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Abstract Hierarchical perceptual-inference models of psychosis may provide a holistic

framework for understanding psychosis in schizophrenia including heterogeneity in clinical

presentations. Particularly, hypothesized alterations at distinct levels of the perceptual-inference

hierarchy may explain why hallucinations and delusions tend to cluster together yet sometimes

manifest in isolation. To test this, we used a recently developed resting-state fMRI measure of

intrinsic neural timescale (INT), which reflects the time window of neural integration and captures

hierarchical brain gradients. In analyses examining extended sensory hierarchies that we first

validated, we found distinct hierarchical INT alterations for hallucinations versus delusions in the

auditory and somatosensory systems, thus providing support for hierarchical perceptual-inference

models of psychosis. Simulations using a large-scale biophysical model suggested local elevations

of excitation-inhibition ratio at different hierarchical levels as a potential mechanism. More

generally, our work highlights the robustness and utility of INT for studying hierarchical processes

relevant to basic and clinical neuroscience.

Introduction
Hallucinations and delusions are burdensome symptoms that typically manifest together as the psy-

chotic syndrome of schizophrenia. Perceptual-inference models of psychosis suggest that these

symptoms result from alterations in the updating of internal models of the environment that are

used to make inferences about external sensory events and their causes (Adams et al., 2013;

Horga and Abi-Dargham, 2019; Sterzer et al., 2018). These models are receiving increasing empir-

ical support (Adams et al., 2018; Baker et al., 2019; Cassidy et al., 2018; Davies et al., 2018;

Powers et al., 2017; Teufel et al., 2015), yet current theories do not provide a satisfactory explana-

tion for how hallucinations and delusions tend to co-occur but sometimes manifest in isolation. This

suggests that these psychotic symptoms may share a common neurobiological mechanism while

simultaneously depending on symptom-specific pathways.

We and others have proposed that this apparent tension may be resolved in the context of hierar-

chical perceptual-inference models (Adams et al., 2013; Baker et al., 2019; Corlett et al., 2009;

Corlett et al., 2019; Fletcher and Frith, 2009; Sterzer et al., 2018). One possibility is that altera-

tions at higher levels—supporting inferences on abstract hidden states like someone’s intentions—

may drive delusions, and alterations at lower levels—supporting inferences about lower level fea-

tures of stimuli such as stimulus presence or absence—may drive hallucinations (Baker et al., 2019;

Davies et al., 2018; Horga and Abi-Dargham, 2019; Powers et al., 2017). In addition to these

symptom-specific pathways, alterations at any level may naturally propagate throughout the interde-

pendent levels of the hierarchy (Chaudhuri et al., 2015), potentially explaining symptom co-
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occurrence. Importantly, neural systems supporting inference are thought to feature a hierarchical

architecture of timescales that mirrors the hierarchical temporal dynamics of natural environments,

where rapidly changing events are typically nested within slower changing contexts (Kiebel et al.,

2008; Kiebel, 2009). Thus, higher level inferences pertaining to slower changing contexts require

neural systems with the ability to integrate information over longer periods, an ability consistent with

the persistent neuronal activity that characterizes higher level regions (Major and Tank, 2004;

Mazurek et al., 2003).

A hierarchy of neural timescales is observed in both single-neuron recordings in non-human pri-

mates (Murray et al., 2014) and functional magnetic resonance imaging (fMRI) recordings in humans

(Hasson et al., 2015; Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens et al.,

2013), and is recapitulated by a large-scale biophysical model (Chaudhuri et al., 2015). Further-

more, a newly developed method based on resting-state fMRI that was validated against electroen-

cephalography (EEG) similarly captures a hierarchy of intrinsic neural timescales (INT), as well as

alterations in psychopathology (Watanabe et al., 2019). Here, we specifically applied this fMRI mea-

sure to test whether hallucinations and delusions are associated with distinct changes of INT at low

and high levels of neural hierarchies, respectively. We hypothesized that INT at these respective lev-

els would increase with more severe symptoms, potentially reflecting increased neural integration of

prior information (Glaze et al., 2015; Mante et al., 2013; Mazurek et al., 2003), in line with behav-

ioral findings in hallucinations and delusions (Baker et al., 2019; Cassidy et al., 2018;

Powers et al., 2017). If present, these INT changes should manifest as symptom-specific differences

in hierarchical gradients.

Results
INT maps were estimated as previously described (Watanabe et al., 2019) (Materials and methods).

