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Abstract

Fairness in data-driven decision-making studies scenarios where individuals from certain 

population segments may be unfairly treated when being considered for loan or job applications, 

access to public resources, or other types of services. In location-based applications, decisions 

are based on individual whereabouts, which often correlate with sensitive attributes such as race, 

income, and education.

While fairness has received significant attention recently, e.g., in machine learning, there is 

little focus on achieving fairness when dealing with location data. Due to their characteristics 

and specific type of processing algorithms, location data pose important fairness challenges. 

We introduce the concept of spatial data fairness to address the specific challenges of location 

data and spatial queries. We devise a novel building block to achieve fairness in the form of 

fair polynomials. Next, we propose two mechanisms based on fair polynomials that achieve 

individual spatial fairness, corresponding to two common location-based decision-making types: 

distance-based and zone-based. Extensive experimental results on real data show that the proposed 

mechanisms achieve spatial fairness without sacrificing utility.

1 INTRODUCTION

In the past decade, location data became an integral part of many applications, e.g., mobile 

apps, smart health, smart cities. Individual locations are often used in creating user profiles, 

or as an input for various decision-making processes (e.g., machine learning), which may 

affect an individual’s access to public resources, loans, etc.

It is already well-understood that location bias has significant effects on underprivileged 

communities, e.g., in the context of transportation and housing [25]. Some public authorities 

designated entire geographical regions as economically-disadvantaged areas (EDA) [2]. 
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However, while fairness has been studied recently in ML settings [6] for generic data types 

[16], no specific solution studies fairness in spatial data processing. Addressing spatial data 

fairness presents two specific challenges:

(1) Location data may lead, intentionally or inadvertently, to exercise bias against 

individuals from disadvantaged backgrounds in a stealth fashion. While it is illegal to 

use race or ethnicity in a loan-granting or hiring decision, one may use location of 

current residence as input. Even though location may not seem sensitive, it may be used 

to discriminate against people of a certain ethnicity, as on many occasions people from 

the same ethnic group congregate in certain spatially-focused communities [18]. Similar 

concerns exist for income or education level, which often exhibit strong correlations with the 

location where an individual works, lives or travels [9]. Note that, this sort of discrimination 

may often occur inadvertently, as opaque ML algorithms automatically exploit certain 

correlations in location data (e.g., higher default rates in certain zipcodes), without realizing 

their fairness implications.

(2) Fairness is achieved through some data transformation designed to prevent, or limit, the 

amount of bias in processing. This causes loss of utility, whereby the result of processing 

can be sub-optimal compared to the result obtained on the original data. Achieving fairness 

requires some utility loss, and the emerging fairness-utility trade-off must be carefully 

considered when devising a fairness mechanism. In the case of location data, utility has 

specific formulations, which may impact results in a way that is unique to spatial query 

processing algorithms. Using generic fairness mechanisms devised for other types of data 

may lead to poor utility, as seen in [27]. Therefore, it is desirable to design customized 

mechanisms for fighting bias in location data, such that the utility of spatial information is 

not significantly decreased.

In this paper, we introduce specific mechanisms targeted at providing spatial fairness while 

preserving data utility. We focus on the case of individual fairness [12], which is more 

difficult to achieve, but provides a higher level of fairness guarantees compared to its group-

level counterpart. We provide specific definitions of location bias, and carefully characterize 

how location data can be used to exercise discriminatory decisions.

We introduce a novel construction called fair polynomials (Section 3.1) that can be used as 

building block within mechanisms for spatial fairness1. We perform a detailed exploration of 

fair polynomials in order to understand their properties and the trade-off achieved between 

enforcing fairness and preserving data utility.

We identify two broad categories of scenarios where location bias occurs, and we define 

spatial fairness mechanisms for each:

• Distance-based fairness is relevant in location-based advertising and ride-hailing, 

where the dominant query type is nearest-neighbors (NN). In this setting, 

location bias occurs when individuals are impacted by their distance to a 

reference point. In location-based marketing, an algorithm may advertise special 

1While our focus is on geospatial data, some of our results can be extended for other types of data with continuous domains.
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deals to customers that are nearby a newly-opened health food store. The specific 

coordinates of the customers may be less relevant for utility, and instead the 

distance to a landmark is the important factor (i.e., the proximity to the store 

is a good indicator of likelihood of visiting it). While this may be efficient, it 

can have fairness repercussions. For instance, if the algorithm chooses the first 

100 potential customers to reach based on distance, it is possible that only a rich 

neighborhood is covered. Customers from a poorer neighborhood that is adjacent 

to the rich one may never be selected, due to a slightly larger distance threshold. 

Figure 1a illustrates this case. In this situation, we would like to ensure that 

individuals from poorer backgrounds also get the chance to benefit from special 

deals on healthy food, even though they are slightly farther away (i.e., avoid the 

hard decision boundary phenomenon).

• Zone-based fairness is applicable in scenarios like gerrymandering, loan analysis 

or insurance pricing, where spatial range queries are the norm. In this case, 

we look at how to ensure spatial fairness with respect to coordinate values, 

instead of distances. This setting is broader, as it can provide fairness with 

respect to any reference point. Conversely, the amount of data utility sacrificed 

in the process may be higher. Figure 1b illustrates this point, where two 

individual homes are quoted significantly different insurance premiums due to 

their surrounding characteristics. Ideally, we would like the two residences to 

have similar premiums, given their physical proximity.

Our specific contributions are:

• We identify the problem of bias in spatial data processing, and formalize the 

notion of spatial data fairness;

• We introduce two definitions of spatial data fairness based on common 

interaction types, namely distance-based and zone-based fairness;

• We devise the novel concept of fair polynomials, which can be used as a building 

block to obtain mechanisms that achieve spatial fairness;

• We propose two mechanisms based on fair polynomials that enforce distance-

based and zone-based fairness;

• We perform an extensive experimental evaluation on real datasets that shows the 

effectiveness of the proposed mechanisms, and investigates the fairness-utility 

trade-off.

The rest of the paper is organized as follows: Section 2 formalizes the notions of bias 

and fairness for location data. Sections 3 and 4 introduce our proposed distance-based and 

zone-based fairness mechanisms, respectively. We survey related work in Section 5. Section 

6 reports the results of our experimental evaluation, followed by conclusions in Section 7.
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2 SYSTEM MODEL

2.1 Location Bias

The existence of bias, rooted in data or algorithms, is commonly used as a basis for 

reasoning on unfairness in decision-making. Several sources of bias have been identified 

in the literature, such as measurement bias [29] and behavioral bias [24], many of which 

are intertwined. In this work, we formalize a type of bias that occurs due to location data. 

Location bias is formally defined as follows:

Definition 1 (Location Bias). Distortion or algorithmic bias generated based on locations 

of entities in the geospatial domain or their distances to reference points is referred to as 

location bias.

