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Abstract: The human microRNA 452 (MIR452) was identified as a colorectal cancer (CRC)-associated
micro RNA (miRNA) by miRNA expression profiling of human CRC tissues versus normal colorectal
tissues. It was significantly up-regulated in human CRC tissues. However, the functional mechanisms
of MIR452 and its target genes in CRC remain unclear. We identified 27 putative MIR452 target genes,
and found that the vascular endothelial growth factor A (VEGFA) was a direct target gene of MIR452.
Both cellular and extracellular VEGFA levels were significantly downregulated in CRC cells upon their
transfection with MIR452 or siVEGFA. VEGFA expression was frequently downregulated in human
CRC tissues in comparison with that in their healthy counterparts. We showed that MIR452 regulated
the expression of genes in the VEGFA-mediated signal transduction pathways vascular endothelial
growth factor receptor 1 (VEGFR2)–mitogen-activated protein kinase (MAPK) and VEGFR2–SRC
proto-oncogene non-receptor tyrosine kinase (SRC) in CRC cells. Immunohistological analyses of
xenografted MIR452-overexpressing CRC cells in mice showed that MIR452 regulated cell proliferation
and angiogenesis. Furthermore, aortic ring angiogenesis assay in rats clearly showed that the number
of microvessels formed was significantly reduced by MIR452 transfection. Our findings suggest
that MIR452 regulates cell proliferation, cell migration, and angiogenesis by suppressing VEGFA
expression in early CRC progression; therefore, MIR452 may have therapeutic value in relation to
human CRC.
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1. Introduction

Colorectal cancer (CRC) is the third most prevalent type of cancer worldwide [1]. The cause of
CRC is multifactorial, including genetic variation and epigenetic and environmental factors such as
diet, microbiome, and their metabolites [2]. However, the precise molecular mechanism underlying the
development and progression of CRC remains largely unknown. Therefore, it is of great importance to
elucidate the molecular mechanisms and genes underlying CRC tumorigenesis.

MicroRNAs (miRNAs) are endogenously expressed small noncoding RNA molecules that mostly
bind to the 3′ untranslated regions (UTR) of their target mRNAs, thereby regulating gene expression
in multicellular organisms post-transcriptionally by controlling the stability or translation of target
mRNAs [3]. MiRNAs regulate crucial biological processes, such as cell proliferation, apoptosis, and
differentiation as well as angiogenesis [4–7]. They also affect the pathogenesis of various cancer types
by functioning as oncogenes or tumor suppressor genes [8–11]. More recently, accumulating reports
suggest that miRNAs are associated the various forms of tumorigenesis including lung cancer [12–14],
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prostate cancer [15,16], gastric cancer [17,18], and liver cancer [19,20]. Therefore, characterization of the
correlations between miRNAs and their target genes in cancer cells may have a substantial diagnostic,
prognostic, and therapeutic value.

MicroRNA 452 (MIR452, also known as has-miR-452) is encoded by the chromosomal region Xq28
in humans and clustered together with MIR224 within the gamma-aminobutyric acid A receptor epsilon
subunit (GABRE) gene. Several studies have suggested that MIR452 expression is downregulated in
human breast cancer [21], glioma [22], and hepatocellular carcinoma (HCC) [23]. However, in other
studies, MIR452 has been found to be upregulated in hepatocellular carcinomas [24] and lymph
node-positive urothelial carcinomas [25], suggesting that MIR452 can have diverse roles in distinct
types of human cancers or cells. In our previous study, MIR452 was found to be upregulated in both
CRC [26] and colitis [27] by differential miRNA expression profiling of human CRC tissues and dextran
sulfate sodium (DSS)-induced mouse colitis tissues, respectively.

In this study, we identified the target genes of MIR452 and analyzed their functions in human CRC
cell lines and colorectal tissues. The candidate MIR452 target genes were identified by microarray-based
differential mRNA expression profiling of MIR452-overexpressing CRC cells. These candidates were
shortlisted by comparing the mRNA microarray results for the candidate target genes predicted by
bioinformatics tools. We identified vascular endothelial growth factor A (VEGFA, also known as VPF,
VEGF, or MVCD1) as a MIR452 target gene in CRC, and analyzed the correlation between MIR452 and
VEGFA using human CRC tissues, cell lines, and xenograft tumors, as well as rat aortas. Overall, we
demonstrated that MIR452 regulates cell proliferation and migration as well as angiogenesis in CRC
by suppressing VEGFA expression.

2. Results

2.1. MIR452 Expression Level in Human CRC Tissues and Cell Lines

We have previously found that MIR452 is upregulated in human CRC tissues [26]. To confirm
this result, we compared the MIR452 levels in 10 human CRC tissue samples with those in matching
healthy colon tissues by qRT-PCR. MIR452 levels were increased in CRC tissues (7 out of 10, Figure
S1A). To determine the levels of endogenous MIR452 in CRC cell lines such as SW480, HT29, Caco2,
HCT116, Lovo, and SW48 cells, we carried out qRT-PCR analysis using the total RNAs isolated from
each cell lines. The MIR452 level was lowest in SW480 cells and highest in HT29 cells (Figure S1B).