Briefly, the autocorrelation function of the fMRI signal at each voxel (or vertex) was estimated and

the sum of the autocorrelation coefficients during the initial positive period was calculated. This ini-

tial positive period included all timepoints from the first lag until the timepoint immediately preced-

ing the first lagged timepoint with a non-positive autocorrelation coefficient. To adjust for

differences in temporal resolution, the sum was multiplied by the repetition time (TR) of the fMRI

data. This product was used as an index for INT (note that values are similar to those from an expo-

nential fit [Murray et al., 2014; Figure 1—figure supplement 1]). INT maps were parcellated using

the HCP-multimodal parcellation (Glasser et al., 2016) to facilitate further analysis. Additionally,

T1w/T2w (myelin) and cortical-thickness maps were obtained from high-resolution structural scans

from the HCP database. Both of these structural measures have previously been shown to capture

an underlying brain-wide hierarchy (Burt et al., 2018; Fischl et al., 2008; Wagstyl et al., 2015), con-

sistent with the classic use of myeloarchitecture and cytoarchitecture for cortical parcellation (Brod-

mann, 1909; Sarkissov et al., 1955; Vogt, 1911; Von Economo, 1929). In particular, Burt et al.,

2018 validated T1w/T2w in macaques by showing strong agreement with a gold-standard tract-trac-

ing measure of hierarchy. Establishing T1w/T2w and cortical thickness as structural indices of hierar-

chy in humans, Burt et al. validated these MRI measures against human postmortem gene-

expression data (Hawrylycz et al., 2012)—specifically using granular layer-IV-specific gene expres-

sion as a proxy for cytoarchitecture structural type.

Selection and multimodal validation of neural hierarchies
Our hypothesis of symptom-specific INT differences in hierarchical gradients was agnostic to the

specific neural hierarchies involved in psychosis, as the involvement of most sensory modalities has

been reported (Lewandowski et al., 2009; Postmes et al., 2014). Consistent with prior empirical

and theoretical work (Chaudhuri et al., 2015; Vázquez-Rodrı́guez et al., 2019), in a subset of 100

unrelated young and healthy subjects from the HCP dataset, we did not observe a systematic rela-

tionship across the whole brain between INT (Figure 1A)—an index of functional hierarchy

(Chaudhuri et al., 2015; Murray et al., 2014)—and the two indices of structural hierarchy (T1w/T2w

and cortical thickness) (Burt et al., 2018; Fischl et al., 2008; Wagstyl et al., 2015; Figure 1—figure

supplement 2). We thus decided to focus on specific, well-studied hierarchies of the auditory, visual,

and somatosensory systems that have been parcellated in humans, and where the functional and

structural indices of hierarchy appeared better aligned.
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Figure 1. Model comparison to determine the hierarchical orderings of the auditory, visual, and somatosensory systems. (A) Group-averaged intrinsic

neural timescale (INT) map from the Human Connectome Project (HCP) dataset (N = 100; top), parcellated group-averaged INT map (middle), and

flattened cortex showing the parcels in the auditory, visual, and somatosensory hierarchies (winning hierarchies underneath; bottom). Color coding of

parcels indicates their anatomical and hierarchical location. (B) Goodness of fit (R2) of linear mixed-effects models predicting different hierarchical

orderings of the auditory system (left), visual system (middle), and somatosensory system (right) from T1w/T2w and cortical thickness values in the HCP

dataset (Materials and methods). First, the winning ordering (i.e. the model with the best goodness of fit) for each system was determined for the seven

sensory cortex regions (bottom four models). Then, the winning ordering was determined for extended models with two downstream prefrontal cortex

regions added to the respective winning models for the sensory cortex (top two models). Note that, for each of the four considered orderings within

the sensory cortex for each system, only the four regions whose order is varied (out of 7 regions) are shown to delineate the models. For the auditory

cortex, A1 was always the lowest order region while A4 and A5 were always the two highest order regions. For the visual cortex, V1, V2, and V3 were

always the three lowest order regions. For the somatosensory cortex, 5m, 7b, and 7a were always the three highest order regions. Null distributions

were generated by randomly permuting the hierarchical ordering across all regions in a given hierarchy (0th – 95th percentiles shown). (C) Scatterplots

showing INT values plotted as a function of hierarchical level for the PFC-extended winning models in B (red outline) for the HCP dataset (top) and the

healthy control group in the schizophrenia combined dataset (N = 158; bottom). LBelt, lateral belt; MBelt, medial belt; PBelt, parabelt; RI, retroinsular

cortex; MT, middle temproal area.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Data and code to reproduce Figure 1.