Distortion refers to the bias intrinsic to the data. Whereas algorithmic bias [5] refers bias 

that is generated by processing algorithms. A category of bias closely related to algorithmic 

bias is called data processing bias [24], which occurs during data cleaning, enrichment, and 

aggregation. Our focus is on location bias sourced in processing algorithms. Location bias 

appears in a variety of applications where distances or locations may cause discrimination 

against individuals or groups. Consider the example in Fig. 2 in which a store wants to 

contact nearby customers with daily offers. A widely known algorithm such as nearest 
neighbors may be used to decide which customers should be contacted. If fairness measures 

are not considered, and if the store is located in a rich neighborhood, customers who live 

in less privileged areas of the city may never be contacted, and will be unable to enjoy the 

special offers.

Such an algorithmic advantage towards a particular group or towards certain individuals is 

an example of distance-based location bias with respect to a reference point. The distances 

can be represented as a one-dimensional input feature; however, the source of location 

bias can be multidimensional, more commonly stored in two or more dimensions, e.g., 

as latitudes and longitudes. Consider classifying districts in a city as “high risk” or “low 

risk”, where more police presence and government resources are allocated to locations with 

higher crime rates. A strict boundary between a low-risk and high-risk district dictates 

that nearby individuals placed oppositely across the border are treated differently, despite 

their proximity. The unfairness manifests in the number of police patrols, the tolerance 

of police officers to crime, the cost of insurance, and the approval of home improvement 

loans. To address location bias in classification tasks, i.e., to prevent individuals with similar 

features from being treated significantly different, i.e., unfairly, we first introduce the notion 

of location fairness in Section 2.2, and then formulate the problem of achieving location 

fairness in Section 2.3.

2.2 Spatial Fairness Definition

There are two categories of fairness definitions, namely group fairness and individual 
fairness [13]. The former definition addresses the case where a group with certain features 

is treated statistically different compared to other groups. The latter approach focuses on 

treating individuals with similar features in a similar way. We adopt the use of individual 

fairness for spatial data, since (i) it provides higher fairness guarantees; (ii) it is more 
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suitable for continuous domain features such as locations, in contrast to categorical features 

such as education, race, and gender; and (iii) location attributes tend to be dynamic, and 

hence more relevant on an individual basis, rather than for a group. To this end, we formally 

present the notion of individual spatial fairness in Definition 2:

Definition 2. (Individual Spatial Fairness). Let L = {l1, l2, …, lm} denote the set of 

individual locations that need to be classified over the output set A, where lu ∈ ℝk. A 

randomized mapping M : L → Δ(A) satisfies individual spatial fairness iff for every two 

locations lu, lv ∈ L the (D, d)-Lipschitz constraint holds,

D(M(lu), M(lv)) ≤ d(lu, lv) (1)

Intuitively, the definition states that the evaluation process M for two similar locations 

should yield similar outcomes. The definition relies on two key distance metrics, (1) 

similarity distance metric d : V × V ℝ, measuring how similar individuals are, and (2) 

a distance metric D(.) measuring the distance between outcome distributions. The former 

metric will be defined thoroughly for locations in the upcoming sections, as it is tailored to 

the specific location interaction type. The latter metric, on the other hand, is commonly 

defined as total variation norm or so-called statistical distance. Given two probability 

distributions P and Q over outcome space A, the statistical distance is calculated as

D(P , Q) = 1
2 ∑

a ∈ A
∣ P (a) − Q(a) ∣ . (2)

Our focus in this work is on binary decision-making tasks, hence, the output space is given 

by A = {0, 1}. We assume a classifier modeled as a randomized mechanism M : L → Δ(A) 

mapping individuals over outcomes, where Δ(A) denotes all possible distributions. Thus, 

the classification of an individual lu ∈ L over outcome space A is done according to the 

distribution of M(lu). To simplify notation, we assume function M to return the likelihood of 

the positive outcome, i.e., M(lu) = M(lu∣a = 1).

2.3 Problem Formulation

Consider m datapoints L = {l1, l2, …, lm} located in a k-dimensional space (ℝk). Each 

location represents an individual. Associated attributes of data points are stored in a tabular 

format such that the ith row of the table is dedicated to li (as shown in Fig. 2).

Attribute Distance to Reference (DtR) represents the distance from a reference point2 R. We 

use as DtR metric the Minkowski distance of order p (p-norm distance) defined for two data 

points lu = (x1, …, xk) and lv = (x′1, …, x′k) as

2The proposed approach can be extended to multiple reference points by using a composite cost metric, or an existing locality-
sensitive hashing (LSH) approach that produces a single scalar distance value over multiple reference points.
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‖(lu, lv)‖p = ∑
i = 1

k
(xi − xi

′)pp . (3)

The u-th entry of the DtR column is associated with datapoint lu and entails a scalar lu = 

∥(lu, R)∥p/ɣ, where γ = max
i = 1…m

‖(li, R)‖p. Constant ɣ ensures the range of distances is [0,1] (0 

≤ li ≤ 1, ∀i=1…m). The DtR column is shown with DtR metric set to 2-norm. It is important 

to note that DtR is based on data representation, and it is not to be confused with the two 

distance metrics d(.) and D(.), which are crucial elements of individual fairness.

As part of our system model, we assume a classifier performing decision-making on top 

of the data (this model aligns well with current location-based applications, where some 

machine learning is involved in data processing). Given an input individual u, the classifier 

M(lu) returns a likelihood score for that individual based on her location (e.g., likelihood of 

receiving a location advertisement). Scores are real values in the range of 0 to 1.

The classifier output scores are shown in the last column of Fig. 2b. For example, user 

A is located at the coordinate lA with the calculated distance from the reference point of 

12 + 12 = 2 normalized to 2 ∕ 10, and the generated score of M(lA) = 0.8. Other features 

and attributes used in the model could be race, gender, education, etc. The two problems we 

seek to address to achieve individual fairness are defined as follows:

PROBLEM 1. (Distance-based Spatial Fairness) For a given location dataset L with the 
corresponding DtRs {l1, …, lm}, and a function M : L → [0, 1], devise a mechanism to 
enforce individual distance-based fairness (D, d)-Lipschitz constraints with respect to DtRs.

D(M(li), M(lj)) ≤ d(li, lj) ∀i, j ∈ [1, …, m] (4)

PROBLEM 2. (Zone-based Spatial Fairness) For a given location dataset L = {l1, l2, …, lm}, 

and a function M : L → [0, 1], devise a mechanism to enforce individual fairness (D, 
d)-Lipschitz constraints with respect to location coordinates.

