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Abstract: Biomarkers are essential tools in osteoarthritis (OA) research, clinical trials, and drug devel-
opment. Detecting and evaluating biomarkers in OA research can open new avenues for researching
and developing new therapeutics. In the present report, we have explored the serological detection of
various osteoarthritis-related biomarkers in the preclinical model of OA. In this surgical OA model,
we disrupted the medial tibial cartilage’s integrity via anterior cruciate ligament transection com-
bined with medial meniscectomy (ACLT+MMx) of a single joint of Wistar rats. The progression of
OA was verified, as shown by the microscopic deterioration of cartilage and the increasing cartilage
degeneration scoring from 4 to 12 weeks postsurgery. The concentration of serological biomarkers
was measured at two timepoints, along with the complete blood count and bone electrolytes, with bio-
chemical analysis further conducted. The panel evaluated inflammatory biomarkers, bone/cartilage
biomarkers, and lipid metabolic pathway biomarkers. In chronic OA rats, we found a significant
reduction of total vitamin D3 and C-telopeptide fragments of type II (CTX-II) levels in the serum
as compared to sham-operated rats. In contrast, the serological levels of adiponectin, leptin, and
matrix metallopeptidase (MMP3) were significantly enhanced in chronic OA rats. The inflammatory
markers, blood cell composition, and biochemical profile remained unchanged after surgery. In
conclusion, we found that a preclinical model of single-joint OA with significant deterioration of the
cartilage can lead to serological changes to the cartilage and metabolic-related biomarkers without
alteration of the systemic blood and biochemical profile. Thus, this biomarker profile provides a new
tool for diagnostic/therapeutic assessment in OA scientific research.

Keywords: osteoarthritis; biomarkers; anterior cruciate ligament transection; medial meniscec-
tomy; vitamin-D3; C-telopeptide fragments of type II; leptin; cartilage oligomeric matrix protein;
matrix metallopeptidase

1. Introduction

Osteoarthritis (OA) is the most common type of arthritis worldwide, and it affects
aged people widely [1]. According to the World Health Organization (WHO), almost 70%
of aged people face OA-related complications worldwide [2,3]. OA is characterized by
morphological changes in the articular cartilage and subchondral bone and inflammation
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at the knee joints [4,5]. The prevention and management of these complaints are ideal for
OA management [6–8].

With OA, the pain tends to be localized to the affected joints, and motion of these
joints aggravates the pain [9,10]. The goal of nonsurgical treatment modalities is to re-
duce the pain and restore function while delaying a total knee replacement (TKR) [11,12].
Modern-day research has made it possible to manage OA by administering effective
therapeutics [12–14].

The preclinical models of OA make it possible to study the pathophysiological changes
and disease progression in OA [15]. OA is induced by various methods including anterior
cruciate ligament transection (ACLT), medial meniscectomy (MMx), medial meniscus tear,
ovariectomy, and combinational models. Among all combinational models, the anterior
cruciate ligament transection combined with the medial meniscectomy (ACLT+MMx)
model is preferred due to its reproducibility and rapid effect on OA progression [16–19].
The fast induction of OA helps in studying the effectiveness of drugs earlier than other
reported OA models [20]. According to the existing literature, the severity levels of OA are
enhanced with time in an incremental fashion in a combinational model [17,21].

A biomarker is a substance that can be determined in the body to predict the occur-
rence or development of disease [22,23]. Biomarkers are essential tools to predict and
develop new therapeutics for OA [24,25]. Many biomarkers have been extensively studied,
such as cartilage oligomeric matrix protein (COMP), matrix metallopeptidase (MMP3),
C-telopeptide fragments of type II (CTX-II), and inflammatory markers (IL-1β, TNF-α,
IL-6, transforming growth factor-beta 1 (TGFβ1), and C-reactive protein (CRP)), to predict
pathophysiological changes of the cartilage and OA disease progression [26–29].