Figure supplement 1. Comparison of different methods for neural timescale estimation: sum of initial positive period vs exponential fit.

Figure 1 continued on next page
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Despite ample anatomical investigation in primates, ambiguities in the definition of anatomical

hierarchies in these sensory systems remain (Hilgetag et al., 1996; Kaas and Hackett, 2000) and

have not been fully addressed in human MRI work. To address this issue, we used an anatomically

informed, data-driven approach to determine the most suitable hierarchical orderings of each

sensory system. First, using the HCP dataset, we determined the hierarchical orderings of the sen-

sory cortex parcels (auditory, visual, or somatosensory) by selecting the ordering that was best pre-

dicted by T1w/T2w and cortical thickness parcel-wise values for each system (i.e. the ordering for

which these values explained the most variance). To enhance robustness, we specifically constrained

this comparison to the four most plausible hierarchical orderings of each system based on previous

anatomical studies (Felleman and Van Essen, 1991; Galaburda and Pandya, 1983; Hyvärinen and

Poranen, 1978; Morel et al., 1993). The winning orderings were A1 ! lateral belt (LBelt) !

medial belt (MBelt) ! parabelt (PBelt) ! retroinsular cortex (RI) ! A4 ! A5 for the auditory cortex,

V1 ! V2 ! V3 ! middle temporal area (MT) ! V4 ! V6 ! V7 for the visual cortex, and 3b ! 3a

! 1 ! 2 ! 5m ! 7b ! 7a for the somatosensory cortex (Figure 1B). Using the same approach to

build upon these winning orderings and capture the broadest possible range of the hierarchies, we

then determined the hierarchical position of two additional prefrontal cortex (PFC) regions known to

be downstream projections of the auditory, visual, and somatosensory cortices: area 8a and area 46

(Felleman and Van Essen, 1991; Kaas and Hackett, 2000). For all three sensory systems, area 46

was selected as the highest hierarchical level (Figure 1B). Notably, each of the PFC-extended win-

ning models explained more variance than chance based on a null distribution of 10,000 random

orderings (auditory system: Ppermutation < 10�4; visual system: Ppermutation = 0.003; somatosensory sys-

tem: Ppermutation = 0.001).

We then evaluated whether these winning hierarchies—selected solely based on structural meas-

ures of hierarchy—were able to capture functional variability in the INT measure, such that higher

levels exhibit longer INT. Within the HCP dataset, hierarchical position significantly correlated with

INT in the auditory system (Spearman correlation rs = 0.87, p=0.005; Figure 1C), and this correlation

was above chance level based on a null distribution of 10,000 random orderings (Ppermutation = 0.003).

The hierarchical ordering was further validated in an out-of-sample group of 158 healthy controls

from the schizophrenia combined dataset (Materials and methods), where hierarchy similarly corre-

lated with INT in the auditory system (rs = 0.80, p=0.01; Figure 1C). Positive but non-significant cor-

relations were observed in the visual system (in-sample: rs = 0.27, p=0.49, Ppermutation = 0.47; out-of-

sample: rs = 0.22, p=0.58; Figure 1C). Stronger positive correlations were observed in the somato-

sensory system that reached significance in the out-of-sample group (in-sample: rs = 0.58, p=0.108,

Ppermutation = 0.097; out-of-sample: rs = 0.80, p=0.014; Figure 1C). Despite the non-significant

effects in the visual system (which surprisingly seemed to reflect less pronounced hierarchical gra-

dients on all MRI measures, as suggested by the structural MRI gradients for all four tested orderings

of the visual cortex falling within the null distribution; Figure 1B), these data showed that the win-

ning hierarchies captured functional INT gradients, at least in the auditory and somatosensory sys-

tems. As a third independent test of our winning hierarchies, we tested their ability to capture

variability in cytoarchitecture structural type using human postmortem gene-expression data from

the Allen Human Brain Atlas (Hawrylycz et al., 2012). Following prior work (Burt et al., 2018), we

focused on the average expression of five genes preferentially expressed in granular layer IV, a

cytoarchitectural marker that is more prominent in lower hierarchical levels. Consistent with this,

expression of granular layer IV genes showed strong, negative correlations with hierarchical level in

all three winning hierarchies (auditory: rs = �0.88, p=0.003; visual: rs = �0.75, p=0.026; somatosen-

sory: rs = �0.87, p=0.005; Figure 1—figure supplement 3). Thus, we empirically validated extended

sensory hierarchies that captured variability in hierarchical indices across three independent data-

sets, although this was generally less clear for the visual system.