D(M(li), M(lj)) ≤ d(li, lj) ∀i, j ∈ [1, …, m] (5)

Fairness mechanisms must inherently alter the output likelihood scores in order to achieve 

the fairness requirement. Hence, there is a cost for such an operation in terms of utility 

loss. Since we expect the output of a fairness mechanism to be used for a learning task, 

we choose as utility metric fitting error, a widely accepted ML metric for output scores, 

formally presented in Definition 3.

Definition 3. (Utility). Let B : M → M′ be a mechanism that maps every likelihood score 

M to a likelihood score in M′ given that M, M′ : L → Δ(A). The fitting error (utility) of 

B is:
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1
m ∑

i = 1

m
(M(li) − M′(li))22 (6)

As an example, suppose that the output score is mapped to a constant 0.5, i.e., M′(li) = 0.5, 

∀i. The utility loss can then be calculated as 1
4 (0.32 + 0.22 + 0.22)2 ≈ 0.206.

3 DISTANCE-BASED SPATIAL FAIRNESS

We introduce a spatial fairness mechanism for Problem 1. Each data point is augmented with 

a DtR column representing a user’s distance from the reference point. Therefore, the most 

natural similarity distance metric is 1-norm.

d(li, lj) = ∣ li − lj ∣ (7)

LEMMA 3.1. Given the classifier output space of A = {0, 1}, the statistical distance for every 
two individuals can be calculated as

D(M(li), M(lj)) = ∣ M(li) − M(lj) ∣ (8)

PROOF.

D(M(li), M(lj)) = 1
2 ∑

a ∈ {0, 1}
∣ P (a) − Q(a) ∣ (9)

= 1
2( ∣ M(li) − M(lj) ∣ + ∣ 1 − M(li) − (1 − M(lj)) ∣ ) (10)

= ∣ M(li) − M(lj) ∣ (11)

3.1 Fair-Polynomials

Despite the strong fairness guarantees provided by individual fairness, applying a large 

number of hard constraints has limited its practicality. A common mechanism for individual 

fairness is to define an application-specific optimization problem usually referred to as 

vendor’s utility function and solve it while imposing individual fairness hard constraints. 

Unfortunately, two major issues arise with such an approach when applied to location data: 

(i) In existing approaches, e.g., [27], a constraint optimization problem solver is used to 

alter input locations such that fairness requirements are met. The number of constraints 

grows quadratically with the number of data points, which makes their enforcement 

computationally prohibitive; (ii) The definition of the utility function in most scenarios is not 

straightforward, confining applicable use cases.
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We devise the concept of fair polynomials, the intuition behind which is depicted in Figure 

2c. A polynomial is efficiently fitted to the output scores of the classifier with a reasonably 

low fitting error. Fair polynomials no longer require enforcement of a large number of 

hard constraints: given a new data point, its corresponding fair value can be generated by 

evaluating the polynomial at that point.

Definition 4 (c-fair Polynomials). A single variable degree n polynomial P (x) :ℝ ℝ is said 

to be c-fair if and only if for every two points x and y in its domain

∣ P (x) − P (y) ∣ ≤ c ∣ x − y ∣ (12)

Given that a fair polynomial providing good estimates of likelihood scores exists, by one-

to-one mapping (fitting) of the likelihood scores to polynomials, individual distance-based 

fairness can be achieved for every two data points. The constant c ∈ [1, + inf] in c-fair 

polynomials aims to exploit the trade-off between utility and fairness. When c = 1, the 

optimal individual location fairness is achieved but is usually associated with a higher loss in 

utility. When the value of c grows larger, the fairness constraint is relaxed, leading to higher 

utility but lower fairness.

As the distance-based fairness problem only involves scalars, our focus is on single variable 

degree n polynomials. We will extend to multi-variable polynomials to accommodate for 

multi-dimensional data points and address Problem 2 in Section 4.1. In the following, we 

answer three central questions, (i) what is the sufficient condition for a polynomial to be 

fair, (ii) how to derive the coefficients of the polynomial by imposing individual fairness 

constraints, and (iii) how to determine the degree of a fair polynomial.

3.2 Sufficient Condition for Fair Polynomials

There are several families of polynomials that preserve individual fairness over the defined 

distances for DtR. For example, one such family of polynomials is P(x) = cxn/n which is 

proven in Lemma 3.2 to be a c-fair polynomial.

LEMMA 3.2. The polynomial P(x) = cxn/n, is a c-fair polynomial for every two points x, y ∈ 
[−1, 1].

PROOF. The proof can be derived by expanding the equation and applying triangle inequality, 

considering that ∣xiyj∣ ≤ 1, ∀i, j.

c ∣ xn − yn

n ∣ = c ∣ (x − y)(xn − 1 + xn − 1y + … + yn)
n ∣ ≤ (13)

(c ∣ x − y ∣ )( ∣ xn − 1 ∣ + ∣ xn − 1y ∣ + … + ∣ yn ∣ )
n ∣ ≤ c ∣ x − y ∣ (14)
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A fair polynomial must be flexible enough to reduce the error once the likelihood scores 

are fitted to the polynomial, and not every fair family of polynomials is a viable option. 

Consider the generic degree n polynomial written as

P (x) = a0 + a1x + … + anxn, (15)

where ai are real numbers. In Theorem 1, we derive a sufficient condition for polynomials of 

order n to preserve individual fairness.

THEOREM 1. A sufficient condition for a single variable degree n polynomial P (x) = ∑i = 0
n aixi

to be c-fair given that ai ∈ ℝ and ∣x∣ ≤ 1 is to have,

∑
i = 1

n
i ∣ ai ∣ ≤ c (16)

PROOF. Following the definition of individual location fairness:

∣ P (x) − P (y) ∣ = ∣ ∑
i = 1

n
ai(xi − yi) ∣ ≤ ∑

i = 1

n
∣ ai(xi − yi) ∣ (17)

≤ ∑
i = 1

n
( ∣ ai(x − y) ∣ )( ∣ xi − 1 ∣ + ∣ xi − 2y ∣ + … + ∣ yi ∣ ) (18)

≤ ∑
i = 1

n
∣ ai × i(x − y) ∣ = ∣ x − y ∣ ∑

i = 1

n
i ∣ ai ∣ (19)

The above inequality is true based on Jensen’s inequality (and also, extended triangle 

inequality) as well as applying the result from Lemma 3.2. Given that the inequality in Eq. 

(16) is satisfied, the polynomial is proven to be c-fair based on the definition.

The theorem indicates that if likelihood scores generated by the model are fitted to a 

polynomial for which the coefficients are selected such that ∑i = 1
n i ∣ ai ∣ ≤ c, then c-fairness 

is guaranteed for data entries. The sufficient condition in Theorem 1 can be used directly to 

learn c-fair polynomials, but the non-linearity existing in the constraint can result in higher 

computation complexity, as coefficients are unbounded. Theorem 2 addresses this problem 

by deriving linear constraints over coefficients.