In this study, OA was induced by a combinational (ACLT+MMx) model. After surgery,
we quantified the osteoarthritis-related biomarkers in the serum along with the complete
blood count, biochemical analysis, and bone electrolytes in the blood. In addition, we fur-
ther verified the morphological changes in the cartilage along with carrying out histological
scoring to determine the OA severity in a time-dependent manner.

2. Results
2.1. ACLT+MMx Induced Changes in Tibial Cartilage Morphology

Figure 1A illustrates the timeline for OA induction and sample collection in Wistar
rats. After surgery, the morphology of the tibial cartilage was analyzed at the 4th and
12th weeks. The blood and serum were collected for biomarker, complete blood count
(CBC), and biochemical profiling. As shown in Figure 1B, ACLT+MMx surgery induced a
distinct medial tibial cartilage macromorphology by week four when compared to sham-
operated (sham-OP) animals. An increase in the roughness of the medial tibial cartilage
implied localized deterioration with a substantial increase in the adjacent connective tissue.
By contrast, the surface of the lateral tibial cartilage of the ACLT+MMx rats and the
tibial cartilage in the sham-OP rats appeared smooth and bright. Thus, this macroscopic
change validated the specificity of our surgery for targeting the ACLT and removing the
medial meniscus.

Furthermore, the knee joint tissues were collected on the 4th and 12th week to perform
toluidine staining and verify the chondrocyte, matrix loss, and medial meniscus removal
compared to the sham group [30]. As shown in Figure 2B, by the 4th week of OA induction,
complete loss of the medial meniscus with a partial injury to the medial femoral cartilage
was observed. In addition, there was pannus-like tissue covering the femoral and tibial
cartilages’ inner and outer surfaces, implying hyperplasia of the connective tissue. More-
over, noticeable hyperplasia was observed in chondrocytes at the transitional and radial
cartilage areas on the fourth week compared to the sham group. Twelve weeks postsurgery,
there was an enhancement in the impact of damage seen from the fourth week. There was
a substantial increase in chondrocyte hyperplasia in the inner and outer cartilage with a
decaying chondrocyte morphology, along with the loss of the cartilage matrix and bone
structure underneath (Figure 2D).
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Figure 1. Experimental design and morphological changes of tibial cartilage. (A) The experimental
design. (B) Microscopic images representing postsurgery of anterior cruciate ligament transection
combined with medial meniscectomy (ACLT+MMx) method, with changes seen to tibial cartilage
morphology compared with sham group (sham-OP) at the fourth week.
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Figure 2. Histological changes to medial tibial cartilage postACLT+MMx surgery. Histological
representation of toluidine staining tissue sections of medial tibial cartilage (scale bar = 500 µm):
(A,C), sham-OP (4th and 12th weeks); (B,D), ACLT+MMx postsurgery (4th and 12th week). The
mean tibial cartilage (E) thickness and (F) width, and (G) mean cartilage degeneration score of the
three zones (outside, middle, and inside) of the medial tibial cartilage. Values are expressed as the
mean ± SEM, and a t-test was used to analyze the data (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Further, we analyzed the medial tibial cartilage thickness, width, and cartilage de-
generation score at the 4th and 12th weeks after OA induction using the ACLT+MMx
method. By the fourth week, there was a noticeable increase in tibial cartilage thickness
compared with the sham group as a response to early surgical OA. By contrast, there was a
reduction in the tibial cartilage thickness by the 12th week, which could be attributed to
the significant deterioration and erosion of the tibial cartilage (Figure 2E). Moreover, in the
ACLT+MMx rat, the tibial cartilage width and degeneration score increased significantly
from the 4th week to the 12th week postsurgery (Figure 2F,G). Thus, the higher cartilage
degeneration score of 12th week animals confirmed this model’s chronic instability and
continued OA progression.

2.2. Blood and Biochemical Composition of ACLT+MMx-Induced OA Rats

Next, the complete blood count (CBC), metabolic profile, and bone-related electrolytes
were analyzed in sham-OP and OA rats. At 12 weeks postsurgery, blood samples collected
from both groups showed a nonsignificant change in the CBC, glucose, total protein,
triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), calcium,
phosphorus, and magnesium levels (Table 1). Taken together, the data suggested a lack of
effect in both groups at the systemic level of the blood and biochemical profiles.

