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A B S T R A C T

Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On
the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal
injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal
damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and
mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated
with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected
in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP,
protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg).
Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of
TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid
peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced gluta-
thione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also
detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial
permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL
(80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms
involved in the pathogenesis of TMDL-induced renal injury.
1. Introduction

Tramadol (TMDL) is an opioid agonist and monoamine neurotrans-
mitter reuptake inhibitor (de Kretser et al.; Subedi et al., 2019). TMDL is
used against moderate to severe pain and has analgesic efficacy similar to
morphine or alfentanil (Subedi et al., 2019). TMDL and its metabolites
are mainly eliminated via the kidney (Scott and Perry, 2000). On the
other hand, there is evidence of the toxic effects of TMDL on the kidney in
high dose or long-term use (Afshari and Ghooshkhanehee, 2009; Borrego
Utiel et al., 2018; Elmanama et al., 2015; Sarret et al., 2008). It has been
found that TMDL-induced renal injury is associated with a significant
increase in inflammatory cell aggregation and tubular atrophy in human
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reported in human TMDL-induced renal injury (Le Berre et al., 2007;
Sarret et al., 2008). Unfortunately, there is no specific mechanism(s) for
TMDL-induced nephrotoxicity so far.

Renal tissue contains many mitochondria, that their proper function
guarantees appropriate renal vital functions such as chemicals absor-
bance (Heidari, 2019). A plethora of evidence shows that many drugs'
adverse effects in the kidney are mediated through mitochondrial
impairment and oxidative stress (Emadi et al., 2019; Jamshidzadeh et al.,
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electrolytes disturbances in TMDL toxicity proposes that mitochondrial
impairment could be involved in this complication.

It has been well-established that oxidative stress and mitochondrial
impairment are tightly related events (Brookes et al., 2004). Mitochon-
dria are crucial intracellular sources of reactive oxygen species (ROS)
(Brookes et al., 2004). Therefore, the impaired mitochondrial function
could enhance ROS formation and oxidative stress (Brookes et al., 2004).
On the other hand, excess ROS could significantly impair mitochondrial
function and energy metabolism (Brookes et al., 2004; Duann and Lin,
2017). Although themechanism of TMDL-induced renal injury is far from
clear, some evidence indicates the role of oxidative stress in this
complication (Ali et al., 2020; Barbosa et al., 2020; Sheweita et al.,
2018). However, the source of TMDL-induced ROS formation is not un-
derstood. Excitingly, the evidence of TMDL-induced oxidative stress also
has been mentioned in other organs (Ali et al., 2020; Mehdizadeh et al.,
2017; Mohamed and Mahmoud, 2019; Zhuo et al., 2012). For example,
oxidative stress is a crucial mechanism involved in TMDL neurotoxicity
(Mehdizadeh et al., 2017; Mohamed and Mahmoud, 2019; Zhuo et al.,
2012). The possibility of mitochondrial impairment and oxidative stress
in the kidney of TMDL-treated animals has been evaluated in the current
study.

The current investigation aimed to evaluate the role of oxidative
stress and mitochondrial impairment in an animal model. As TMDL is a
widely used analgesic agent, the data could help develop new preven-
tive/therapeutic strategies against this complication.

2. Materials and methods

2.1. Chemicals and reagents

Glutathione (GSH), 20,70-dichlorofluorescein diacetate (DCFH-DA),
trichloroacetic acid, malondialdehyde, 3-[4,5dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide, 2,4,6-tripyridyl-s-triazine, ferric chloride
hexahydrate (FeCl3.6H2O), D-mannitol, thiobarbituric acid, 3-(N-mor-
pholino) propane sulfonic acid, fatty acid-free bovine serum albumin
fraction V, coomassie brilliant blue, Rhodamine123, dinitrophenylhy-
drazine (DNPH), dithiothreitol (DTT), ethylene glycol-bis(β-aminoethyl
ether)-N, N, N0, N0-tetraacetic acid (EGTA), Ethylenediaminetetraacetic
acid (EDTA), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox), tramadol, bovine serum albumin (BSA), and sucrose were ob-
tained from Sigma (Sigma-Aldrich, St. Louis, MO). Kits for assessing
biomarkers of renal injury were obtained from Parsazmoon® (Tehran,
Iran). High-performance liquid chromatography (HPLC) grade methanol,
potassium chloride (KCl), 3-(N-morpholino) propanesulfonic acid
(MOPS), iodoacetic acid, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), acetonitrile HPLC grade, meta-phosphoric acid, dinitro
fluoro benzene, n-butanol, and 2-amino-2-hydroxymethyl-propane-1,3-
diol-hydrochloride (Tris-HCl), were purchased from Merck (Darmstadt,
Germany).