THEOREM 2. A sufficient condition for a 1-variable n-th degree polynomial P (x) = ∑i = 1
n aixi to 

be c-fair is to have:

∣ ai ∣ ≤ 6 × i × c
n(n + 1)(2n + 1) ∀ i ∈ 1…n (ai ∈ ℝ) (20)
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PROOF. The bound on each ai value must allow for the maximum degree of freedom while 

fitting the likelihood scores. Therefore, the condition can be written as an optimization 

problem.

Minimize − ∑
i = 1

n
ai

Subject to ∑
i = 1

n
i ∣ ai ∣ ≤ c

(21)

Writing the Lagrangian and applying the stationary condition of Karush–Kuhn–Tucker 

(KKT) [15],

L(a1, …, an, λ) = − ∑
i = 1

n
ai − λ( ∑

i = 1

n
i ∣ ai ∣ − c) (22)

∂L
∂ai

= − 1 − λ i
ai

= 0 ai = − λi (23)

λ can be derived from complementary slackness to be

λ ∑
i = 1

n
i2 = c λ = 6c

n(n + 1)(2n + 1) (24)

Therefore, bounds on the coefficients are given as

∣ ai ∣ ≤ 6ic
n(n + 1)(2n + 1) ∀ i ∈ 1…n (25)

3.3 Derivation of Fair Polynomials

We employ a simple ML model to compute polynomial coefficients, where each location 

distance represents a training sample used to fit the likelihood scores to a polynomial. The 

training set can be assembled by choosing at random a number of locations from the same 

data domain as the application (e.g., residential locations within a city). In cases where 

the target user population is already known (e.g., the coordinates of customers for a store 

that is using location-based advertising), this user set can be directly used for training. In 

the following, to simplify notation, we assume the latter. For a given training input li, the 

polynomial output is derived as

P (li) = a0 + a1li + … + anli
n, (26)

We denote the matrix of all training examples as
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L =

1 l1 l1
2 … l1

n

1 l2 l2
2 … l2

n

. . . . .
1 ln ln

2 … lm
n

.

Recall that m is the number of training examples, and the variables that we learn are the ais, 

which define the fair polynomial fitted to the data. The vector of coefficients can be written 

as

aT = [a0, a1, a2, …, an] (27)

and the likelihood scores are vectorized as

bT = [M(l1), M(l2), …, M(lm)] (28)

The convex optimization problem to learn a is formulated as:

Minimize ‖La − b‖2

Subject to ∣ ai ∣ ≤ 6 × i × c
n(n + 1)(2n + 1)

(29)

This is equivalent to the least square problem with linear constraints and can be solved 

efficiently with algorithms such as Trust Region Reflective [11] and Bounded-variable 

least-squares [28], with complexity linear to the order of the polynomial n. Existing work 

[27] requires enforcing O(m2) hard constraints (m >> n).

The selection of the polynomial degree n can be conducted based on a trial and error 

methodology. The optimal degree is the one that results in the minimum variance of error 

between likelihood scores and their corresponding values on the polynomial. Formally, let ei 

denote the error between M(li) and P(li), i.e.,

ei = ∣ M(li) − P (li) ∣ (30)

Then, the value of n ≥ 1 is selected such that

n = argmin( ∑
i = 1

m
ei

2) ∕ (m − n − 1) (31)

4 ZONE-BASED SPATIAL FAIRNESS

Revisiting the example in Figure 2, suppose that two users A and B both apply for a 

home improvement loan, and despite living in close proximity, one is categorized in an 

underdeveloped area and the other in a developed region due to geographic segmentation. 

A bank applies a classifier to decide whether an applicant should be granted a loan. The 
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applicant whose home is in the underdeveloped category might be disadvantaged, as the 

location category can significantly impact the output of the classifier. Individual fairness 

argues that if two users are located close to each other, their output likelihood scores should 

not differ significantly.

In the distance-based fairness case, a single variable c-fair polynomial can fit output scores 

due to scalar distances. For multidimensional data points, Definition 4 is no longer directly 

applicable. To address this problem, we extend the definition to multivariate polynomials 

to achieve individual fairness for higher dimensional data points. The number of variables 

involved in fair polynomials is equal to the dimensionality of data points (k).

Three key variables are involved in finding an efficient family of fair polynomials that can 

fit the output likelihood scores with low utility loss: (i) dimensionality of data k; (ii) the 

distance metric d(.) and (iii) fair polynomial degree n. The individual fairness problem can 

be characterized with respect to these criteria as follows:

• One-dimensional data representation (scalars), 1-norm distance, flexible order 

polynomial. This corresponds to the distance-based fairness case.

• 2-Dimensional data representation, 2-norm distances; order 1 polynomial. This is 

the most common scenario for locations where the attribute columns include 2D 

coordinates, and the fairness must be achieved with respect to Euclidean distance 

between individuals.

• k-Dimensional data representation, 2-norm distances; order 1 polynomial.

• k-Dimensional data representation, p-norm distances; order 1 polynomial.

• k-Dimensional data representation, p-norm distances; flexible order polynomial.

We formulate and derive the sufficiency condition to guarantee individual fairness for each 

mentioned scenario. The optimization problem in Eq. (29) is formulated with the derived 

constraints. We omit the vectorization process for conciseness. For several of the proofs used 

in this section, we make use of Generalized Titu’s Lemma provided in Lemma 4.1.

LEMMA 4.1 (GENERALIZED TITU’S LEMMA). Let m be an integer greater than or equal to 2, ai
m a 

non-negative real number, and xi a positive real number. Then,

nm − 2 ∑
i = 1

n ai
m

xi
≥ (∑i = 1

n ai)m

∑i = 1
n xi

(32)

PROOF. Proof is in Appendix B of our extended version3.

4.1 2-norm, 2 dimensional data, Order 1 polynomial

For higher dimensional data, the most common scenario happens when data points are in 

2D, and the order of the polynomial is one. In practice, data points represent coordinates 

3 https://github.com/SinaShaham/c-Fair-Polynomials/tree/main 
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of locations on the map. Consider two locations l1 = (x1, x2) and l2 = (x1
′ , x2

′) in ℝ2, where 

x1 and x1
′ are the x-axis coordinates, while x2 and x2

′ denote y-axis coordinates. To achieve 

individual fairness with respect to locations, the hard Lipschitz constraints dictate that:

D(M(li), M(lj)) ≤ d(li, lj) ∀i, j ∈ 1…m (33)

The distance between distribution scores, i.e., D(.), is calculated as before based on Equation 

(3.1) and the distance between locations is the 2-norm of data points (Euclidean distance), 

calculated as:

d(li, lj) = (x1 − x1
′)2 + (x2 − x2

′)22 (34)

We start by showing how a fair-polynomial can be derived for the Euclidean similarity 

distance. Then, we relax the assumptions and generalize the approach for arbitrary distance 

norms as well as n-dimensional data points. Recall that as location data are stored in 2D, the 

fair polynomial consists of two variables. The generalized definition of fair polynomials for 

order n polynomials and k dimensional data is provided in Definition 5.