Figure 1 continued

Figure supplement 2. Relationships between intrinsic neural timescale and either T1w/T2w (myelin) or cortical thickness.

Figure supplement 3. Selected sensory hierarchies demonstrate a hierarchical gradient of granular layer IV (L4) gene expression.

Figure supplement 4. Effect of framewise displacement on estimated intrinsic neural timescales.

Figure supplement 5. Reliability of intrinsic neural timescale estimation.

Figure supplement 6. Model comparison to determine the hierarchical ordering of the ventral auditory pathway.
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Assessment of robustness and reliability in the HCP dataset
Next, we set out to determine the robustness and reliability of INT. We focused on head motion, a

common source of artifacts in fMRI data (Power et al., 2012). Head motion during data acquisition

was associated with decreased INT values (181 out of 188 parcels, Ppermutation = 0.01; Figure 1—fig-

ure supplement 4). Yet, these effects were comparable across hierarchical levels (auditory system:

rs = �0.23, Ppermutation = 0.805; visual system: rs = �0.38, Ppermutation = 0.649; somatosensory system:

rs = �0.88, Ppermutation = 0.054; Figure 1—figure supplement 4). No effects were observed for gen-

der or age (all Ppermutation > 0.174). Finally, INT maps showed excellent reliability between the first

and last 5 min of the fMRI acquisition (median ICC(2,1) ± interquartile range across voxels:

0.94 ± 0.03; Figure 1—figure supplement 5).

Exploratory analyses of INT in schizophrenia versus health
Although our primary hypothesis dealt with hierarchical differences between hallucinations and delu-

sions, we first present exploratory analyses of diagnosis effects on INT. Table 1 lists the participant

characteristics. Compared to controls (N = 158), patients (N = 127) exhibited a small-to-moderate,

but widespread, reduction of INT (98 out of 188 parcels, Ppermutation = 0.013; Figure 2E). A voxelwise

analysis observed a similar result (Figure 2—figure supplement 1). However, the INT reductions in

patients were comparable across hierarchical levels (all Ppermutation > 0.40; Figure 2F). In silico simu-

lations using a large-scale biophysical model (Chaudhuri et al., 2015) suggested that the global INT

reduction in patients could be neuronally implemented by globally reduced excitation-inhibition (E/I)

ratio (Figure 2—figure supplement 2).

Hierarchical differences in INT between hallucinations and delusions
Our a priori hypothesis was that hallucinations and delusions are associated with alterations of INT

at different hierarchical levels, leading to distinct changes in hierarchical gradients. To test this, we

Table 1. Participant characteristics.

Variable

Healthy controls Patients with schizophrenia

BGS COBRE NMCH UCLA All BGS COBRE NMCH UCLA All

N 24 42 25 67 158 40 31 26 30 127

Age, mean
(SD), y

36.0
(13.1)

33.9
(10.4)

29.8
(7.2)

32.3
(8.5)

32.9
(9.7)

31.1
(12.6)

30.5
(11.9)

30.5
(6.2)

35.0
(8.9)

31.8
(10.6)

Male sex, No. (%) 22 (92) 34 (81) 16 (64) 54 (81) 126 (80) 38 (95) 26 (84) 19 (73) 22 (73) 105 (83)

Framewise displacement*, mean (SD), mm 0.15
(0.04)

0.14
(0.05)

0.14
(0.11)

0.10
(0.04)

0.13
(0.06)

0.16
(0.06)

0.17
(0.06)

0.12
(0.06)

0.13
(0.04)

0.15
(0.06)

Delusion score, mean (SD) NA NA NA NA NA 2.3
(1.6)

1.7
(1.5)

3.2
(1.9)

2.5
(1.4)

2.4
(1.7)

Hallucination score, mean (SD) NA NA NA NA NA 2.1
(1.6)

1.7
(1.4)

2.9
(2.0)

2.2
(1.6)

2.2
(1.7)

Conceptual disorganization score, mean (SD) NA NA NA NA NA 0.9
(1.3)

0.6
(1.0)

2.0
(1.6)

1.4
(1.4)

1.2
(1.4)

Emotional withdrawal score, mean (SD) NA NA NA NA NA 1.8
(1.2)

1.2
(1.3)

3.4
(1.7)

2.3
(1.5)

2.1
(1.6)

Social withdrawal score, mean (SD) NA NA NA NA NA 1.8
(1.4)

1.3
(1.4)

3.2
(1.7)

2.7
(1.6)

2.2
(1.6)

Blunted affect score, mean (SD) NA NA NA NA NA 1.8
(1.6)

1.6
(1.5)

3.3
(1.6)

1.1
(1.1)

1.9
(1.6)

Alogia score, mean (SD) NA NA NA NA NA 1.3
(1.6)

1.2
(1.4)

2.1
(1.7)

0.9
(1.6)

1.3
(1.6)

*Framewise displacement values were estimated after motion censoring.