Table 1. Total blood composition and biochemical profile of sham-OP and ACLT+MMx-induced
osteoarthritis (OA) rats (12th week).

Sham-OP-12W ACLT+MMx-12W

Complete Blood Count (CBC)
WBC (103 cells/µL) 6.59 ± 0.44 5.42 ± 0.35
RBC (106 cells/µL) 8.17 ± 0.12 8.32 ± 0.12

HGB (g/dL) 13.83 ± 0.18 13.92 ± 0.11
HCT (%) 41.40 ± 0.52 41.28 ± 0.37

PLT (103 cells/µL) 1189 ± 32 1066 ± 28

Metabolic Profile
Glucose (mg/dL) 159.70 ± 3.62 160.52 ± 5.96

Total Cholesterol (mg/dL) 85.41 ± 3.05 83.26 ± 5.51
TG (mg/dL) 58.98 ± 7.35 66.61 ± 8.09

HDL (mg/dL) 48.39 ± 2.10 47.83 ± 4.11
LDL (mg/dL) 20.53 ± 1.66 16.83 ± 1.67

Bone Electrolytes
Calcium (mg/dL) 10.43 ± 0.01 10.68 ± 0.01

Phosphorus (mg/dL) 6.60 ± 0.13 6.28 ± 0.12
Magnesium (mg/dL) 2.26 ± 0.02 2.19 ± 0.04

Blood serum was collected from independent Wistar rats at the 12th week postsurgery (sham-OP n = 7–10,
ACLT+MMx n = 10–12), and data are expressed as mean ± SEM (WBC = white blood cells, RBC = red blood cells,
HGB = hemoglobin, HCT = hematocrit, PLT = platelet count, TG = triglycerides, HDL = high-density lipoprotein,
and LDL = low-density lipoprotein).

2.3. Serum Level OA Biomarkers’ Detection and Evaluation

The detection of biomarkers is an essential tool for understating the OA disease state
and progression. Therefore, the levels of proinflammatory markers were determined on
the 12th week postOA induction. As shown in Table 2, proinflammatory cytokines such
as interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α)
did not range in the detection levels in the 12th week for either the OA or sham group. In
addition, the lack of a significant difference between the OA and sham-OP rats, regarding
the transforming growth factor-beta 1 (TGf-β1) and C-reactive protein levels, indicated
that our OA induction on the single joint did not involve systemic inflammation.
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Table 2. Detection of the serological level of the biomarker at 4th and 12th weeks post-surgery.

Sham-OP-4W ACLT+MMx-4W Sham-OP-12W ACLT+MMx-12W

Inflammatory Marker
IL-1β (pg/mL) ND ND Below Detection Limit Below Detection Limit

TNF-α (pg/mL) ND ND Below Detection Limit Below Detection Limit
IL-6 (pg/mL) ND ND Below Detection Limit Below Detection Limit

TGF-β1 (ng/mL) ND ND 96.13 ± 14.47 82.70 ± 7.80
C-Reactive Protein (µg/mL) ND ND 333.71 ± 13.27 353.86 ± 12.60

Bone and Cartilage Marker
Vitamin D (25-OH) (ng/mL) 20.17 ± 2.03 19.38 ± 1.32 23.92 ± 2.38 17.69 ± 0.65 **

CTX-II (pg/mL) 21.50 ± 1.69 22.05 ± 1.92 18.08 ± 2.51 12.48 ± 1.14 *
PINP (ng/mL) 46.61 ± 4.24 53.59 ± 2.87 21.63 ± 1.87 19.51 ± 1.32

MMP3 (ng/mL) 26.91 ± 1.98 32.19 ± 1.28 * 19.20 ± 1.15 24.57 ± 1.36 **
COMP (ng/mL) 11.28 ± 1.48 7.42 ± 1.07 * 41.14 ± 4.57 45.79 ± 6.50