2.2. Differential mRNA Expression Profiling of MIR452-Overexpressing Cells

To identify the genes downregulated by MIR452 overexpression, a MIR452 mimic was transfected
into SW480 and Caco2 cells. Increased MIR452 level 24 h after the transfection confirmed the transfection
efficiency (Figure S1C). The cells were harvested 48 h after the transfection for mRNA expression
profiling with the Illumina HumanHT-12 v4 Expression BeadChip. We identified 261 genes whose
levels were 1.3-fold downregulated in MIR452-overexpressing cells (Table S1).

2.3. Identification of the MIR452 Target Genes

The 261 genes identified by mRNA microarray analysis in MIR452-overexpressing cells were
compared with the candidate MIR452 target genes predicted by TargetScan and miRWalk algorithms.
Of the 261 genes, 27 genes were finally identified as putative direct targets of MIR452 (Table 1).
Among them, we focused on VEGFA. We observed that SW480 and SW48 cells had the lowest and
highest endogenous VEGFA levels, respectively (Figure S1D).
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Table 1. The putative target genes of microRNA 452 (MIR452) identified and predicted by both the
microarray analysis from the MIR452-overexpressed cells and the bioinformatics methods.

Gene
Symbol Accession Gene Name Chromosome

Location Functions

ARGLU1 NM_018011 arginine and glutamate rich 1 13q33.3 -

ASB8 NM_024095 ankyrin repeat and SOCS box
containing 8 12q13.11 -

BCAS2 NM_005872 breast carcinoma amplified
sequence 2 1p13.2 -

BTF3L4 NM_152265 basic transcription factor
3-like 4 1p32.3 -

CDK5R1 NM_003885 cyclin-dependent kinase 5,
regulatory subunit 1 17q11.2 neuron-specific

activator

CLK1 NM_004071 CDC-like kinase 1 2q33 protein kinases

DCUN1D1 NM_020640
DCN1, defective in cullin

neddylation 1, domain
containing 1

3q26.3 -

FAM134B NM_001034850 family with sequence
similarity 134, member B 5p15.1 transmembrane

protein (Golgi)

FAM8A1 NM_016255 family with sequence
similarity 8, member A1 6p23 -

FBXW5 NM_018998 F-box and WD repeat domain
containing 5 9q34.3 ubiquitination

GTF2E1 NM_005513 general transcription factor IIE,
polypeptide 1, alpha 56 kDa 3q21-q24 transcription factor

GTF2H1 NM_005316 general transcription factor
IIH, polypeptide 1, 62 kDa 11p15-p14 transcription factor

IL20RA NM_014432 interleukin 20 receptor
subunit alpha 6q23.3 cytokine receptor

METTL10 NM_212554 methyltransferase like 10 10q26.13 -

MTFR1 NM_014637 mitochondrial fission
regulator 1 8q13.1 mitochondrial

protein

NOL8 NM_017948 nucleolar protein 8 9p22.31 -

PER2 NM_022817 period circadian clock 2 2q37.3 -

PKN2 NM_006256 protein kinase N2 1p22.2 -

PLEKHA1 NM_001001974 pleckstrin homology domain
containing, family A 10q26.13 adapter protein

PPL NM_002705 periplakin 16p13.3 desmosomes
component

SHC1 NM_001130040 SHC adaptor protein 1 1q21.3 adapter protein

TAF5L NM_001025247 TATA-box binding protein
associated factor 5 like 1q42.13 histone

acetylase complex

THNSL2 NM_018271 threonine synthase-like 2 2p11.2 threonine synthase

THUMPD1 NM_017736 THUMP domain containing 1 16p12.3 -

TMPRSS2 NM_005656 transmembrane protease,
serine 2 21q22.3 serine protease

VEGFA NM_001025366 vascular endothelial growth
factor A 6p12 growth factor

WTAP NM_004906 Wilms tumor 1
associated protein 6q25-q27 tumor

suppressor gene
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2.4. VEGFA Was a Direct Target of MIR452

To assess whether MIR452 directly interacts with VEGFA 3′-UTR, we cloned wild type (WT)
VEGFA 3′-UTR (predicted to interact with MIR452) into a luciferase reporter vector (Figure 1A).
The luciferase intensity was reduced by approximately 15% when the cells were co-transfected with a
MIR452 mimic (p < 0.01, Figure 1B). As a negative control, a MIR1 mimic instead of the MIR452 mimic
was co-transfected with the wild WT VEGFA 3′-UTR construct. The MIR1 mimic did not affect the
luciferase activity (Figure 1B). As an additional negative control, we also cloned a mutated (MT) version
of VEGFA 3′-UTR whose eight of the bases complementary to MIR452 were substituted (Figure 1A).
As expected, the luciferase activity did not change (Figure 1B). Next, we tested whether MIR452
regulated VEGFA mRNA and protein levels in Caco2 cells. The VEGFA mRNA level was lower in
Caco2 cells transfected with the MIR452 mimic than in un-transfected control cells (p < 0.05; Figure 1C).
The cellular VEGFA protein levels were also significantly reduced in the MIR452-overexpressing cells
(p < 0.01; Figure 1C). These results indicate that VEGFA is a direct target of MIR452.
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Figure 1. VEGFA was a direct target of MIR452. (A) Sequence alignment of the wild type (WT) and
mutated (MT) MIR452 target sites in the 3′-UTR of VEGFA. A human VEGFA 3′-UTR containing the WT
and MT MIR452 binding site was cloned downstream of a luciferase reporter gene. (B) The luciferase
reporter plasmid containing the WT or MT VEGFA 3′-UTR was co-transfected into Caco2 or HT29
cells with the MIR1 mimic (negative control) or MIR452 mimic. Luciferase activity was determined
by the dual luciferase assay. Results are shown as the relative firefly luciferase activity normalized
to the Renilla luciferase activity. Data represent three independent experiments with the Caco2 cells.
(C) VEGFA mRNA and protein levels in the mock- and MIR452 mimic-transfected Caco2 cells. Protein
or mRNA was extracted 72 or 48 h after transfection, respectively, and the samples were subjected to
western blotting or qRT-PCR. Data represent three independent experiments. Statistical differences
were calculated using Student’s t-test (ns = not significant; * p < 0.05; ** p < 0.01).