BGS, BrainGluSchi; NMCH, NMorphCH; SD, standard deviation.

The online version of this article includes the following source data for Table 1:

Source data 1. Raw data for each individual subject in Table 1.
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determined the unique variance associated with the effect of interindividual variability in hallucina-

tion and delusion severity on INT (M1primary; Materials and methods). As expected, severity of hallu-

cinations and delusions in our sample were correlated (rs = 0.62, p<0.01) but had sufficient unique

variance [(1 – R2)=0.62] to evaluate their independent contributions. The severity of these symptoms

was uncorrelated with antipsychotic dose among the 109 patients with available data (chlorproma-

zine equivalents: both p>0.86), making medication an unlikely confound (Figure 3—figure supple-

ment 1).
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Figure 2. Exploratory analyses show that patients with schizophrenia exhibit widespread reductions of intrinsic neural timescales compared to healthy

controls. (A) Parcellated group-averaged intrinsic neural timescale (INT) map for healthy controls (N = 158). (B) Parcellated group-averaged INT map for

patients with schizophrenia (N = 127). (C) t-statistic (Cohen’s d) map showing the contrast of patients greater than controls. Across most parcels, INT is

shorter in patients than controls in a regression model (M1exploratory; Materials and methods) controlling for age, gender, mean framewise displacement,

and sample-acquisition site (overall effect of diagnosis: 98 out of 188 parcels, Ppermutation = 0.013). Only the left hemisphere is shown because statistical

analyses were performed after averaging the values in each parcel across the left and right hemispheres. (D) To illustrate the effect of reduced INT in

patients with schizophrenia, the group-averaged, whole-brain-averaged autocorrelation functions were estimated from subjects with fMRI data acquired

with the same repetition time (top; controls: N = 132; patients: N = 101). The group-averaged autocorrelation function for patients crosses the zero

point on the y-axis (i.e. autocorrelation coefficient = 0) sooner than in controls, demonstrating the global reduction of INT in patients. The flattened

cortex shows the parcels in the auditory, visual, and somatosensory hierarchies for reference (bottom). (E) Scatterplot showing t-statistic values for

group differences from the regression model (M1exploratory), plotted as a function of the INT rank (determined from the group-averaged INT map from

HCP subjects). Each datapoint represents one parcel. (F) Scatterplots showing t-statistic values from parcels within the auditory (left), visual (middle),

and somatosensory (right) hierarchies plotted as a function of hierarchical level. No hierarchical-gradient effects of schizophrenia diagnosis were

observed. LBelt, lateral belt; MBelt, medial belt; PBelt, parabelt; RI, retroinsular cortex; MT, middle temproal area.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data and code to reproduce Figure 2.

Figure supplement 1. Voxelwise analysis of intrinsic neural timescales in schizophrenia versus health.

Figure supplement 2. Biophysical model simulation of reduced intrinsic neural timescales in schizophrenia versus health.
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The model (M2; Materials and methods) that we used as a primary test of main effects and inter-

actions of symptoms on hierarchical INT gradients—which also included interaction terms for each

sensory system to account for between-system differences—was significant (omnibus F11,41 = 5.52,

p<10�4). Critically, within this model we found hierarchical-gradient effects that differed significantly

between hallucinations and delusions in the expected directions for 2/3 systems (auditory system,

symptom-by-hierarchical-level interaction: t42 = 4.59 [95% bootstrap confidence interval: 3.39, 9.08],