Lipid Marker
Adiponectin (µg/mL) 2.88 ± 0.21 3.04 ± 0.17 2.09 ± 0.09 2.63 ± 0.21 *

Leptin (ng/mL) 7.64 ± 1.17 4.47 ± 0.43 ** 2.95 ± 0.36 5.68 ± 0.97 **
Resistin (ng/mL) 18.93 ± 1.38 18.53 ± 0.86 18.93 ± 1.38 18.24 ± 1.05
Visfatin (ng/mL) ND ND Below Detection Limit Below Detection Limit

Asterisks correspond to statistical examination in comparison with sham by t-test (* p < 0.05, ** p < 0.01). Blood serum was collected from
independent Wistar rats at the 4th and 12th weeks postsurgery (sham n = 7–10, ACLT+MMx n = 10–12), and the data are expressed as
mean ± SEM (IL-1β = interleukin 1 beta, IL-6 = interleukin 6, TGF-β1 = transforming growth factor-beta 1, TNF-α = tumor necrosis factor
alpha, CTX-II = C-telopeptide fragments of type II, PINP = procollagen type I N propeptide, MMP3 = matrix metallopeptidase 3, COMP =
cartilage oligomeric matrix protein and ND = not determined).

Furthermore, bone and cartilage metabolism biomarkers such as Vitamin D, CTX-II,
PINP [31], MMP3, and COMP [32], along with lipid markers such as adiponectin [33],
leptin [34], resistin, and visfatin [35], were analyzed in both groups. Among all the
biomarkers studied, there was a significant increase in the MMP3 level and decreased
vitamin D levels in OA rats compared to the sham group at 12 weeks postOA. By contrast,
there was a significant decrease in the CTX-II level at the 12th week postsurgery in the OA
group compared with the sham-OP group. In addition, there were increased adiponectin
and leptin levels at the 12th week postsurgery. However, there was a decrease in the leptin
level during the 4th week postOA. Finally, there was no significant change in the resistin
level and an undetectable level of visfatin was found in both groups.

As shown in Figure 3, we performed multiple comparisons of the different stages
and operations, finding that sham-operated rats’ aging process decreased the MMP3
(Figure 3A), adiponectin (Figure 3E), and leptin (Figure 3F), but increased the COMP
(Figure 3B) level. Thus, the adiponectin, leptin, CTX-II (Figure 3C), Vitamin D (Figure 3D),
and COMP of ACLT+MMx rats were significantly different when compared to the sham-
operated control of the same age (4th or 12th week), and only MMP3 and leptin presented
significant changes at both timepoints.
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and 12th weeks. (A) MMP3, (B) COMP, (C) CTX-II, (D) Vitamin D (25-OH), (E) Adiponectin, and (F) Leptin. Values are
expressed as the mean ± SEM, and a t-test was used to analyze the data (* p < 0.05, ** p < 0.01, and *** p < 0.001).

3. Discussion

OA is one of the most common health conditions worldwide and is associated with
age-related deterioration [36–38]. Therefore, early detection and diagnosis of OA are es-
sential for its proper management [39–41]. In this study, the combinational ACLT+MMx
method used for OA induction and the biomarkers in the serum were analyzed. Further,
the morphological changes of the tibial cartilage and histological changes were observed
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in a time-dependent manner. These findings show promising evidence for earlier diag-
nosis of OA. The earlier detection of OA through biomarkers can lead to effective OA
treatment [26,42,43].

In this study, the tibial cartilage morphology continued to change four weeks postOA
induction with the ACLT+MMx method. Notable changes were observed, such as the
formation of dense connective tissue and a macroscopic change of the cartilage tissue
when compared with the sham operation, confirming the successful establishment of
OA [25,44–46].

Furthermore, histological studies confirmed the progression of OA with time. Com-
pared to the sham group, the toluidine blue staining revealed more significant cartilage
damage, hyperplasia, and chondrocyte degeneration with time [47,48]. Additionally, the
thickness, width, and cartilage degradation scores were analyzed, finding a reduction in
the cartilage thickness, an increased width of tibial cartilage, and a significant degeneration
score. Those reflected the continued progression over time in OA rats compared to the
healthy sham group.