2.5. VEGFA Expression in Human CRC Tissues

On the basis of the findings described above, we evaluated VEGFA expression in additional
10 human CRC tissues and matching healthy colon tissues by western blotting. VEGFA protein
expression was found to be decreased in CRC tissues in 8 of the 10 pairs (Figure 2A).



Cancers 2019, 11, 1613 5 of 19

The finding described above (Figure S1A and Figure 2A) prompted us to evaluate VEGFA
expression in different tumor (T) stages of human CRC and the matching healthy colon tissues by
immunohistochemistry. VEGFA level was significantly lower in the T1 and T2 stage CRC tissues
relative to that in the matching healthy colon tissues. However, VEGFA level dramatically increased in
the T3 stage CRC tissue and no difference was observed at the T4 stage (Figure 2B).
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Figure 2. Endogenous VEGFA levels in human colorectal cancer (CRC) tissues. (A) The expression
levels of VEGFA were validated using 10 pairs of human CRC and adjacent healthy colorectal samples
by western blotting. The expression levels were normalized to that of Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). (B) VEGFA immunostaining in the TNM Classification of Malignant
Tumors (TNM) stage human CRC and adjacent healthy colorectal samples (200× magnification).
These experiments were independently performed three times in duplicate.

2.6. MIR452 Regulated the VEGFA–Vascular Endothelial Growth Factor Receptor (VEGFR) Signaling
Pathway in CRC Cells

We then determined which VEGFA receptor is mainly regulated by MIR452 using MIR452-
transfected Caco2 cells. VEGFR2 (p < 0.05) was more significantly affected by MIR452 overexpression
than VEGFR1 (Figure 3A). Downregulation of VEGFR2 by MIR452 overexpression was also validated
in HT29 cells (p < 0.05; Figure 3B).

To determine the functional significance of the interaction between MIR452 and VEGFR2 in
Caco2 cells, we analyzed the expression levels of several proteins involved in the signal transduction
pathway downstream of VEGFR2 by western blot analysis. Proto-oncogene non-receptor tyrosine
kinase (SRC), phospholipase C gamma 1 (PLCG1), and mitogen-activated protein kinase (MAPK)
levels were significantly reduced by MIR452 transfection in Caco2 cells (p < 0.01, p < 0.01, and p < 0.05,
respectively; Figure 3C). However, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (PIK3CA) and heat shock protein family B member 1 (HSPB1) levels did not change by MIR452
transfection (Figure 3C). We also obtained similar results by knocking down VEGFA in Caco2 cells
through VEGFA gene silencing (siVEGFA) transfection (Figure 3C). These results indicated that MIR452



Cancers 2019, 11, 1613 6 of 19

regulated the VEGFA–VEGFR2-mediated SRC, PLCG1, and MAPK signal transduction pathways, but
not PIK3CA or HSPB1 signaling in CRC cells.
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Figure 3. Expression levels of the target and downstream genes in MIR452-overexpressing CRC cells.
(A) The expression levels of VEGFR1 and VEGFR2 in Caco2 cells upon MIR452 overexpression. (B) The
VEGFR1 and VEGFR2 expression levels in MIR452-overexpressing HT29 cells. (C) Proto-oncogene
non-receptor tyrosine kinase (SRC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (PIK3CA), phospholipase C gamma 1 (PLCG1), mitogen-activated protein kinase (MAPK), and
heat shock protein family B member 1 (HSPB1) expression levels in Caco2 cells transfected with the
MIR452 mimic or VEGFA gene silencing (siVEGFA). Three independent experiments were performed
with duplicates, and the statistical differences were calculated using Student’s t-test (ns = not significant;
* p < 0.05; ** p < 0.01).

2.7. MIR452 Regulated VEGFA-Mediated VEGFR2–SRC–Protein Tyrosine Kinase 2 (PTK2) Signaling

On the basis of the above results, we tested whether VEGFA downregulation by the MIR452
mimic or siVEGFA affected the VEGFR2–SRC–PTK2 signaling pathway in CRC cells. Western blotting
results showed that SRC (p < 0.01) and PTK2 (p < 0.01) were markedly downregulated by both MIR452
mimic and siVEGFA transfections in Caco2 and SW48 cells (Figure 4A,B). These findings suggested
that MIR452 regulated the VEGFA-mediated VEGFR2–SRC–PTK2 signaling pathway.