2.2. Animals

Male Sprague-Dawley rats (n ¼ 18) weighing 200–250 g were pre-
pared from Shiraz University of Medical Sciences, Shiraz, Iran. Animals
were stored in a controlled environment (24 � 1 �C, � 50% relative
humidity, and a 12-h dark/light cycle). Rats had free admission to tap
water and a standard rodents pellet chow diet (RoyanFeed®, Isfahan,
Iran). Shiraz University's ethical committee approved laboratory animal
use of Medical Sciences, Shiraz, Iran (Code: IR.SUMS.REC.1397.095).

2.3. Experimental setup

Rats were randomly allotted into three experimental groups (n ¼ 6/
group): A) Control (Vehicle-treated; 2.5 mL/kg normal saline) B) tra-
madol (40 mg/kg/day, i.p, for 28 consecutive days), and C) tramadol
(80 mg/kg/day, i.p, for 28 consecutive days). At day 29, animals were
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deeply anesthetized (thiopental 80 mg/kg, i.p) and blood and kidney
samples were collected.

2.4. Serum and urine biochemistry

Blood samples (5 mL) were collected from abdominal aorta serum and
transferred to gel and clot-activator tubes (Improvacuter®; Guangzhou,
China). Samples were centrifuged (3000 g, 10 min, 4 �C) to prepare
serum. Urine samples (200 μL) were collected during animals handling.
Samples were diluted with cold normal saline (200 μL), centrifuged
(120000 g, 10 min, 4 �C), and the clear supernatant was used for uri-
nalysis. A Mindray BS-200® auto-analyzer (Guangzhou, China) and
standard kits for calcium (Ca2þ), glucose, phosphate, total protein, blood
urea nitrogen (BUN), creatinine (Cr), alkaline phosphatase (ALP), and
γ-glutamyl transferase (γ-GT) were used to assess serum and urine
biochemistry (Heidari et al., 2019d; Jamshidzadeh et al., 2015). Serum
and urine sodium and potassium level were evaluated by a flame
photometer (BWB XP, UK).

2.5. Reactive oxygen species (ROS) formation

Reactive oxygen species (ROS) were estimated in rat kidneys using 20,
70-dichlorofluorescein diacetate (DCF-DA) as a fluorescent probe (Hei-
dari et al., 2018b, 2019c; Heidari and Niknahad, 2019). For this purpose,
200 mg of the kidney tissue was homogenized in 5 mL of ice-cooled
Tris-HCl buffer (40 mM, pH ¼ 7.4). Then, 100 μL of the resulted tissue
homogenate was added to 1 mL of Tris-HCl buffer containing 10 μM of
DCF-DA (Heidari et al., 2019a; Heidari et al., 2018f; Jamshidzadeh et al.,
2016). Samples were incubated in the dark (10 min, 37 �C). Finally, the
fluorescence intensity was assessed (FLUOstar Omega® multifunctional
fluorimeter; λ excit ¼ 485 nm and λ emiss ¼ 525 nm) (Heidari et al., 2018b;
Heidari and Niknahad, 2019; Ommati et al., 2017).