Definition 5 (Generalized c-Fair Polynomial). The polynomial P (x1, x2, …, xk) :ℝk ℝ with 

real coefficients is c-fair iff for every two points x = (x1, x2, …, xm) and x′ = (x1
′ , x2

′ , …, xm
′ ) in 

its domain

∣ P (x1, x2, …, xm) − P (x1
′, x2

′, …, xm
′ ) ∣ ≤
c × d(x, x′) = c × ‖(x, x′)‖p

(35)

In the case of 2-dimensional locations and Euclidean distance, fair polynomials imply that 

for every two locations l1 = (x1, x2) and l2 = (x1
′ , x2

′), we must have,

∣ P (x1, x2) − P (x1
′, x2

′) ∣ ≤ c × (x1 − x1
′)2 + (x2 − x2

′)22 (36)

Where the polynomial is denoted by

P (x1, x2) = a0 + a1x1 + a2x2 (37)

The goal is to learn the coefficients ai such that the polynomial P(.) can model the output 

scores M(.) and preserve fairness with respect to Euclidean distance. Theorem 3 provides the 

sufficiency condition for a two-variables order one polynomial to be fair.

THEOREM 3. A sufficient condition for a 2-variable first degree polynomial P(x1, x2) = a0 + 

a1x1 + a2x2 to be c-fair defined over 2-norm similarity distance is to have:

∣ a1 ∣ , ∣ a2 ∣ ≤ c ∕ 2 (a1 a2 ∈ ℝ) (38)
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PROOF. On the one hand, based on Lemma 4.1, a lower bound for Euclidean distances can be 

written as

d(li, lj) = (x1 − x1
′)2 + (x2 − x2

′)22 ≥ (39)

( ∣ x1 − x1
′ ∣ + ∣ x2 − x2

′ ∣ )2 ∕ 22 (40)

On the other hand, for the polynomial one can write

∣ P (x1, x2) − P (x1
′, x2

′) ∣ = ∣ a1(x1 − x1
′) + a2(x2 − x2

′) ∣ (41)

≤ ∣ a1‖(x1 − x1
′) ∣ + ∣ a2‖(x2 − x2

′) ∣ (42)

By combining the two equations the sufficiency condition in Equation (38) can be derived 

from the following inequality

∣ a1‖(x1 − x1
′) ∣ + ∣ a2‖(x2 − x2

′) ∣ ≤
c × ( ∣ x1 − x1

′ ∣ + ∣ x2 − x2
′ ∣ ) ∕ 2 (43)

The above theorem indicates that if the coefficients of polynomials fitted to data are chosen 

such that ∣a1∣, ∣ a2 ∣ ≤ c ∕ 2, fairness is guaranteed for every two locations in the domain. 

The sufficiency condition for first degree polynomials is generalized for k-dimensional data 

points in space in Theorem 4 (the number of variables in the polynomial is equal to the 

number of dimensions).

THEOREM 4. A sufficient condition for a k-variable first degree polynomial 
P (x1, …, xk) = a0 + ∑i = 1

k aixi defined over 2-norm similarity distance to be c-fair is:

∣ ai ∣ ≤ c ∕ k2 , ∀i = 1…k, (ai ∈ ℝ) (44)

PROOF. Please see proof in Appendix B of our extended version.

4.2 p-norm, k dimensional, Order 1 polynomial

We relax the similarity metric for arbitrary p-norm distance, calculated for data points li = 

(x1, …, xk) and lj = (x1
′ , …, xk

′ ) as

d(li, lj) = ∑
q = 1

k
(xq − xq

′)pp (45)

THEOREM 5. A sufficient condition for a k-variable first degree polynomial 
P (x1, …, xk) = a0 + ∑i = 1

k aixi defined over p-norm similarity distance to be c-fair is:
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∣ ai ∣ ≤ c ∕ kp − 1p , ∀i = 1…k (46)

PROOF. Based on generalized Titu’s Lemma, we have on the one hand a lower bound for 

Euclidean distances:

d(li, lj) = ∑
q = 1

k
(xq − xq

′)pp ≥

( ∑
q = 1

k
∣ xq − xq

′ ∣ )p ∕ kp − 1p = ( ∑
q = 1

k
∣ xq − xq

′ ∣ ) ∕ kp − 1p
(47)

On the other hand, for the polynomial one can write

∣ P (x1, …, xk) − P (x1
′, …, xk

′) ∣ = ∣ ∑
q = 1

k
aq(xq − xq

′) ∣ (48)

≤ ∑
q = 1

k
∣ aq‖(xq − xq

′) ∣ (49)

Combining the two, we obtain:

∑
q = 1

k
∣ aq‖(xq − xq

′) ∣ ≤ ∑
q = 1

k
∣ xq − xq

′ ∣ ∕ kp − 1p
(50)

The inequality is satisfied when ∣ aq ∣ ≤ 1 ∕ kp − 1p
.

4.3 p-norm, k dimensional, Order n polynomial

So far, the sufficiency condition for c-fair polynomials was derived for arbitrary norms in 

k-dimensional space based on order 1 polynomials. Moreover, for distance-based fairness, 

c-fair polynomials were developed for 1-dimensional distance using arbitrary degree 

n polynomial. This subsection provides the theoretical background for the generalized 

scenario in which the location data are in k dimensions with the norm set to p, and degree n 
polynomials.

Although by increasing the degree of polynomials, a better fit to likelihood scores can be 

achieved, the existence of monomials in which multiple variables are involved leads to 

complexity in the derivation of sufficiency conditions. To address this, we assume that the 

monomials in the multivariable polynomial consist of only a single variable. Making such an 

assumption comes with the cost of utility loss; however, it greatly reduces the complexity of 

the generic case. We assume that the degree n polynomial is expressed as the summation of 

k univariate polynomials.
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P (x1, x2, …, xk) = ∑
i = 1

k
P i(xi), (51)

where P i(xi) = ∑j = 1
n aijxi

j is a degree n univariate polynomial with its input being xi, the 

ith variable in the original polynomial. The assumption helps to remove existence of 

monomials with multiple variables such as xi
3xj

2xk
3 and to simplify derivation of location 

fairness sufficiency conditions provided in Theorem 6.