2.8. Migration of the Cells Transfected with the MIR452 Mimic or siVEGFA

As shown in Figure 4C, scratch wound assay showed that migration of HT29 cells was significantly
suppressed upon transfection with the MIR452 mimic or siVEGFA (Figure 4C, p < 0.01). Likewise,
migration of Caco2 and HT29 cells through the Transwell filters was also significantly suppressed by
the MIR452 mimic (Figure 4D, p < 0.05). These results suggested that MIR452 regulated cell migration
by the VEGFA-mediated VEGFR2–SRC–PTK2 signaling pathway in CRC cells.
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Figure 4. MIR452 regulated VEGFA-mediated VEGFR2–SRC signaling in CRC cells. (A) Western
blot analysis of VEGFR2-regulated proteins, SRC and protein tyrosine kinase 2 (PTK2), in Caco2
cells. (B) Western blot analysis of SRC and PTK2 in SW48 cells. Three independent experiments were
performed in duplicate, and the p-values were calculated using Student’s t-test (** p < 0.01). (C) The
scratch wound assay was conducted using HT29 cells transfected with the MIR452 mimic, siVEGFA, or
mock controls. The migration distance was measured 0, 48, and 96 h after the cells were scratched.
Three independent experiments were performed in duplicate, and the p-values were calculated using
Student’s t-test (** p < 0.01). (D) For the migration assay, we used 24-well Transwell chambers, which
separated the upper and lower compartments by polycarbonate membranes that consisted of 8 µm
pores. The cells that retained the dye were quantified by measuring absorbance at 560 nm (A560).
Compared with the mock control, the MIR452 mimic reduced migration of both Caco2 and HT29 cells.
Three independent experiments were performed with duplicates, and the p-values were calculated
using Student’s t-test (* p < 0.05).

2.9. MIR452 Regulated VEGFA-Mediated VEGFR2–KRAS GTPase Proto-Oncogene (KRAS)–B-Raf
Proto-Oncogene, Serine/Threonine Kinase (BRAF) Signaling

To further investigate the effect of MIR452 or siVEGFA on VEGFR2–KRAS signaling, we assessed
the expression levels of the proteins downstream of KRAS in Caco2 cells transfected with the MIR452
mimic or siVEGFA. Western blotting results showed that KRAS (p < 0.01), BRAF (p < 0.05 and 0.01,
respectively), and MAPK (p < 0.01) levels were markedly downregulated by both MIR452 mimic and
siVEGFA transfections in Caco2 cells (Figure 5A). We also performed the same analyses in SW48 cells.
Caco2 and SW48 cells both express KRAS and BRAF [28]. The results showed that KRAS (p < 0.01),
BRAF (p < 0.05), and MAPK (p < 0.05) levels were significantly downregulated by both MIR452 mimic
and siVEGFA transfections in SW48 cells (Figure 5B). These results clearly indicated that MIR452
regulated the VEGFA-mediated VEGFR2–KRAS–BRAF signaling pathway in CRC cells.

2.10. MIR452 Inhibited CRC Cell Proliferation

The above results led us to explore the biological function(s) of MIR452 in CRC cells.
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that cell viability
was stably reduced by transfection of the CRC cell lines Caco2 (p < 0.001) and SW48 (p < 0.001;
Figure 5C) with the MIR452 mimic. Similar results were obtained with VEGFA gene silencing (siVEGFA)
in CRC cells (p < 0.001; Figure 5C). These results indicated that MIR452 suppressed proliferation of
CRC cells by inhibiting VEGFA expression.
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Figure 5. MIR452 regulated VEGFA-mediated VEGFR2–KRAS GTPase proto-oncogene (KRAS)
signaling in CRC cells. (A) Western blot analysis of VEGFR2-regulated proteins KRAS, B-Raf
proto-oncogene, serine/threonine kinase (BRAF), and MAPK in Caco2 cells transfected with the
MIR452 mimic or siVEGFA. (B) Western blot analysis of KRAS, BRAF, and MAPK in SW48 cells
transfected with the MIR452 mimic or siVEGFA. Four independent experiments were performed in
duplicate, and the p-values were calculated using Student’s t-test (* p < 0.05; ** p < 0.01). (C) Viability
of Caco2 and SW48 cells transfected with the MIR452 mimic or siVEGFA. Cell viability was determined
by the MTT assay. Three independent experiments were performed in duplicate, and the p-values were
calculated by using Student’s t-test (*** p < 0.001).

2.11. Effect of MIR452 on the Growth of Xenografted CRC Cells in Mice

To study the effect of MIR452 on tumor growth in vivo, we used a xenograft tumor model
consisting of athymic nude mice with subcutaneously implanted HT29 cells. After 21 days of
transfection, the mean tumor volume of the MIR452-transfected cells was 306.1 ± 42.8 mm3, which
was significantly smaller than that of the tumor made of the mock control cells (555.1 ± 30.7 mm3;
Figure 6A upper panel and Figure 6B). Additionally, relative to the tumor size of the mock control
cells (460.9 ± 59.1 mm3), the average tumor size of siVEGFA-transfected cells (296.8 ± 44.8 mm3) was
significantly smaller (Figure 6A bottom panel and Figure 6B). These results indicated that the tumor
cell growth was reduced by MIR452 overexpression in CRC cells.
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Figure 6. MIR452 inhibited CRC cell growth and angiogenesis in the xenograft model. (A) MIR452
inhibited CRC cell growth in vivo. An image of xenograft tumors derived from HT29 cells transfected
with the MIR452 mimic or mock control (upper panel), and the siVEGFA or mock control (bottom
panel). (B) Volumes of the xenograft tumors derived from HT29 cells transfected with the MIR452
mimic, siVEGFA, or mock controls in nude mice. (n = 8, mean ± SD). Three independent experiments
were performed using 2–3 mice per experiment. (C) Expression of the cell proliferation marker MKI67
(the top column), VEGFA (the second column from the top), VEGFR2 (the third column from the top),
and endothelial cell marker CD31 (the fourth column from the top) in the xenograft tumors formed
after subcutaneous transplantation of HT29 cells transfected with the MIR452 mimic, siVEGFA, or mock
controls (200×magnification). Three independent experiments were performed in duplicate, and the
p-values were calculated by using Student’s t-test (* p < 0.05).