2.6. Protein carbonylation

The extent of oxidative stress-induced protein damage (protein
carbonylation) in the rat kidney was assessed based on the DNPH reagent
(Heidari et al., 2014; Zhang et al., 2004). For this purpose, samples of the
kidney tissue (200 mg) were homogenized in 5 mL of phosphate buffer
(pH ¼ 7.5, containing 0.1%. v: v of triton X-100). Samples were centri-
fuged (700 g, 10 min, 4 �C). Then, the supernatant was treated with
1500 μL of DNPH solution (10 mM DNPH dissolved in HCl). Afterward,
samples were incubated at room temperature (in the dark, 1 h, vortexing
every 10 min) (Heidari et al., 2014; Ommati et al., 2019b; Zhang et al.,
2004). Then, trichloroacetic acid (500 μL of 20% w: v in distilled water)
was added, and samples were centrifuged (17000 g, 5 min, 4 �C). The
supernatant was discarded, and the pellet was washed five times with
ethanol: ethyl acetate (1 mL of 1:1 v: v). Then, the residues were
re-dissolved in a 6 M guanidine chloride solution (pH ¼ 2.3). Finally,
samples were centrifuged (17000 g, 1 min, 4 �C), and absorbance was
assessed at λ ¼ 370 nm (EPOCH® plate reader, BioTek®, USA) (Heidari
et al., 2013b, 2014).

2.7. Lipid peroxidation

Lipid peroxidation in the kidney of TMDL-treated rats was assessed
using the thiobarbituric acid reactive substances (TBARS) test (Heidari
et al., 2017; Heidari and Niknahad, 2019; Shafiekhani et al., 2019).
Briefly, renal tissue (200 mg) was homogenized in 5 mL of 40 mM
Tris-HCl buffer (pH ¼ 7.4). Tissue homogenate was treated with 4 mL of
TBARS assay reagent (a mixture of 1 mL of thiobarbituric acid (TBA)
0.375%w: v, 1 mL of 50%w: v of trichloroacetic acid (TCA), and 3 mL of
meta-phosphoric acid 1%w: v, pH¼ 2; adjusted with HCl) (Heidari et al.,
2015, 2016a; Heidari and Niknahad, 2019). Samples were mixed well
(1 min) and heated (100 �C water bath, 45 min). Afterward, 2 mL of
n-butanol was added. Samples were mixed well again and centrifuged
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(10000 g, 20 min, 4 �C). Finally, the absorbance of the pink-colored su-
pernatant (n-butanol phase) was assessed (λ ¼ 532 nm, EPOCH® plate
reader, BioTek®, USA) (Ahmadi et al., 2021; Heidari et al., 2018g; Hei-
dari and Niknahad, 2019; Niknahad et al., 2017a).

2.8. Total antioxidant capacity of the kidney tissue

Renal tissue antioxidant capacity in TMDL-treated rats was assessed
base on the ferric reducing antioxidant power (FRAP) assay (Heidari and
Niknahad, 2019; Jamshidzadeh et al., 2017a, 2017b). The FRAP assay
reagent was composed of 10 mL of acetate buffer (300 mM, pH ¼ 3.6),
1 mL of TPTZ (10 mM in 40 mM HCl), and 1 mL of ferric chloride
hexahydrate (20 mM, FeCl3.6H2O in distilled water). Tissue was ho-
mogenized in 40 mM ice-cooled (4 �C) Tris-HCl buffer containing 5 mM
DTT and 200 mM sucrose (pH ¼ 7.4). Afterward, 100 μL of the tissue
homogenate was added to the FRAP reagent (900 μL) (Ommati et al.,
2019d). Samples were incubated for 5 min at 37 �C (in the dark). Finally,
sample absorbance was measured (λ ¼ 595 nm, EPOCH® plate reader,
BioTek®, USA) (Abdoli et al., 2020; Heidari and Niknahad, 2019;
Ommati et al., 2020b).

2.9. Kidney histopathology

Renal samples were fixed in10% v: v buffered formalin. Tissue sam-
ples were embedded in paraffin blocks, and 5-μm-thick slices were pre-
pared by a microtome and stained with hematoxylin and eosin (H&E). A
pathologist blindly analyzed samples.