THEOREM 6. A sufficient condition for a k-variable n-th degree polynomial 
P (x1, x2, …, xk) = ∑i = 1

k P i(xi) to be c-fair defined over p-norm similarity distance is to have:

∣ aij ∣ ≤ 6 × j × c kp − 1p

n(n + 1)(2n + 1) , ∀i = 1…k & ∀j = 1…n (52)

PROOF. We write the equation in its component form shown in Equation 51. An upper bound 

for Pi(xi) can be derived as,

∣ P (x1, …, xk) − P (x1
′, …, xk

′) ∣ = ∣ ∑
i = 1

k
P i(xi) − ∑

i = 1

k
P i(xi

′) ∣ (53)

= ∣ ∑
i = 1

k
(P i(xi) − P i(xi

′)) ∣ ≤ ∑
i = 1

k
∣ P i(xi) − P i(xi

′) ∣ (54)

An upper bound for the sub-terms for all j = 1…k can be derived as

∣ P i(xi) − P i(xi
′) ∣ = ∣ ∑

j = 1

n
aij(xi

j − xi
′j) ∣ ≤ ∣ xi − xi

′ ∣ ∑
j = 1

n
j ∣ aij ∣ (55)

The above inequality is derived based on Eq. (17) setting ∣xi∣ ≤ 1. We also use the lower 

bound derived in Eq. (47)

c × d(lu, lv) ≥ c ∑
q = 1

k
∣ xq − xq

′ ∣ ∕ kp − 1p
(56)

Putting the derived upper bound and lower bound together, the following inequality is 

satisfied, and c-fairness is guaranteed.

∣ xi − xi
′ ∣ ( ∑

j = 1

n
j ∣ aij ∣ ) ≤ c ∣ xj − xj

′ ∣ ∕ kp − 1p
(57)
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∑
j = 1

n
j ∣ aij ∣ ≤ c ∕ kp − 1p

(58)

By applying the method used in DtR, the bounds are linearized to,

∣ aij ∣ ≤ 6 × j × c
n(n + 1)(2n + 1) kp − 1p ∀ i ∈ 1…n (ai ∈ ℝ) (59)

It is worth noting that the generated scores by fair polynomials can result in values greater 

than one or less than zero. In such scenarios, the values are suppressed to one and zero, 

respectively. It is straightforward to prove that the suppression process does not violate the 

individual fairness constraints and leads to higher utility.

5 RELATED WORK

Fairness notions can be grouped into two broad categories of Group Fairness and Individual 

Fairness [12]. In group fairness, a protected attribute of the dataset, such as race or gender, 

which is considered to be critical in decision-making outcomes, partitions individuals into 

groups. The ML model used for a decision-making task on the dataset is considered to 

be fair if it achieves some statistical measure across groups. A few of the key statistical 

measures include statistical parity [21][12], equalized odds [17], treatment equality [7], and 

test fairness [10]. Individual fairness aims to give similar predictions to similar outcomes, 

focusing on fairness for individuals as opposed to groups. Group fairness notions are 

generally weaker than individual fairness notions [19]. Despite higher fairness guarantees 

provided by individual fairness and fragility of group fairness notions, group fairness notions 

are widely studied in the literature due to their easier enforcement [23]. Only a handful of 

approaches exist in the literature to achieve fairness in the geospatial domain.

The current state-of-the-art approach to enforce individual location fairness is to define a 

linear loss function once the likelihood scores are generated and solve optimization under 

individual fairness Lipschitz constraints. Let I be an instance of our problem consisting 

of a metric d :ℒ × ℒ ℝ, and a loss function L :ℒ × A ℝ, the optimization problem is 

defined as,

opt(I) = min
{M(x)}x ∈ L

E
x ∼ L

E
a ∼ M(x)

L(x, a) (60)

Subject to: ∀x, y ∈ : D(M(x), M(y)) ≤ d(x, y) (61)

∀x ∈ L : M(x) ∈ Δ(A) (62)

One can see that the number of constraints in this mechanism grows quadratically with 

the number of individuals, imposing a large computational complexity on the system. The 

authors in [27] formulate the loss function for location-based advertisements in social media. 
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Locations visited on the map are shown as binary strings, and a classifier is used to predict 

whether a user should receive a targeted advertisement. Moreover, not directly related to 

locations, but for general purpose advertisement and auctions, individual fairness is applied 

in [13]. Another application over which the loss function has been defined is achieving 

individual fairness in ranking and recommendation systems [26]. In ranking systems, the 

amount of unfairness with respect to individuals is measured after ranking, and a loss 

function aims to reorder ranking such that the amount of individual unfairness is minimized 

[8].

Several attempts have also been made to apply the individual fairness notion for clustering 

datapoints in Cartesian space. The notion in [20] defines clustering conducted for a point 

in space as fair if the average distance to the points in its own cluster is not greater 

than the average distance to the points in any other cluster. The authors in [22] focus on 

defining individual fairness for k-median and k-means algorithms. Clustering is defined to 

be individually fair if every point expects to have a cluster center within a particular radius. 

To the best of our knowledge, no work has directly defined individual fairness with respect 

to locations.

6 EXPERIMENTAL EVALUATION

We evaluate our proposed spatial data fairness mechanisms in the two studied scenarios. 

For the distance-based case, we use a dataset of taxi fares from New York City; for 

the zone-based case, we consider budget allocation to police departments according to 

the Chicago crime occurrence dataset. We ran experiments on a 3.40GHz core-i7 Intel 

processor with 8GB RAM. The code is implemented in Python and uses the Trust Region 

Reflective least square implementation from Scipy [4] (the maximum number of iterations 

for convergence is set to 300, and the default tolerance threshold value of 1e-2 is used to 

stop the optimization iterations).

6.1 Distance-based Spatial Fairness

We sampled 120,000 records from the NYC taxi dataset [1] providing over 55 million trips 

and their associated fares. We deployed an Artificial Neural Network (ANN) to assess the 

likelihood of taxi fares being fair in the system. Specifically, we seek to capture whether 

there is bias in the setting of fares based on the specific neighborhoods where the trip starts/

ends. Ideally, the trip distance should be the only factor determining price (we carefully 

pre-process the dataset such that trips are clustered according to the time of week/day, such 

that differences in fare due to demand status and traffic causes are eliminated). Our goal is to 

first understand the percentage of records for which the individual fairness constraints do not 

hold with respect to traveled distances. Then, we analyze the performance of the proposed 

c-fair mechanism.

ML Model for Fairness Characterization.—Our ANN model consists of two hidden 

layers with 200 and 100 neurons and an output layer with two neurons representing 

the binary classification task. The activation function used in the model is RELU, the 

dropout probability for each layer set to 0.4, and cross-entropy is used as the loss function. 

The accuracy of the model is 92%. The input features include pick-up date and time 
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(categorical hour, AM or PM, weekday, EDT date), pick-up longitude, pick-up latitude, 

drop-off longitude, drop-off latitude, passenger count, and distance traveled in kilometers. 