2.12. Histopathology of the Tumors Derived from the Xenografts of MIR452-Transfected CRC Cells

The xenograft tumors were immunohistochemically analyzed using antibodies against monoclonal
antibodies against the proliferation marker Ki-67 (MKI67), VEGFA, VEGFR2, and CD31. The xenograft
tumors derived from MIR452 mimic- or siVEGFA-transfected HT29 cells contained significantly less
MKI67-positive cells compared with the mock control tumors (p < 0.05; Figure 6C, the top column).
We evaluated the VEGFA and VEGFR2 levels in the mice bearing the HT29 xenografts. MIR452 mimic
or siVEGFA-transfected tumors contained significantly decreased VEGFA and VEGFR2 expression
compared with mock control tumors (p < 0.05; Figure 6C, the second and third columns from
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the top). We also checked the effect of MIR452 on angiogenesis in mice bearing HT29 xenografts.
Immunohistochemical staining of CD31 revealed that the blood vessel network was well developed in
the mock control tumor but appeared to have been inhibited by the MIR452 mimic or siVEGFA
(p < 0.05; Figure 6C, the fourth column from the top). These results suggested that MIR452
regulated cell proliferation and angiogenesis in the CRC cell-derived xenograft tumors by inhibiting
VEGFA expression.

2.13. MIR452 Inhibited Angiogenesis by VEGFA Downregulation in the Rat Aortic Ring Model

To further define the correlation between MIR452–VEGFA and angiogenesis, we investigated
the extracellular VEGFA levels in MIR452 mimic- or siVEGFA-transfected Caco2 and SW48 cells.
The extracellular (secreted into the culture media) VEGFA levels were also significantly reduced by
the transfection of Caco2 and SW48 cells with the MIR452 mimic or siVEGFA (p < 0.01; Figure 7A).
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Figure 7. MIR452 regulated angiogenesis by extracellular VEGFA secretion. (A) The extracellular
VEGFA levels in Caco2 and SW48 cells transfected with the MIR452 mimic, siVEGFA, or mock controls.
Three independent experiments were performed in duplicate, and the p-values were calculated using
Student’s t-test (** p < 0.01). (B) Rat aortic ring angiogenesis assay. The aortic rings from four-week-old
Sprague–Dawley rats were randomly seeded onto Matrigel-coated wells and sealed with an overlay
of Matrigel. They were co-cultured with Caco2 or SW48 cells transfected with the MIR452 mimic
(upper panel), siVEGFA (bottom panel), or mock controls. After 7 days, microvessel sprouting was
photographed using an inverted microscope (Olympus; 2.5× magnification). Four independent
experiments were performed in duplicate.
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On the basis of the above results, we investigated the role of VEGFA secreted from Caco2 and SW48
cells transfected with the MIR452 mimic or siVEGFA in an aortic angiogenesis model. After 7 days
of co-culture, the microvessel formation by MIR452 mimic-transfected Caco2 and SW48 cells was
significantly less than that observed in the mock controls (Figure 7B, upper panel). We also observed
similar results with siVEGFA-transfected CRC cells (Figure 7B, bottom panel). These results clearly
indicated that MIR452 regulates aortic angiogenesis through VEGFA signaling.

3. Discussion

MiRNAs have been implicated as important post-transcriptional regulators in various biological
processes as well as in the pathogenesis of various cancer types as tumor suppressor genes or
oncogenes [4,8,9]. It has been well accepted that miRNAs exert their effects through their target
genes. In fact, accumulating studies have recently suggested that miRNAs are essential for
the tumorigenesis stages of human CRC, including cancer initiation and proliferation, apoptosis,
angiogenesis, epithelial-mesenchymal transition (EMT), and cell invasion and migration [29,30].
Therefore, characterization of miRNA expression patterns and their interaction with the target genes in
CRC tissues may have substantial value for disease diagnosis, prognosis, and therapy.

MIR452 was identified as a CRC-associated miRNA by miRNA expression profiling of human CRC
tissues versus healthy colorectal tissues in our previous study [26]. It was found to be upregulated in
human CRC tissues compared with that in the healthy tissues [26]. To confirm this result, we increased
the sample size and analyzed the MIR452 expression levels by qRT-PCR. MIR452 levels were mostly
elevated (7 out of 10 pair) in additional CRC tissues (Figure S1A). These results indicated that MIR452
expression may be stage-, site-, or microenvironment-specific in CRC tissues.