2.10. Kidney mitochondria isolation

The differential centrifugation method was applied to isolate kidney
mitochondria (Abdoli et al., 2021b; Niknahad et al., 2020; Ommati et al.,
2021b). Rat's kidney was excised and minced in an ice-cold buffer
(70 mM mannitol, 2 mM HEPES, 220 mM sucrose, 0.5 mM EGTA, and
0.1% BSA; pH ¼ 7.4). Minced tissue was homogenized in the mentioned
buffer (10 vol buffer/1 g tissue). At the first round of centrifugation
(10 min, 1000 g, 4 �C), samples were centrifuged, and the supernatant
was collected. Then, the supernatant was centrifuged (10 min, 10000 g,
4 �C) to pellet the mitochondrial fraction. The second centrifugation
round was repeated at least four times to increase mitochondrial yield.
Finally, the pellet was resuspended (5 mL/g tissue) in the incubation
buffer (0.32 M sucrose, 1 mM EDTA, 2 mM HEPES, and 0.5 mM EGTA,
pH ¼ 7.4) and used for further studies.

2.11. Mitochondrial swelling

Analysis of mitochondrial permeabilization was estimated by alter-
ations in the ultraviolet (UV) absorbance of mitochondrial suspension
(0.5 mg protein/ml) at λ ¼ 540 nm (constant temperature of 30 �C)
(Ahmadi et al., 2018; Caro et al., 2012; Heidari et al., 2018d; Niknahad
et al., 2016). Ca2þ (50 μM) was used to induced mitochondrial per-
meabilization. The absorbance was measured during 30 min of incuba-
tion (EPOCH plate reader, Bio-Tek®, USA).

2.12. Mitochondrial dehydrogenases activity

The 3-(4, 5-dimethylthiazol-2-yl)-2, the 5-diphenyltetrazolium bro-
mide (MTT) assay used to determine dehydrogenases activity in isolated
renal mitochondria (Heidari et al., 2016b, 2018c; Niknahad et al., 2015a;
Ommati et al., 2018). For this purpose, a mitochondrial suspension (1 mg
protein/mL) was incubated with 40 μL of MTT solution (0.4% w: v in
incubation buffer) and incubated at 37 �C (30 min, in the dark) (Akram
et al., 2017; Heidari et al., 2019b; Ommati et al., 2020g). Then, samples
were centrifuged (10000 g, 10 min), and the product of formazan crystals
were dissolved in dimethyl sulfoxide (1000 μL). Finally, the absorbance
was measured at λ ¼ 570 nm (EPOCH® plate reader, BioTek®
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Instruments, USA) (Eftekhari et al., 2018; Heidari et al., 2018a; Ommati
et al., 2019c).

2.13. Mitochondrial depolarization

Mitochondria depolarization in isolated kidney mitochondria prepa-
rations was assessed by the rhodamine 123 as a fluorescent probe (Hei-
dari et al., 2012, 2013a; Heidari et al., 2018h). For this purpose, the
mitochondrial fractions (1 mg protein/mL) were incubated with rhoda-
mine 123 (10 μM) and incubated for 15 min (in the dark) (Jamshidzadeh
et al., 2017c). Afterward, samples were centrifuged (15000 g, 1 min,
4 �C), and the fluorescence intensity of the supernatant was assessed
(FLUOstar Omega®multifunctional plate reader, λ excitation¼ 485 nm and
λ emission¼ 525 nm) (Heidari et al., 2018e; Niknahad et al., 2016; Ommati
et al., 2019a, 2020c).

2.14. Mitochondrial adenosine-tri-phosphate (ATP) level

Mitochondrial ATP level in TMDL-treated rats was assessed using an
HPLC method (Seifi et al., 2018, 2020). For this purpose, ice-cooled
perchloric acid (200 mM) was added to freshly isolated mitochondria
(1 mg protein/ml) and mixed well. Then, samples were centrifuged (10,
000 g, 20 min, 4 �C), and the supernatant was treated with 100 μL of
ice-cooled potassium hydroxide (KOH) solution (1 M). Then samples
(50 μL) were injected into the HPLC system composed of a C-18 column
(μ-Bondapak, 25 cm) and a UV detector set at λ¼ 254 nm (Ommati et al.,
2020d; Volont�e et al., 2004). Themobile phase was composed of 215mM
potassium hydrogen phosphate mono-basic (KH2PO4), 2.3 mM tertiary
butyl ammonium hydroxide, 0.4% v: v of KOH (1 M) and 4% v: v
acetonitrile. The flow rate of 1 mL/min.