The biomarkers’ detection in the biological fluids was further examined over time
and compared with the findings of previous reports [49–53]. In contrast to the previous
report [54,55], the proinflammatory markers were under the detection limit in all groups.
This may be attributed to the single-joint combinational ACLT+MMx model, which could
not develop meaningful systemic inflammation. The levels of TGF-1 and CRP showed no
differences in the OA group compared to the sham group over time. Nonetheless, we found
elevated MMP3, COMP, and adiponectin levels and lower CTX-11, vitamin D (25-OH), and
leptin levels in the OA group compared to the sham group with time. In this study, the
biomarkers mentioned above, derived from the cartilage extracellular matrix, could have
been involved in the OA disease progression and development [26]. The results strongly
support and address the value of those components, as reported in previous studies [56,57].

However, MMPs play an essential role in OA progression. Other studies have shown
that MMP3 inhibitors can be used to overcome the preclinical model of OA [58]. Further-
more, MMP3 inhibitors reduce the serum levels and recover the cartilage damage with
time in OA. In other studies, notable amounts of MMP3 biomarkers were detected in the
serum and synovial fluid in OA [34,59]. These study results match previously reported
studies, and MMP3 could thus serve as a potential biomarker in OA research for disease
monitoring and therapeutic targeting. Thus, increasing evidence supports MMP3 as an
attractive target for developing OA therapeutics [60–63].

Dong and his group reported the enhanced leptin levels and decreased adiponectin
levels in the serum and synovial fluid in OA with metabolic syndrome, as compared to
OA without metabolic syndrome [64]. It is worth noting that our animals were fed with
a laboratory chow diet, but the ACLT+MMx rats still developed a significant serologi-
cal alteration of adiponectin and leptin as compared to the sham-OP rats. This finding
suggests a direct impact of the metabolic/lipid pathway derived from the OA of a single
joint. Further exploratory experiments are needed to explain this relationship between
adiponectin/leptin and the inflamed OA joint.

4. Materials and Methods
4.1. ACLT+MMx-Induced OA Animal Model

OA induction was carried out by following the previous reports [16–19]. The animal
experiments were conducted according to institutional and international standards of
ethics (Principles of Laboratory Animal Care, National Institutes of Health) and approved
by the Institutional Animal Care and Use Committee (IACUC) of Cathay General Hospital
(Taipei, Taiwan). Adult male Wistar rats were purchased from BioLASCO Taiwan Co.,
Ltd. (Yilan, Taiwan) and housed in the Cathay Medical Research Center with free access
to a standard chow diet and water, living with a 12-h light/dark cycle, a temperature of
22 ± 2 ◦C, and at 55% humidity.
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ACLT+MMx surgeries were performed by a single expert on the right knee of the rats.
The male Wistar rats (330–350 g) were anesthetized with 5% isoflurane. The right knee joint
was shaved and sterilized using povidone-iodine solution. The medial aspect of the joint
capsule was cut to open the joint. With the ACL visualized, the ACL was transected using a
scalpel, and the medial meniscus was removed completely using a tenotomy scissor. Then,
the joints were washed with normal saline, and the joint capsule closed with sutures. The
wound area was sterilized with povidone-iodine solution, and cefazolin (100 mg/kg/day)
was administered intramuscularly for three days to prevent wound infection. For the
sham-group rats, the same surgical procedure was repeated without ACLT or MMx.

4.2. Histological Examination of the Operated Knee Joint

Rats were sacrificed under deep anesthesia at either the 4th or 12th week postsurgery.
The knee joints were removed and stored in 10% formalin for 48 hours. Decalcification
was performed using a decalcifying solution with ethylenediaminetetraacetic acid (EDTA)
disodium (12.5%, pH 7) for four weeks. After decalcification, the joints were embedded in
paraffin blocks and the slides for histological coronal sections (5 µm thick serial sections
with a slide interval of 200 µm) were prepared. Toluidine blue/fast-green staining was
used to examine the histological changes. The stained sections were scanned using a Slide
Scanner ZEISS Axio Scan Z1 image system (Jena, Germany). The mean cartilage degenera-
tion score (determined using the modified Osteoarthritis Research Society International
scoring system) [16–19] and the mean cartilage thickness on the medial tibial plateau were
evaluated using ZEN lite 3.2 software (Carl Zeiss Microscopy GmbH, Jena, Germany).