Cohen’s f2 = 1.00, Ppermutation = 0.001; visual: t42 = �2.06 [–6.19, 0.16], f2 = 0.11, Ppermutation = 0.083;

and somatosensory: t42 = 3.50 [2.19, 7.35], f2 = 0.41, Ppermutation = 0.011; Figure 3). In the auditory

system, this interaction was driven by significant hierarchical-gradient effects in opposite directions

for hallucinations (hierarchical-level effect: t42 = �3.50 [–8.42,–2.24], f2 = 0.41, Ppermutation = 0.010)

and delusions (hierarchical-level effect: t42 = 2.99 [1.18, 6.37], f2 = 0.27, Ppermutation = 0.025). In the

somatosensory system, this effect was driven by a trend-level negative hierarchical-gradient effect

for hallucinations (hierarchical-level effect: t42 = �2.35 [–5.91,–1.00], f2 = 0.15, Ppermutation = 0.056)

and a significant positive hierarchical-gradient effect for delusions (hierarchical-level effect:

t42 = 2.60 [1.43, 5.57], f2 = 0.19, Ppermutation = 0.042; Figure 3). In the visual system, hierarchical-gra-

dient effects were not significant for either symptom (hallucination hierarchical-level effect:

t42 = 0.90 [–1.06, 3.62], f2 = 0.00, Ppermutation = 0.466; delusion hierarchical-level effect: t42 = �2.01

[–6.01, 0.53], f2 = 0.11, Ppermutation = 0.087). We also found significant interactions with sensory sys-

tem, indicating differences in the symptom interactions between the visual and the other systems

(see statistics in Figure 3B), but these were not a priori tests (see also Discussion for issues of

interpretability). Examining the significant symptom effects further, in the auditory system we

observed that patients with high-severity hallucinations exhibited a numeric increase in INT at lower

levels of the hierarchy relative to those with low-severity hallucinations, leading to a compression of

the INT hierarchical gradient (Figure 3C); in contrast, in both the auditory and somatosensory sys-

tems, patients with high-severity delusions exhibited a numeric increase in INT at higher levels of the

hierarchy relative to those with low-severity delusions, leading to a more pronounced INT hierarchi-

cal gradient.

To correct for multiple comparisons, we carried out a family-wise permutation test determining

the probability of spuriously obtaining the set of significant effects we observed in support of our

hypothesis. Based on the chance level of jointly observing negative hierarchical-gradient effects of

hallucination severity in at least 1/3 systems, and positive hierarchical-gradient effects of delusion

severity in at least 2/3 systems, and interaction effects of hierarchy-by-symptom in the expected

direction in at least 2/3 systems, this analysis suggested that the observed set of results was statisti-

cally above chance (set-level Ppermutation = 0.014). Furthermore, based on the chance level of observ-

ing a significant negative hierarchical-gradient effect for hallucinations, and a significant positive

hierarchical-gradient effect for delusions, and a significant symptom-by-hierarchical-level interaction

(i.e. all three effects in one system), the observed set of results in the auditory system was also statis-

tically above chance (set-level Ppermutation = 0.043).

To rule out an effect of our approach for selecting hierarchical orderings on these results, we

tested these symptom effects for each of the four different sensory cortex hierarchical orderings con-

sidered a priori candidates for each sensory system. Results were generally consistent across the dif-

ferent hierarchical orderings (Figure 3—figure supplement 2), particularly in the auditory system. A

family-wise permutation test similar to the one above, but including all four orderings per system (12

total orderings), showed that the observed set of results was statistically above chance for all sys-

tems (set-level Ppermutation = 0.002) and for the auditory system alone (set-level Ppermutation = 0.001).

Post-hoc analysis of the specificity of INT hierarchical-gradient effects
In a post-hoc analysis, we then investigated the specificity of these hierarchical-gradient effects to

the positive psychotic symptoms under investigation. To this end, we determined hierarchical-gradi-

ent effects individually for each symptom in the auditory and somatosensory systems using a model

including symptom-severity effect (only one symptom), hierarchical level, sensory system (auditory,

visual, and somatosensory), and their interactions. In the auditory system, conceptual disorganization

was the only symptom—other than hallucinations and delusions—that showed a significant effect

(hierarchical-level effect: t21 = �2.80 [–5.31,–1.10], f2 = 0.60, Ppermutation = 0.036; Figure 3—figure

supplement 3). But this effect was weaker than that for hallucinations (hierarchical-level effect:

t21 = �4.38 [–10.31,–3.28], f2 = 10.57, Ppermutation = 0.005; Figure 3—figure supplement 3). These
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Figure 3. A priori analyses show that hallucinations and delusions exhibit distinct hierarchical-gradient effects on intrinsic neural timescales in the

auditory and somatosensory systems. (A) Scatterplots showing t-statistic values from a regression model (M1primary; Materials and methods) including all

seven symptoms and controlling for age, gender, mean framewise displacement, and sample-acquisition site for hallucination-severity (top) and

delusion-severity (bottom) effects from parcels within the auditory (left), visual (middle), or somatosensory (right) systems plotted as a function of