2.15. Renal tissue and isolated mitochondrial glutathione content

GSH and GSSG content in renal mitochondria preparations isolated
from TMDL-treated rats was assessed based on an HPLC protocol (Meeks
and Harrison, 1991; Siavashpour et al., 2020; Truong et al., 2006). The
HPLC apparatus consisted of an amine column (NH2, 25 cm Bischoff
chromatography, Leonberg, Germany) and a UV detector (set at λ¼ 252)
(Meeks and Harrison, 1991). A gradient method using buffer A (Acetate
buffer: Water; 1: 4 v: v) and buffer B (Methanol: Water; 4: 1 v: v) were
used as mobile phases. The gradient method involved a regular increase
of buffer B to 95% in 30 min. The flow rate was 1 mL/min (Meeks and
Harrison, 1991; Niknahad et al., 2017b). For sample preparation, 5 mL of
tissue homogenate (200 mg in 40 mM Tris-HCl buffer, pH ¼ 7.4; 4 �C) or
1 mL of mitochondria preparations (1 mg protein/ml, 4 �C) were treated
with 200 μL of TCA (50% w: v). Samples were mixed well and incubated
on ice (10 min, 4 �C) (Mohammadi et al., 2020; Ommati et al., 2020a;
Ommati et al., 2020f). Afterward, the incubated specimens were mixed
gently and centrifuged (17000 g, 30 min, 4 �C). The supernatant
(1000 μL) was collected in 5 mL tubes, and 300 μL of the sodium hy-
droxide (NaOH) and sodium carbonate (NaHCO3) (2 M: 2 M) was added.
Then, iodoacetic acid (100 μL of 1.5% w: v in HPLC grade water) was
added and incubated in the dark (1 h, 4 �C). Afterward, 2, 4-dinitrofluor-
obenzene (500 μL; 1.5% v: v dissolved in HPLC grade ethanol) was added
and mixed. Samples were incubated in the dark (25 �C, 24 h). After 24 h
of incubation, samples were centrifuged (17000 g, 30 min), filtered, and
injected (50 μL) into the mentioned HPLC system (Meeks and Harrison,
1991; Truong et al., 2006).

2.16. Lipid peroxidation in liver mitochondria

TBARS assay was also used to assess lipid peroxidation in isolated
mitochondria preparations (Caro et al., 2012). However, previous studies
mentioned that sucrose (used in mitochondria isolation procedure) in-
teracts with the TBARS test (Caro et al., 2012). Therefore, isolated kidney
mitochondria were washed to remove sucrose. For this purpose, 1 mL



Table 2
Urinalysis of tramadol (TMDL)-treated animals.

Control TMDL
40 mg/kg

TMDL
80 mg/kg

Protein (mg/dl) 0.46 � 0.09 0.55 � 0.20 0.86 � 0.30a

ALP (U/l) 2244 � 134 2345 � 280 3033 � 489a

γ-GT (U/l) 2552 � 317 2655 � 512 3312 � 355a

Glucose (mg/dl) 80.0 � 4.00 78.0 � 6.00 88.0 � 13.00
Cr (mg/dl) 0.14 � 0.02 0.048 � 0.014a 0.021 � 0.008a

Data are given as mean � SD (n ¼ 6).
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(10 mg protein/ml) of isolated mitochondria was suspended in an
ice-cold buffer of MOPS-KCl (50 mM MOPS, 100 mM KCl, pH ¼ 7.4).
Samples were centrifuged (10,000 g, 20 min, 4 �C). Then, the superna-
tant was discarded, and the pellet was re-suspended in fresh MOPS–KCl
buffer. Afterward, the mitochondrial suspension was mixed with twice its
volume of 15% TCA, 0.375% TBA, 0.24 N HCl. Samples were heated for
15 min at a 100 �C water bath (Caro et al., 2012; Caro and Cederbaum,
2001). After centrifugation (15000 g, 1 min), the absorbance of the su-
pernatant was measured (λ ¼ 532 nm) with an Epoch plate reader
(BioTek Instruments, USA) (Caro et al., 2012; Niknahad et al., 2015b).
ALP: alkaline phosphatase; γ-GT: γ-glutamyl transferase; Cr: Creatinine.
a Indicates significantly different as compared with the control group

(P < 0.05).