Twenty-seven genes were finally identified as putative target genes of MIR452 by comparison of the
mRNA microarray results with those obtained using bioinformatics algorithms (Table 1). We verified
that VEGFA was a direct target gene of MIR452 using dual luciferase reporter assays (Figure 1B).
Furthermore, VEGFA mRNA and protein levels were both downregulated upon MIR452 overexpression
in CRC cells (Figure 1C) and xenograft tissues (Figure 6C). Although it is not precisely in line with our
results, MIR452 expression levels were generally increased in CRC tissues (Figure S1A). In contrast to
this result, VEGFA expression levels were generally (8 out of 10 pair) downregulated in primary CRC
tumor tissues compared with those in the matched healthy colon tissues (Figure 2A). Additionally, our
immunohistochemistry results for the CRC tissues showed that VEGFA expression levels dramatically
changed during tumorigenesis. The VEGFA expression level was downregulated at the T1 and T2
stages but upregulated at the T3 stage and then similarly expressed at the T4 stage tumor tissues
relative to that in the matched healthy colon tissues (Figure 2B). These results indicate that VEGFA
levels negatively correlated with MIR452 levels in CRC tissues.

It is well known that VEGFA is associated with tumor growth, metastasis, and angiogenesis [31–33].
Several miRNAs have been reported to suppress tumor growth, metastasis, and angiogenesis via
inhibiting the expression of their target gene VEGFA [34–36]. In this study, we found that MIR452
suppressed CRC cell growth and migration as well as angiogenesis by inhibiting VEGFA expression.
Our results showed that MIR452 regulated the VEGFA-mediated VEGFR2 signaling pathway by
directly downregulating VEGFA expression in CRC cells (Figure 3). Specifically, MIR452 regulated
the VEGFA–VEGFR2-mediated SRC, PLCG1, and MAPK signal pathways (Figure 3C, Figure 4, and
Figure 5A,B). Suppression of the VEGFA-mediated VEGFR2–SRC–PTK2 signaling pathway by MIR452
upregulation resulted in decreased cell migration and invasion (Figure 4 and Figure S2). Accumulating
evidence has shown that SRC–PTK2 signaling is associated with cell migration and invasion in multiple
tumor cells [37–39]. Furthermore, we found that the VEGFA-mediated VEGFR2–KRAS–BRAF–MAPK
signaling pathway was suppressed by MIR452 upregulation (Figure 5). These data suggest that
the VEGFA–VEGFR2 signaling cascade was downregulated in CRC as a result of increased MIR452
expression in CRC cells. This biological phenomenon involving MIR452-mediated VEGFA–VEGFR2
signaling was confirmed using xenograft tissues in this study (Figure 6).
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Our results using xenograft mouse model showed that the expression level of the angiogenic
marker CD31 was significantly decreased by MIR452-mediated VEGFA downregulation (Figure 6C).
VEGFA mainly functioned in the extracellular space. We found that the extracellular VEGFA levels
were significantly reduced in MIR452-overexpressing CRC cells (Figure 7A). Additionally, our rat
aortic ring angiogenesis assay clearly showed that the number of microvessels formed was significantly
reduced by MIR452 mimic transfection (Figure 7B). These results strongly indicated that MIR452
regulates angiogenesis in CRC cells by inhibiting VEGFA signaling. In actuality, several cancers
including CRC are known to undergo an angiogenic switch with progression, and anti-VEGFA therapy
is currently used [40–42]. Our results showed that MIR452 regulates cell proliferation, cell migration,
and angiogenesis by direct suppressing VEGFA expression in early CRC progression; therefore, MIR452
may have therapeutic value in relation to human CRC.

4. Materials and Methods

4.1. Patients and Tissue Samples

The tissue samples used in this study were provided by the Biobank of Wonkwang University
Hospital, a member of the National Biobank of Korea. With approval from the institutional review
board and informed consent from the subjects (WKIRB-201703-BR-010), we obtained 29 CRC tissues
from 18 colon cancer patients (9 males and 9 females) and 11 rectal cancer patients (8 males and
3 females). The mean ages of the colon cancer patients and rectal cancer patients were 72 years and
73.6 years, respectively. The endogenous MIR452 expression levels were assessed using 10 CRC
tissue samples and matched healthy controls. In parallel, 10 CRC samples and matched healthy
controls were used to evaluate VEGFA protein levels by western blotting. Additionally, a separate
cohort of CRC tissue samples (7 males and 7 females) was used to assess in situ VEGFA expression
by immunohistochemistry.

4.2. Cell Culture

The human CRC cell lines Caco2, SW480, HT29, HCT116, LoVo, and SW48 were obtained from
Korean Cell Line Bank (KCLB, Seoul, Korea) or American Type Culture Collection (ATCC, Manassas,
VA, USA). SW480, SW48, HCT116, LoVo, and HT29 cells were cultured at 37 ◦C in Roswell Park
Memorial Institute Medium (RPMI) 1640 (HyClone, Logan, UT, USA), including 10% fetal bovine
serum (FBS) in a humidified atmosphere of 5% CO2. Caco2 cells were cultured at 37 ◦C in a-MEM
(HyClone), including 20% FBS in a humidified atmosphere of 5% CO2.