hierarchical level (using PFC-extended winning hierarchies; Figure 1). (B) Summary of results from a model (M2; Materials and methods) including

symptom-severity effect (hallucinations or delusions), hierarchical level, sensory system (auditory, visual, or somatosensory), and their interactions. These

results demonstrate: (1) in the auditory system, a significant difference in the relationship between hallucination severity and hierarchical level versus

that for delusion severity and hierarchical level (b); (2) in the auditory system, significant hierarchical-gradient effects of hallucination severity (a) and

delusion severity (c); (3) in the somatosensory system, a significant difference in the relationship between hallucination severity and hierarchical level

versus that for delusion severity and hierarchical level (e); and (4) in the somatosensory system, a significant hierarchical-gradient effect of delusion

severity (d). Note that different symptoms and systems were used as references (implicit variable) across three plots to show each of the relevant effects

which were tested within a single model (M2). Null distributions were generated by randomly permuting symptom-severity scores across patients in

M1primary (2.5
th – 97.5th percentiles shown). (C) To illustrate the effects, the group-averaged autocorrelation functions were estimated from subjects with

fMRI data acquired with the same repetition time (N = 10 for each group). High-severity patients were the 10 subjects with the highest residual

symptom scores after regressing out all other symptoms; low-severity patients were the 10 subjects with the lowest residual symptom scores. The

group-averaged autocorrelation functions are shown for high-severity (solid lines) and low-severity (dashed lines) hallucination patients from low and

high levels of the auditory hierarchy (A1 and area 46, top). The group-averaged autocorrelation functions are also shown for high-severity and low-

severity delusion patients from low and high levels of the auditory hierarchy (middle). Finally, the group-averaged autocorrelation functions are shown

Figure 3 continued on next page

Wengler et al. eLife 2020;9:e56151. DOI: https://doi.org/10.7554/eLife.56151 8 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.56151


results thus suggest some specificity to positive symptoms, which conceptual disorganization is clas-

sically defined as (Association AP, 2013; VandenBos, 2007) (but see van der Gaag et al., 2006),

consistent with a stronger correlation of conceptual disorganization with positive symptoms (average

rs = 0.48) versus negative symptoms (average rs = 0.23) in our sample. Indeed, a permutation test

comparing the average strength of hierarchical-gradient effects (i.e. mean absolute-value of t-statis-

tics) for positive versus negative symptoms (i.e. blunted affect, social withdrawal, emotional with-

drawal, and alogia) showed the effects of positive symptoms to be significantly larger than the

effects of negative symptoms (Ppermutation = 0.043) in the auditory system. In the somatosensory sys-

tem, no symptoms other than delusions showed a significant hierarchical-gradient effect. Hallucina-

tions, however, showed the strongest negative effect (hierarchical-level effect: t21 = �2.23 [–6.79,–

1.75], f2 = 0.31, Ppermutation = 0.079; Figure 3—figure supplement 3).

Thus, although the hierarchical-gradient effects were not unique to the two symptoms under

investigation—which is not required under perceptual-inference models of psychosis and which

could suggest model extensions to account for additional phenomena—these effects were strongest

for, and relatively specific to, positive symptoms.

Altered E/I ratio as a potential biological mechanism
To explore candidate biological mechanisms for the effects we observed in vivo, we leveraged a

large-scale biophysical model previously shown to capture intrinsic timescale hierarchies

(Chaudhuri et al., 2015). This model depicts the macaque cortex using 29 recurrently connected

nodes, with connection strengths based on macaque tract-tracing studies (Figure 4B). Given grow-

ing evidence for E/I imbalance in schizophrenia (Foss-Feig et al., 2017; Jardri et al., 2016) and the

hypothesized local increases of INT, we fit the biophysical model to our data to explore whether our

results could be driven by local increases in E/I ratio. These E/I ratio changes were modeled as a tri-

angle function where a local maximum exhibited a peak E/I ratio increase and other nodes had E/I

ratio changes that decreased linearly as a function of absolute distance in hierarchical levels from the

peak. This function was described by three free parameters: (i) the hierarchical level of the peak E/I

ratio increase, (ii) the magnitude of the E/I ratio increase at the peak, and (iii) the magnitude of the

E/I ratio change at the minimum (i.e. at the hierarchical level furthest from the peak).