Fig. 1. Animals bodyweight gain and kidney weight index in the control and
tramadol (TMDL)-treated rats. Data are given as mean � SD (n ¼ 6).
# Indicates significantly different as compared with the control group
(P < 0.05).
ns: not significant as compared with the control group.
2.17. Statistical analysis

Data are characterized as the mean � SD (n ¼ 6). Data comparison
was accomplished by one-way analysis of variance (ANOVA) test with
Tukey's test as a post hoc. A P < 0.05 was considered as a statistically
significant difference.

3. Results

A significant increase in serum BUN and Cr were evident in TMDL-
treated animals (Table 1). On the other hand, serum phosphate and Kþ

were decreased in the high dose (80 mg/kg) of the TMDL group
(Table 1). No significant changes in serum Ca2þ, Naþ, glucose, and total
protein were detected in TMDL-treated animals compared to the control
animals. Urinalysis of TMDL-treated rats revealed significant proteinuria
in 80 mg/kg dose of TMDL (Table 2). Moreover, urine ALP and γ-GT were
increased in the high dose of TMDL-challenged rats (Table 2). Urine Cr
levels were decreased in both 40 mg/kg and 80 mg/kg doses of TMDL
(Table 2). No significant changes in urine protein, glucose, ALP, and γ-GT
were detected when animals were treated with 40 mg/kg of TMDL
(Table 2).

The evaluation of animals' weight gain revealed a significant decrease
in rats' bodyweight treated with TMDL 80 mg/kg (Fig. 1). Moreover, the
kidney weight index was significantly decreased in TMDL 80 mg/kg
group (Fig. 1). No significant changes in animals’ bodyweight gain or
renal weight index were detected when rats were treated with 40 mg/kg
of TMDL (Fig. 1). It is noteworthy to mention that no mortality was seen
in TMDL-treated animals in the current study.

Biomarkers of oxidative stress were assessed in the kidney of TMDL-
treated rats (Fig. 2). Significant ROS formation, protein carbonylation,
and lipid peroxidation were detected in the renal tissue of rats treated
with 40 and 80 mg/kg doses of TMDL (Fig. 2). On the other hand,
markers such as increased GSSG, depleted tissue antioxidant capacity,
and decreased GSH levels were evident in TMDL 80mg/kg group (Fig. 2).

Evaluating effects of TMDL treatment on renal mitochondrial indices
revealed significant mitochondrial depolarization, decreased mitochon-
drial dehydrogenases activity, mitochondrial permeabilization,
increased lipid peroxidation, and depleted ATP stores in TMDL 80 mg/kg
Table 1
Serum biochemical measurements in tramadol (TMDL)-treated rats.

Control TMDL
40 mg/kg

TMDL
80 mg/kg

Ca2þ (mg/dl) 5.3 � 0.30 5.04 � 0.3 5.14 � 0.32
Kþ (mmol/l) 5.6 � 0.40 4.9 � 0.40 3.3 � 0.40a

Naþ (mmol/l) 84.0 � 4.00 77 � 9.00 77.0 � 5.00
Glucose (mg/dl) 112.0 � 9.00 105 � 4.00 102.0 � 6.00
Phosphate (mg/dl) 3.24 � 0.50 2.73 � 0.46 2.1 � 0.08a

Total protein (mg/dl) 7.13 � 0.44 7.38 � 0.53 6.97 � 0.22
BUN (mg/dl) 45.2 � 3.00 60.0 � 3.80a 76 � 8.80a

Cr (mg/dl) 0.26 � 0.03 0.67 � 0.05a 0.91 � 0.03a

Data are given as mean � SD (n ¼ 6). Ca2þ: Calcium, Kþ: potassium, Naþ: So-
dium, BUN: Blood urea nitrogen, and Cr: Creatinine.

a Indicates significantly different as compared with the control group
(P < 0.05).
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group (Fig. 3). No significant changes in mitochondrial indices of func-
tionality were detected when rats were treated with a 40 mg/kg dose of
TMDL (Fig. 3).