The ride fares have a mean of 10 dollars with a standard deviation of 7 dollars, and the 

average traveled distance is 3.31 km with a standard deviation of 3.2 km. For model training 

purposes, we split the data into training, validation and test datasets with 96, 000, 12, 000, 

and 12, 000 records, respectively. To generate the ground truth for the training dataset, we 

have used price per kilometer traveled as the indicator of how fair the associated traveled 

fares are. For every hour of the day, the average price per kilometer is calculated as the 

hard threshold between fair and unfair travels. The trips above the threshold are classified as 

unfair, and the values less than the threshold are assumed to be fair. This results in a total of 

21, 928 trips being categorized as unfair.

Once the ANN model is trained, we predict the likelihood of each trip fare being fair on 

the test dataset. For every two records, the individual fairness constraint is evaluated to 

reveal whether fares are fair with respect to travel distances. In the absence of any fairness 

mechanisms being deployed, 32% of constraints are not satisfied, hence those trips are 

unfair. The 32% threshold is highlighted with a red horizontal line in the experimental plots, 

to highlight the fairness improvement of the considered approaches.

Next, we apply the proposed c-fair mechanism to achieve distance-based fairness. Our 

experiments evaluate the performance based on four key metrics: percentage of unfairness 

(constraints were not satisfied), the degree of c-fair polynomial (n), the parameter c, and the 

root mean square (RMS) of fitting error to likelihood scores.

Percentage of Unfairness.—Fig. 3a shows the impact of increasing c on reducing 

unfairness when the degree of the polynomial is 5, 10, 15, and 20. As expected, lower 

values of c result in higher fairness in the system, with maximum fairness achieved when 

c is equal to one. For the maximum fairness scenario, the percentage of unfairness is zero, 

meaning that all individual fairness constraints are satisfied for every two records in the 

dataset. By increasing the value of c, fair polynomials would have more room for maneuver 

and fitting to likelihood scores, but it comes with the cost of higher unfairness. Such 

behaviour demonstrates the utility-fairness trade-off captured by the constant c. Increasing 

the polynomial degree can be seen to improve the percentage of unfairness until it reaches 

the point where it overfits the likelihood scores, and the performance deteriorates. Fig. 3b 

shows more clearly the impact of increasing the value of n on unfairness. Lower c values 

result in a lower percentage of unfairness for all polynomial degrees.

Fitting Error.—Figs. 3c and 3d demonstrate the amount of utility loss in data due to 

fitting likelihood scores to a c-fair polynomial. Two key trends can be observed from the 

figures. First, increasing the value of c lowers the fitting error. This is expected, as higher 

c allows more flexibility for selecting coefficients and better fitting performance. Second, 

increasing the value of n for the same value of c raises the fitting error. To understand this 

behavior, one can intuitively look at the problem as allocating the same amount of budget 

among several buckets representing coefficients. Although increasing the degrees of freedom 

provides better fitting performance as higher degree monomials exist, it further restricts 

the budget for each coefficient. Thus, the lower degree monomials, which have a more 
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significant impact on the performance, are allocated a lower amount of budget, negatively 

affecting the performance.

Computational Complexity.—We measure the computational overhead of c-fair 

polynomials in terms of time complexity, number of iterations before optimization 

convergence, and final optimization cost (the final optimization cost represents the value 

of the Scipy cost function upon reaching the solution [4]). Fig. 5 shows the results. In each 

graph, the overhead is shown for four values of c = 25, 50, 75, 100 plotted for varying 

polynomial degrees. Overall, the time complexity is in the order of milliseconds and does 

not limit the practical deployment of c-fair polynomials. The second graph illustrates the 

number of iterations before reaching the optimal point. The optimization process stops 

either by reaching the maximum number of iterations (300) or when the relative change 

in optimization cost remains below the tolerance threshold (1e-2). As explained previously, 

the slight oscillation in the performance is due to selecting a random start point for the 

optimization.

Note that, increasing the degree of polynomial n results in higher computational overhead. 

This is expected, as more degrees of freedom (coefficients) lead to more effort for finding 

the optimal point. Another consistent behavior across all three figures is that increasing c on 

average reduces the computation complexity cost and facilitates reaching the near-optimal 

point. The trend is more apparent in the final optimization cost figure, in which it can be 

clearly seen that a higher c value leads to a lower cost.

6.2 Zone-based Spatial Fairness

For this scenario, we consider the case of budget allocation to different areas of Chicago, 

USA, based on the measured crime rates. We use the dataset provided by the Chicago 

Police Department’s CLEAR (Citizen Law Enforcement Analysis and Reporting) system 

[3], consisting of reported crime incidents in Chicago. A 1024 × 1024 grid is overlaid on top 

of the Chicago map, and the goal is to fairly allocate the budget such that neighborhoods that 

are close to each other are treated similarly. We have selected seven major crime categories 

of sexual assault, homicide, kidnapping, sex offense, motor vehicle theft, criminal damage, 

and narcotics among the reported crimes, and trained a logistic regression model to infer 

the likelihood of crime occurrence in each cell. The training dataset includes the crime data 

from January to November 2015, and the December data is chosen as the test dataset. The 

accuracy of the model is 94% and its output is a set of likelihoods indicating the probability 

of crime occurrence. The budget allocated to each cell is proportional to the likelihood score 

derived by the classifier.

Once the likelihood scores are generated, they are used with X and Y cell coordinates to 

achieve individual location fairness with the distance metric set to 2-norm. In absence of any 

fairness mechanism, we determine the percentage of individual location fairness constraints 

not being satisfied at 44.0%.

To understand if the expansion to higher polynomial degrees is essential, we started our 

experiments by focusing on degree one c-fair polynomials and applying the results in 

Theorem 3. As expected, the fitting error was rather high, and the utility was insufficient. We 
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also noticed that for degree one polynomials, the optimal solution is achieved even when the 

value of c is equal to one. Therefore, increasing c does not help with improving the fitting 

error. Thus, it is crucial to use higher degree polynomials for this purpose.

Next, we apply the optimization formulation derived in Theorem 6, the most generalized 

formula allowing each dimension to contribute in fitting with a degree n polynomial. Fig. 

4 demonstrates the performance of c-fair polynomials for achieving individual location 

fairness on the crime dataset. The patterns are generally consistent with the distance-based 

case considered in the New York taxi fares experiment. Figs. 4a and 4b show the impact 

of c and n on the percentage of unfairness and Figs. 4c and 4d show the performance with 

respect to utility. The red line is used as the reference point representing the percentage of 

unfairness in the original data, in the absence of fairness mechanisms.

