosen for batch effect identification without

prior knowledge of the division were examined qualitatively in the

same manner as the studies with predefined batches of samples. This

included investigating intragroup mean correlation within case/con-

trol subgroups. The results shown in Figure 3 demonstrate that data

integrity within the subgroups is indeed enhanced with batch effect

Fig. 1. Division of the datasets into batches with the a priori defined groups and determined with the dynamical programming approach: (a) Set E-GEOD-19419,

(b) Set E-GEOD-36398, (c) RNA-seq data, (d) Proteomics data. Different markers show the original batch structure, the vertical lines present divisions found using

the dynamic programming algorithm

Fig. 2. 95% confidence intervals for mean intragroup correlation coefficients in known batch structure datasets: (a) Set E-GEOD-19419 (60 samples), (b) Set

E-GEOD-36398 (50 samples), (c) RNA-seq data (72 samples), (d) Proteomics data (373 samples)

Table 1. Percent of variation induced by batch effect with regard to total variation, the corresponding gPCA d statistics and the P-values for

testing the significance against no batch effect correction for two microarray, an RNA-seq and a proteomics datasets

E-GEOD-19419 Original batch corrected DP batch corrected E-GEOD-36398 Original batch corrected DP batch corrected

Tot. var. [%] 69.23 69.23 Tot. var. [%] 48.15 50.14

d 0.9271 0.9271 d 0.9991 0.9989

P-value 4.69E-08 4.78E-08 P-value 2.24E-07 2.90E-07

RNA-seq Original batch corrected DP batch corrected Proteomics Original batch corrected DP batch corrected

Tot. var. [%] 65.12 67.23 Tot. var. [%] 23.82 24.56

d 0.2765 0.6175 d 0.6645 0.6671

P-value 4.87E-01 9.38E-02 P-value 7.32E-01 7.15E-01

BatchI 1889



detection and correction. Analogously to Figure 2, plots are

obtained by computing mean correlations and using U-Mann-

Whitney test. In all nine different groups of samples, in the three

datasets E-GEOD-2034, E-GEOD-4183 and E-GEOD-10927, the

use of batch effect correction based on combining dynamic pro-

gramming algorithm with ComBat algorithm leads to the increase of

the intragroup mean correlation. In three of nine groups of samples,

the increase is highly statistically significant. Furthermore, the pro-

portion of variance explained by batch effects is diminished which

may be seen while analyzing the values of the d gPCA statistic

(Table 2). In the breast cancer experiment, six batches have been

identified as the optimal number by the dynamic programming algo-

rithm. For the colon cancer experiment: two batches, and for adre-

nocortical carcinoma: three batches.

The E-GEOD-2034 dataset, having a large number of samples

(286), was monitored additionally for the purpose of measuring al-

gorithm runtimes. Firstly, the BatchI algorithm was run to scan for

the optimal number of batches between 2 and 10 on the entire data-

set, and afterwards on subsets consisting of 80, 60, 40 and 20% of

the samples. This approach was re-iterated five times. Results, pre-

sented in the Supplementary Material, show that the method

requires linearly increasing times with increased sample size, with an

overall runtime reasonably small, even on a personal computer.

3.2.1 Functional gene ontology analysis

The experiments were then subjected to functional analysis using

GO terms in order to prove the relevance of biological conclusions

that may be drawn from the studies. The differentially expressed

genes found in the case of no batch effect correction and comprising

batch effect correction were used to find significant GO terms using

the hypergeometric test. The resulting lists of terms were then com-

pared and terms unique to both ways of analysis were thoroughly

investigated.

In the case of experiment E-GEOD-10927 which is a study on

adrenocortical carcinoma and adenoma the terms were matched

with literature knowledge on these processes. The findings reveal

that the GO terms eliminated when discarding the lack of batch ef-

fect handling approach show little relevance to the studied medical

case, whereas a majority of the GO terms gained with batch effect

removal has previously proven links to processes related with adre-

nocortical carcinoma and adenoma (Full list in Supplementary

File S1).