Renal tissue histopathological alterations included tubular degener-
ation, and inflammation was detected in TMDL-treated animals (Fig. 4
and Table 3). Moreover, mild kidney tissue necrosis was seen in TMDL
80 mg/kg group (Fig. 4 and Table 3).

4. Discussion

Tramadol (TMDL) is an opioid analgesic widely administered for
moderate to severe pain (Subedi et al., 2019). However, several adverse
effects, including renal injury, are related to chronic TMDL use or over-
dose (Afshari and Ghooshkhanehee, 2009; Borrego Utiel et al., 2018;
Elmanama et al., 2015; Sarret et al., 2008). To date, there have not been
studies dedicated to the precise mechanism for TMDL-induced renal
injury. In the current study, a significant increase in oxidative stress
markers and mitochondrial dysfunction was evident in TMDL-treated
animals' kidneys. These data indicate that oxidative stress and mito-
chondrial impairment play a crucial role in the pathogenesis of
TMDL-induced renal injury.

Several human cases of TMDL-induced renal injury have been re-
ported (Afshari and Ghooshkhanehee, 2009; Borrego Utiel et al., 2018).
Borrego et al. reported significant proteinuria, albuminuria, increased Cr
levels, and the presence of β-macroglobulin in the urine of 71-year-old
women taking TMDL (200 mg/day, prolonged-release formulation)
(Borrego Utiel et al., 2018). Marked tubule-interstitial inflammation and
tubular atrophy were dominant histopathological alterations in this pa-
tient (Borrego Utiel et al., 2018). Borrego et al. reported that predniso-
lone (3 � 500 mg bolus i.v dose) in addition to oral prednisone
(1 mg/kg/day, 10 days) significantly alleviated TMDL-induced renal
injury (Borrego Utiel et al., 2018). These data could indicate that the
infiltration of inflammatory cells in the kidney of TMDL-treated patients



Fig. 2. Biomarkers of oxidative stress in the kidney tissue of tramadol (TMDL)-treated rats. Data are given as mean � SD (n ¼ 6). ROS: Reactive oxygen species;
TBARS: Thiobarbituric acid reactive substances; TAC: Total antioxidant capacity; OD: Optical density; GSH: Reduced glutathione; GSSG: Oxidized glutathione.
# Indicates significantly different as compared with the control group (P <

0.05).
ns: not significant as compared with the control group.

Fig. 3. Effect of tramadol (TMDL) on kidney
mitochondrial indices. MTT: methyl tetrazolium;
TBAR: Thiobarbituric acid reactive substances;
ATP: Adenosine triphosphate.
Data are given as mean � SD (n ¼ 6).
# Indicates significantly different as compared
with the control group (P <

0.05).
ns: not significant as compared with the control
group.
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could play a significant role in its mechanism of renal injury. Inflam-
matory cells could act as a critical source of ROS production via the ac-
tion of the enzyme nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (Touyz et al., 2019). Therefore, these cells could serve
as a source of ROS in the kidney during TMDL toxicity. Based on these
5

data, anti-inflammatory agents (e.g., corticosteroids such as predniso-
lone) could be a good option for alleviating TMDL-induced kidney injury
in human cases.

Several antioxidants with renoprotective background have been
tested against renal disease or xenobiotics-induced kidney injury



Fig. 4. Kidney histopathological assessments in tramadol (TMDL)-treated animals. Significant histopathological changes, including inflammatory cell infiltration,
necrosis, and hemorrhage, were detected in the tramadol 80 mg/kg treated group. Scores of renal histopathological alterations are represented in Table 3.

Table 3
Scores of renal tissue histopathological alterations in tramadol (TMDL)-treated
rats.