4.3. Complete Blood Count and Biochemical Assays

Under anesthesia, the rat’s abdomen was opened, and the blood was collected from
the abdominal vein using a 5cc 21G needle. The whole blood was transferred into BD
(EDTA) vacutainer tubes, which were placed in an automatic mixer for five minutes. The
whole blood samples were immediately transported to NARLabs (National Laboratory
Animal Center, Taipei, Taiwan) for complete blood count (CBC) analysis using a Bayer
ADVIA 2120. The serum was separated by centrifugation at 2000G for five minutes and
stored at −80 ◦C until analysis.

The biochemical assays (glucose, total cholesterol, TG, HDL, LDL, calcium, phos-
phorus, and magnesium) were conducted at NARLabs using a Hitachi-7080 (Holiston,
MA, USA).

4.4. Enzyme-Linked Immunosorbent Assay (ELISA) and ElectroChemiluminescence
Binding Assay

Commercially available ELISA kits were purchased for the measurement of the serolog-
ical levels of biomarkers. A Nampt (Vsfatin/PBEF) ELISA kit (Cat: AG-45A-0007YEK-KI01,
detection limit: 50 pg/mL) was purchased from AdipoGen Corporation (San Diego, CA,
USA). A Rat/Mouse PINP EIA kit (Cat: AC-33F1, detection limit: 0.33 ng/mL) was pur-
chased from Immunodiagnostic Systems (Tyne & Wear, United Kingdom). A Rat COMP
ELISA kit (Cat: NBP2-82142, detection limit: 0.94 ng/mL) was purchased from Novus
Biologicals (Centennial, CO, USA). A Rat Resistin ELISA kit was purchased from BioVen-
dor (Brno, Czech Republic). TNF-α (Cat: 438207, detection limit: 4.3 pg/mL) and IL-6
(Cat: 437107, detection limit: 5.3 pg/mL) ELISA kits were purchased from BioLegend
(San Diego, CA, USA). Rat MMP3 (Cat: ab270216, detection limit: 33.36 pg/mL), rat
leptin (Cat: ab229891, detection limit: 24 pg/mL), rat adiponectin (Cat: ab239421, detec-
tion limit: 3 pg/mL), rat CRP (Cat: ab256398, detection limit 3.9 pg/mL), rat TGF-beta 1
(Cat: ab119558, detection limit: 7.8 pg/mL), and rat IL-1 beta (Cat: ab255730, detection
limit: 26.58 pg/mL) ELISA kits were purchased from Abcam (Cambridge, MA, USA).
All measurements were taken in duplicate or triplicate according to the manufacturer’s
instructions. A standard curve was calculated for the interpolation of the concentrations of
each independent serum sample.
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The total 25-hydroxyvitamin D was measured in the radioimmunoassay laboratory
(Cathay General Hospital) using Cobas E411 analyzers and an Elecsys Vitamin D total II
reagent kit (Roche Diagnostics GmbH, Mannheim, Germany).

4.5. Statistical Analysis

The data are expressed as the mean ± SEM. All figures were plotted by GraphPad
Prism version 6.01 (San Diego, CA, USA), and the multiple t-tests were employed to analyze
the statistical significance difference between groups.

5. Conclusions

In summary, we found that a preclinical model of single-joint OA with significant
deterioration of the cartilage can lead to serological changes of those biomarkers derived
from the cartilage extracellular matrix, lipid metabolism, and vitamin D, but without
alteration of the systemic blood and biochemical profile. Thus, the presented biomarker
profile provides a new diagnostic/therapeutic assessment tool in scientific research and for
medicinal products for OA disease.
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