4.3. RNA Extraction and Quantitative RT-PCR

RNA extraction and quantitative RT-PCR (qRT-PCR) were carried out as we previously
described [26–28]. The differential miRNA expression patterns were validated with qRT-PCR using a
TaqMan assay (Applied Biosystems, Waltham, MA, USA), or NCode VILO miRNA cDNA Synthesis
kit and EXPRESS SYBR GreenER miRNA qRT-PCR kit (Invitrogen, Carlsbad, CA, USA). The mRNA
levels were assessed with qRT-PCR using SYBR Green dye (Applied Biosystems). RNU48 (for TaqMan
qRT-PCR) or 5.8S (for SYBR qRT-PCR), and GAPDH were used as endogenous controls of miRNA
and mRNA qRT-PCR, respectively. Each sample was run in triplicate. The primers used are listed in
Table S2.

4.4. Transfection and Oligonucleotides

SW480, HCT116, SW48, and HT29 cells (3 × 105) or Caco2 cells (1.5 × 105) were plated on six-well
culture plates or 10 cm dishes and cultured as described above. The MIR452 mimic (hsa-miR-452,
pre-miR miRNA precursor AM17100, product ID: PM12946) and negative control oligonucleotides
were commercially synthesized (Ambion, Austin, TX, USA), and used at 50 nmol/mL for transfections.
The transfections were performed with Lipofectamine RNAiMAX (Invitrogen) or siPORT NeoFX
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transfection agent (Ambion) according to the manufacturers’ recommendations. The VEGFA small
interfering RNA (siRNA) and negative control siRNA transfections were performed according to the
manufacturer’s protocol (Ambion). The cells were harvested 24–48 h (for miRNA and mRNA expression)
or 48–72 h (for protein expression) after transfection for functional assays or RNA/protein extraction.

4.5. Identification of the MIR452 Target Genes by mRNA Expression Profiling

SW480 and Caco2 cells were transfected with the MIR452 mimic. The total RNAs were
isolated 48 h after transfection. They were amplified and purified using the Illumina Total Prep
RNA Amplification Kit (Ambion) according to the manufacturer’s instructions, eventually yielding
biotinylated complementary RNAs (cRNAs). Hybridization of the samples, signal detection, array
scanning, and data analysis and filtering were carried out as previously described [26–28].

4.6. Luciferase Reporter Assay

Wild-type or mutant fragments of VEGFA 3′-UTR containing the predicted binding site of MIR452
were amplified by PCR using the primer set shown in Table S2. The luciferase assay results were
analyzed as previously described [26–28].

4.7. MIR452 Target Prediction by Bioinformatics

The miRNA targets were predicted using the computer-aided algorithms TargetScan (http://www.
targetscan.org) and miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html).

4.8. Antibodies and Western Blot Analysis

Protein extraction and western blot analysis were carried out as previously described [26–28].
The blots were then incubated overnight at 4 ◦C with the primary antibodies against vascular
endothelial growth factor receptor 1 (VEGFR1, also known as FLT1); VEGFR2, SRC–proto-oncogene
non-receptor tyrosine kinase (SRC); protein tyrosine kinase 2 (PTK2, also known as FAK1);
phospholipase C gamma 1 (PLCG1); KRAS GTPase proto-oncogene (KRAS); mitogen-activated
protein kinase 3/1 (MAPK3/1, also known as ERK1/2) (Cell Signaling Technology, Danvers, MA, USA);
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA, also known as PI3K);
B-Raf proto-oncogene, serine/threonine kinase (BRAF); small heat shock protein family B member 1
(HSPB1) (Santa Cruz Biotechnology, Santa Cruz, CA, USA); and VEGFA (Novus Biologicals, Littleton,
CO, USA).

4.9. Cell Proliferation, Cell Migration, and Transwell Migration Assays

The cell proliferation (viability), cell migration, and Transwell migration (invasion) assays were
carried out as previously described [26–28]. The experiments were repeated at least three times
in duplicate.

4.10. Xenograft Model

The xenograft tumor model was established in mice as we previously described [28]. Briefly,
athymic male BALB/c nude mice (6 weeks old, 19–21 g) were purchased from Charles River Technology
(Boston, MA, USA) through Orient Bio Inc. (Sungnam, Gyeonggi, South Korea). The MIR452 mimic,
siVEGFA, or mock control oligonucleotide was incubated with Lipofectamine RNAiMAX (Invitrogen,
Carlsbad, CA, USA) for 15 min at the ratio of 100 nmol oligonucleotide per 10 µL Lipofectamine.
Afterward, they were mixed with HT29 cells (107 cells) in RPMI 1640 medium in a final volume of
200 µL for transfection. The transfected cells were then subcutaneously injected into both sides of the
posterior flanks of the mice. All surgical and care procedures that were administered to the animals
were in accordance with the Animal Care Committee of Wonkwang University (WKU14-47).

http://www.targetscan.org
http://www.targetscan.org
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html
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4.11. Immunohistochemical Analysis

Immunohistochemical assays were carried out as previously described [43,44]. The antibodies
and dilutions used were as follows: monoclonal antibodies against the proliferation marker Ki-67
(MKI67, Thermo Fisher Scientific, Fremont, CA, USA) (1:150) and platelet endothelial cell adhesion
molecule 1 (PECAM-1, also known as CD31) (1:150), mouse anti-VEGFA (Novus Biologicals, Littleton,
CO, USA) (1:50), and anti-VEGFR2 (Cell Signaling Technology, Danvers, MA, USA) (1:100).