Increasing the value of c results in a lower degree of fairness and higher fitting error 

once the degree of polynomial reaches an acceptable level. This result further substantiates 

the fairness-utility trade-off in the system, also observed in the distance-based case. In 

a 2-dimensional space, using a degree of 10 and the above polynomial to model each 

dimension can ensure that scores are under-fitted, preventing high fitting error values. In 

summary, the amount of fairness achieved with the fair polynomials, even for a reasonably 

low degree for polynomials such as 15 and values of c greater than 10, can be seen to be 

over 70%.

Fig. 6 shows the computation complexity of the proposed mechanism. The first point to 

notice is that a relatively high amount of time is required to achieve zone fairness compared 

to the distance-based setting. However, computational complexity is still low in absolute 

value, and not an obstacle for practical deployment, with sub-second execution time.

6.3 Comparison with benchmarks

We derive a threshold-based benchmark from the fairness mechanism in [12] and the binary 

evaluation approach in [14]. Given constant threshold t, let polynomial P(li) = t, and let 

parameter α define by how much scores can be altered (e.g., if α = 0.1, each score can be 

altered by at most ±0.1). For DtR, the benchmark cycles through each score Mi and pushes it 

towards polynomial P(li) with an allowance of α:

M(li) M(li) + sign(P (li) − α) × min(α, ∣ P (li) − α ∣ ) (63)

The sign operation ensures the direction of change is favorable to the benchmark, and 

min ensures that the change in score does not overshoot P(li). When α is zero, no utility 

loss exists, and the unfairness percentage is the same as the original. As α grows, the 

flexibility margin results in more constraints being satisfied until absolute fairness is 

achieved. For the zone-based fairness case, we use P (x, y) = (x + y) ∕ 2, easily extensible 

to higher dimensions.

Figure 7 shows the utility-fairness trade-off obtained by the baseline for both distance- 

and zone-based cases. Unfairness is monotonically decreasing as one allows a higher α 
alteration to the score. We notice a plateau of desirable behavior concentrated between α = 
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[0.2, 0.6], where the utility-fairness trade-off is good (for α values below 0.2 unfairness is 

too high, whereas for values higher than 0.6 the fairness gain fades in the multi-variate case).

Next, we focus our attention to this desirable α range, and we plot the relative performance 

of the benchmark versus our proposed fair polynomials approach for various values of c and 

n. The plots in Figs. 8 and 9 show that our approach provides a superior trade-off compared 

to benchmarks. The benchmark outperforms only for zone-based fairness when n = 20. In all 

other cases, fair polynomials provide either a vastly improved utility, or better fairness.

7 CONCLUSION

We studied in depth the problem of individual fairness for location data, and we identified 

sources of location bias that can occur in practical settings. We formulated two distinct 

settings for spatial fairness: distance-based and zone-based fairness, and we devised specific 

techniques to achieve spatial fairness while preserving utility, with the help of a novel 

construction called fair polynomials. While our focus is on spatial fairness, fair polynomials 

have the potential to provide useful building blocks for fairness in other application domains. 

In future work, we plan to study more complex types of spatial queries. At the same time, 

we plan to study the effect of fairness mechanisms in conjunction with other constraints, 

such as privacy, e.g., devise mechanisms that can achieve both spatial fairness and location 

privacy.
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A: APPENDIX (PROOF OF LEMMAS)

LEMMA A.1 (GENERALIZED TITU’S LEMMA). Let m be an integer greater than or equal to 2, ai
m a 

non-negative real number, and xi a positive real number. Then,

nm − 2 ∑
i = 1

n ai
m

xi
≥ (∑i = 1

n ai)m

∑i = 1
n xi

(64)

PROOF. By Holder’s inequality

( ∑
i = 1

n
1)

m − 2
m ( ∑

i = 1

n ai
m

xi
)

1
m( ∑

i = 1

n
xi)

1
m ≥ (65)

∑
i = 1

n
1

m − 2
m (ai

m

xi
)

1
mxi

1
m (66)
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n
m − 2

m ( ∑
i = 1

n ai
m

xi
)

1
m( ∑

i = 1

n
xi)

1
m ≥ ∑

i = 1

n
ai (67)

nm − 2 ∑
i = 1

n ai
m

xi
≥ (∑i = 1

n ai)m

∑i = 1
n xi

(68)

THEOREM 7. A sufficient condition for a k-variable first degree polynomial 
P (x1, …, xk) = a0 + ∑i = 1

k aixi with real coefficients (ai ∈ ℝ) is to have: Euclidean distance n 

variables.

∣ ai ∣ ≤ c ∕ k2 , ∀i = 1…k (69)

PROOF. For every two locations l1 = (x1, …, xk) and l2 = (x′1, x′k), a lower bound can be 

derived based on Generalized Titu’s Lemma.

d(l1, l2) = ∑
i = 1

k
(xi − xi

′)22 ≥ ( ∑
i = 1

k
∣ xi − xi

′ ∣ )2 ∕ k2 (70)

On the other hand, the following inequality can be written for the polynomial.

∣ P (x1, …, xk) − P (x1
′, …, xk

′) ∣ = ∣ ∑
i = 1

k
ai(xi − xi

′) ∣ (71)

≤ ∑
i = 1

k
∣ ai ∣ ∣ (xi − xi

′) ∣ (72)

By combining two equations the sufficiency condition can be derived from,

∑
i = 1

k
∣ ai ∣ ∣ (xi − xi

′) ∣ ≤ c × ( ∑
i = 1

k
∣ xi − xi

′ ∣ ) ∕ k

B: APPENDIX (POLYNOMIAL VISUALIZATION)

Figure 10 presents the real-world example of Fig. 2 for NYC taxi dataset. It can be seen 

in the figure that a fair polynomial is fitted to output ML scores shown by blue dots. The 

degree of the polynomial is 6, and the value of c is set to 100.
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Figure 1: 
Examples of two common location bias scenarios.
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Figure 2: 
An example of distance-based fairness problem.
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Figure 3: 
Distance-based Mechanism, New York taxi dataset.

Shaham et al. Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Zone-based Mechanism.
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Figure 5: 
Computation Overhead Analysis on New York Taxi Dataset.
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Figure 6: 
Computation Overhead Analysis on Chicago Crime Dataset.
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Figure 7: 
Comparison Benchmark Performance.
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Figure 8: 
Distance-based Mechanism Benchmark Comparison, New York taxi dataset.
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Figure 9: 
Zone-based Mechanism Benchmark Comparison, Chicago crime dataset.
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Figure 10: 
An example of c-fair polynomial applied to the NYC taxi dataset.
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Table 1:

Summary of notations.

Symbol Description

L = {l1, …, lm} Set of datapoints in 

ℝk

li Distance from li to reference point

m Number of datapoints

∥.∥p p-norm distance

A Classification output domain

d(.) Distance between datapoints

D(.) Distance between distributions

M(li) Likelihood score of location li
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