As the remaining two studies concerned more well-defined bio-

medical problems such as breast and colon cancer, the resulting GO

term lists were large and therefore, instead of literature studies the

biological value of the findings is demonstrated with the use of the

Information Content (IC) measure (Resnik, 1995). This shows that,

when batch effect correction is performed, a more detailed represen-

tation of the studied process is obtained as the IC value increases

(Fig. 4).

Furthermore, the dynamic programming functional analysis

results have been compared with ontologies obtained with data cor-

rected using the SVA approach (Leek and Storey, 2007). The total

IC measure was standardized per GO term and the outcome demon-

strates that when it comes to common well described diseases, such

as breast cancer [incidence rate 200� 900 cases per million (Ferlay

et al., 2015)] or colon cancer [incidence rate 50� 400 per million

(Haggar and Boushey, 2009)], preprocessing data with the dynamic

programming approach does not lead to an important gain in qual-

ity of the information (represented by standardized total IC). This

shows that though preprocessing methods, including batch effect

identification and correction, are essential for careful data analyses,

they alone are not sufficient to enhance the biological knowledge

available in bioinformatics data bases for well described diseases.

However, when we study the less prevalent case of adrenocortical

carcinoma [0:5� 2:0 cases per million (Kerkhofs et al., 2013)] data

Table 2. Values of the gPCA d statistic for different numbers of batches in the unlabeled datasets

Breast cancer

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 88.63 86.69 85.31 85.83 84.10 81.09 81.90

d 0.45 0.43 0.44 0.53 0.56 0.56 0.51

P-value 6.89E-02 9.95E-02 1.05E-01 7.18E-02 6.59E-02 8.33E-02 1.48E-01

Colon cancer

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 80.24 64.51 61.63 55.13 54.42 50.76 37.30

d 0.49 0.39 0.56 0.58 0.64 0.68 0.60

P-value 2.42E-01 6.27E-01 3.63E-01 4.37E-01 3.97E-01 3.71E-01 7.02E-01

Adrenocortical carcinoma

2 batches 3 batches 4 batches 5 batches 6 batches 7 batches 8 batches

Tot. Var [%] 82.48 79.04 74.09 69.26 66.41 54.73 37.13

d 0.45 0.56 0.57 0.56 0.54 0.51 0.62

P-value 1.46E-01 7.61E-02 1.60E-01 2.47E-01 2.28E-01 4.09E-01 3.40E-01

Note: The optimal number of batches is chosen with the minimum P-value principle (numbers in bold).

(a) (b) (c)

Fig. 3. 95% confidence intervals for mean intragroup correlation coefficients

in unknown batch structure datasets: (a) Set E-GEOD-4183 (53 samples), (b)

Set E-GEOD-2034 (286 samples), (c) Set E-GEOD-10927 (65 samples)
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from the dynamic programming pipeline provides superior results,

which increases the chance of finding potential new mechanisms of

disease. Moreover, in each case the dynamic programming approach

gives higher standardized total IC values than SVA and the results

are no worse compared to the uncorrected data (Fig. 4).

4 Conclusions

Identifying and handling batch effects is an essential step of high-

throughput molecular biology data preprocessing. We propose an

efficient and unique method of batch effect identification. It allows

for splitting data into corresponding batches before processing to-

gether with any correction tools requiring prior knowledge of batch

structure, such as ComBat. The algorithm is based on a dynamic

programming approach and relies on the choice of the number of

batches using the d gPCA statistic.

The algorithm’s performance on recovering previously known

batch divisions proved to have a high level of efficacy in the case of

four assessed experiments with the use of average Dice Index as a

similarity measure. Moreover, when identifying and removing batch

effects in data with no such a priori knowledge, it was shown with

correlation investigation that in a majority of cases data integrity

increases within groups formed by the studied biological processes

(case/control). This also carries out a significant change in the pro-

portion of total variance present in the data explained by batch

effects.

Finally, literature and Gene Ontology term study implies that

careful and apt batch effect managing leads to potential new discov-

eries of knowledge relevant to the studied biomedical issue. On the

other hand, failing to consider batch effect when its portion in the

total variation is large may lead to insignificant conclusions and in-

hibit the development of a studied problem, by omission of import-

ant findings resulting from carried out experiments.
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