4.12. Rat Aortic Ring Angiogenesis Assay

Co-culture experiments were performed in 24-well plates using the Transwell system (0.4 µm
pore size) (SPL, Seoul, South Korea), whereby the CRC cells grown in the lower compartments
were separated from the MIR452 mimic- or siVEGFA-transfected Caco2 or SW48 cells grown on
the overlying filter. All the cells were cultured as monolayers. The support medium was replaced
with the assay medium 24 h before starting the co-culture. The assay medium consisted of the
support medium without the additives but included 1% bovine or human serum. For the co-culture
experiments, Transwell chambers were inserted into the wells and the plates were incubated at 37 ◦C
in 99% humidity under the standard incubator conditions. Angiogenesis was studied by culturing
aortic rings from the thoracic aorta of four-week-old Sprague–Dawley (Orient Bio Inc., Sungnam city,
South Korea) rats in a three-dimensional medium made of growth factor-reduced Matrigel (Corning,
NY, USA). Briefly, the thoracic aortas were removed from the rats sacrificed by cervical dislocation and
immediately transferred to a culture dish containing ice-cold serum-free RPMI 1640 or Alpha-MEM
(HyClone, Marlborough, MA, USA). The peri-aortic fibro-adipose tissue was carefully removed with
fine microdissecting forceps and iridectomy scissors, paying special attention not to damage the aortic
wall. Approximately 15 of 1 mm long rings were sectioned per aorta and extensively rinsed by five
consecutive washes with sterile Phosphate-buffered saline (PBS) at room temperature. In parallel,
150 µL of the matrigel was added onto the Transwell filter (the upper chamber in the SPL Transwell
system) in each well of a 24-well plate in a biosafety cabinet. The plate was gently shaken and then
incubated at 37 ◦C for 30 min in an ordinary humidified incubator. Afterward, one aorta ring per well
was placed onto the middle of each Transwell filter. After incubating the plates for approximately
10 min back in the incubator, another 150 µL of the matrigel per well was added to cover the rings.
Then, the plates were returned to the incubator for 30 min. The aorta rings became embedded in the
matrigel during this period. Next, 200 µL/well Dulbecco Modified Eagle Medium (DMEM) or RPMI
1640 containing 10% fetal bovine serum (FBS) was added. The plates were incubated at 37 ◦C in a
humidified environment for one week and examined every other day under a microscope. At least
four independent experiments were performed in triplicate.

4.13. Statistical Analysis

Sample size was estimated using the G*power software (Version 3.1., Heinrich Heine University,
Duesseldorf, Germany). Our data showed that the mean ± SD of MIR452 levels in CRC tissues was
2.2 ± 1.1-fold. In the present study, 10 CRC tissue samples were calculated for 80% power (1-β),
α = 0.05, and anticipated effect size d = 1.09. Each experiment was repeated at least three times with
consistent results. The data are expressed as mean ± standard deviation (SD). Differences between the
groups were assessed using the GraphPad Prism 5.0 statistical software (GraphPad Software, San Diego,
CA, USA) or Student’s t-test. Differences with p-values < 0.05 were considered statistically significant.

5. Conclusions

In summary, our study found that MIR452 expression was generally upregulated in the
CRC tissues. We identified 27 putative MIR452 target genes using mRNA microarray analysis
of MIR452-overexpressing CRC cells and by bioinformatic tools, and showed that VEGFA was a direct
target of MIR452. VEGFA expression was upregulated in the early stage CRC tissues. Moreover,
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MIR452 regulated two VEGFA–VEGFR2-mediated signaling pathways (VEGFR2–SRC–PTK2 and
VEGFR2–KRAS–BRAF–MAPK), and as a result, MIR452 regulated cell growth, cell migration, and
angiogenesis via the VEGFA–VEGFR2 pathway in CRC cells. Although we did not investigate the
mechanism of MIR452 upregulation in CRC cells, our results overall suggested that the upregulated
MIR452 levels during early CRC progression downregulated VEGFA expression. The diminished
extracellular VEGFA levels might, in turn, downregulate VEGFR2-mediated signal pathways.
Consequently, they might downregulate cell proliferation, cell migration, and angiogenesis in CRC
(Figure 8). Collectively, our results suggested that downregulation of VEGFA expression by increased
MIR452 levels in CRC tissues and cells might act as an early inhibitory mechanism against tumor
progression in CRC tissues. Therefore, MIR452 might be a promising therapeutic target in early CRC.
This possibility, however, needs to be investigated further.
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Figure 8. A simple putative mechanism of MIR452 regulation of VEGFA-induced cell proliferation,
cell migration, and angiogenesis in human CRC. The increased MIR452 expression in CRC cells led
to downregulation of cellular and extracellular VEGFA as well as VEGFR2 levels. The decreased
VEGFR2 level caused inhibition of SRC, and, consequently, PTK2 was downregulated. In parallel, KRAS
expression was inhibited by the downregulation of VEGFR2; this, in turn, caused inhibition of BRAF and
MAPK3/1 (Extracellular signal–regulated kinase, ERK1/2) and led to the expression of growth-promoting
genes. Consequently, the elevated MIR452 level in CRC led to inhibition of cell proliferation, cell
migration, and angiogenesis. This simple hypothetical mechanism of MIR452-mediated inhibition of
angiogenesis was based on the results of previous studies and our study presented herein.
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