Control TMDL
40 mg/kg

TMDL
80 mg/kg

Inflammation – þþ þþþ
Tubular degeneration – þ þþ
Necrosis – – þ

- Indicates no significant histopathological changesþþþ, and þþþ: Indicate mild,
moderate, and severe histopathological changes, respectively.
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(Farombi and Ekor, 2006; Ommati et al., 2021a; Vazin et al., 2020). As
oxidative stress and its related complications play a role in
TMDL-induced renal injury, the use of clinically applicable molecules
(e.g., N-acetylcysteine) might also mitigate this complication. Some
studies administered antioxidants such as curcumin, gallic acid, and Ni-
gella sativa against TMDL-induced hepatic and renal injury (Elkhateeb
et al., 2015; Sheweita et al., 2018). Therefore, antioxidants with a high
potency of the mitochondrial protective effect are recommended in
future investigations.

TMDL-induced mitochondrial impairment in the renal tissue was an
exciting finding in the current study (Fig. 3). Oxidative stress and mito-
chondrial impairment are two tightly related phenomena (Brookes et al.,
2004). Mitochondria are the primary sources of intracellular ROS for-
mation (Brookes et al., 2004). On the other hand, significant ROS for-
mation and oxidative stress could impair mitochondrial function
(Brookes et al., 2004). Therefore, mitochondria could act as an essential
source of ROS formation in the kidney of TMDL-treated animals. We
might be concluded that a part of enhanced ROS formation and the in-
crease in the markers of oxidative stress in the renal tissue of
TMDL-treated animals could be associated with the effects of this drug on
kidney mitochondria. However, the precise mechanism(s) of
TMDL-induced mitochondrial injury in the kidney need further studies to
be revealed.

Excitingly, some studies mentioned the role of mitochondrial
dysfunction in other adverse effects induced by TMDL (Mehdizadeh
et al., 2017). Mehdizadeh et al. reported significant mitochondrial
impairment caused by TMDL in the brain of rats treated by this drug
(Mehdizadeh et al., 2017). In another study conducted by Zhuo and
colleagues, TMDL significantly decreased mitochondrial activity and
energy metabolism in the brain of a zebrafish model (Zhuo et al., 2012).
All these data could indicate the importance of mitochondrial impair-
ment in the mechanism of cytotoxicity induced by TMDL.

Kidneys are high-energy consuming organs and contain a consider-
able number of mitochondria (Heidari, 2019). Enough energy (ATP)
production in the kidney guarantees vital processes such as chemicals
reabsorption in renal tubules (Duann and Lin, 2017; Emma et al., 2016;
6

Heidari, 2019). The reabsorption of many compounds such as glucose,
amino acids, several ions, and phosphate is rigorously dependent on ATP
availability (Heidari, 2019). As observed in the current study, serum
levels of ions such as Kþ as well as phosphate levels were significantly
decreased in TMDL-treated animals (hypophosphatemia; Table 1). On
the other hand, significant proteinuria, in addition to increased urine
levels of γ-GT and ALP, was detected in TMDL-treated rats (Table 2).
These data could indicate significant tubular injury induced by TMDL.
Interestingly, it has been reported that TMDL caused significant hypo-
natremia (Le Berre et al., 2007; Sarret et al., 2008). This complication
could be associated with impaired reabsorption of ions and chemicals
due to mitochondrial impairment and energy crisis in the kidney during
TMDL exposure. Therefore, monitoring serum electrolytes and applying
appropriate clinical intervention is essential in human cases of
TMDL-induced renal injury. Moreover, some researchers mentioned the
promising role of targeting mitochondria in renal disease (Eirin et al.,
2017). Hence, the administration of mitochondria protecting agents
could serve as a viable therapeutic intervention in this complication.
Several agents with positive effects on the cellular mitochondria have
been identified (Abdoli et al., 2021a; Mitchell et al., 2011; Mohammadi
et al., 2019; Ommati et al., 2019a, 2019c; Szeto, 2017). Some of these
agents s such as NAC are readily administered in clinical settings
(Aparicio-Trejo et al., 2019). On the other hand, researchers are working
on mitochondria-targeted antioxidants (Oyewole and Birch-Machin,
2015; Sheu et al., 2006). These agents might finally find an application
against TMDL-induced renal injury in clinical settings.

Altogether, the data obtained from the current study indicate oxida-
tive stress and mitochondrial impairment as mechanisms involved in the
pathogenesis of TMDL-induced renal injury. Further studies are required
to develop preventive/therapeutic strategies based on these data.
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