To fit the biophysical model, we first estimated in vivo data for ‘exemplary cases’ using regression

fits from M1primary (Materials and methods) in the auditory system—the system that showed the

strongest effects in vivo. The regression fits allowed us to estimate INT values at each level of the

hierarchy for exemplary cases representative of extreme symptom profiles (while controlling for vari-

ability in other factors). INT values for the auditory hierarchy were estimated for four exemplary

cases: (1) no hallucinations or delusions (fitted INT values from M1primary with minimum scores of 0

for both symptoms); (2) hallucinations only (maximum score of 5 for hallucinations and score of 0 for

delusions); (3) delusions only (scores of 0 for hallucinations and 5 for delusions); (4) hallucinations and

delusions (scores of 5 for both symptoms). For all exemplary cases, the severity of other symptoms

and the values of covariates were set to the average values from all patients. Changes of INT for

Figure 3 continued

for high-severity and low-severity delusion patients from low and high levels of the somatosensory hierarchy (area 3b and area 46, bottom). These plots

depict a compression of the auditory hierarchical gradient in high-severity hallucination patients and, instead, an expansion of both the auditory and

somatosensory hierarchical gradients in high-severity delusion patients. LBelt, lateral belt; MBelt, medial belt; PBelt, parabelt; RI, retroinsular cortex;

MT, middle temproal area.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Data and code to reproduce Figure 3.

Figure supplement 1. Controlling for antipsychotic dose does not change the distinct hierarchical-gradient effects of hallucination and delusion

severity in the auditory and somatosensory systems.

Figure supplement 2. Distinct hierarchical-gradient effects of hallucinations and delusions are robust to the choice of sensory hierarchies.

Figure supplement 3. Only positive symptoms show hierarchical-gradient effects in the auditory system and only delusions show a hierarchical-

gradient effect in the somatosensory system.

Figure supplement 4. Comparison of hierarchical-gradient effects in the dorsal and ventral auditory systems.

Figure supplement 5. Distinct hierarchical-gradient effects of hallucination and delusion severity in the auditory system are observed when using an

anatomically agnostic definition of the hierarchy.
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Figure 4. Hallucination and delusion effects on intrinsic neural timescales are recapitulated by elevated excitation-inhibition ratios at different

hierarchical levels. (A) Scatterplots showing the difference in estimated intrinsic nerual timescale (INT) values between the three exemplary cases

capturing extreme symptom profiles (‘hallucinations only’, ‘delusions only’, and ‘hallucinations and delusions’) with respect to the ‘no hallucinations or

delusions’ exemplary case (in vivo DINT; fitted parcel-wise data from M1primary). The parcel data used for fitting the biophysical model are outlined in

Figure 4 continued on next page
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exemplary cases 2–4 were determined as the difference in INT relative to the ‘no hallucinations or

delusions’ case (in vivo DINT; Figure 4A). We modeled the in vivo DINT in the auditory system using

the macaque visual system as a model hierarchy with realistic biological constraints due to the lack

of tract-tracing data for the auditory system; note that sensory system and species differences limit

our ability to derive precise quantitative conclusions from the modeling results but still afford quali-

tative insights. We specifically used the six biophysical-model nodes that directly corresponded to

levels of our visual hierarchy and for which tract-tracing data were available: V1 (level 1), V2 (level 2),

V4 (level 4), MT (level 5), 8l (level 8), and 46d (level 9). Model-derived in silico DINT (Figure 4C) were

calculated for each node as the difference in INT from the biophysical model with no perturbations

(‘unaltered model’) and the INT from the best-fitting biophysical model for which the values of the

parameters controlling the E/I ratio provided the closest approximation to the in vivo DINT across

exemplary cases (in the six corresponding parcels of our auditory hierarchy: A1 [level 1], LBelt [level

2], PBelt [level 4], RI [level 5], 8a [level 8], and 46 [level 9]). Specifically, two sets of the 3 E/I ratio

parameters were jointly fitted to exemplary cases 2–4, one for hallucinations and one for delusions,

with the combined effect of hallucinations and delusions resulting from the sum of the E/I ratio

changes for the two individual symptoms.

In silico results using the best-fitting parameters were able to recapitulate the INT effects of hallu-

cinations and delusions (compression versus expansion of the INT hierarchical gradient, respectively)

via local increases in E/I ratio at low or high levels of the hierarchy, respectively. Specifically, the

best-fitting levels of the peak increase in local E/I ratio were levels 1 and 8 for hallucinations and

delusions, respectively (Figure 4D). Interestingly, given the relatively greater strength of both recur-

rent and long-range connections at higher levels that is built into the biophysical model, the required

peak E/I ratio increase to achieve the observed changes of INT was considerably smaller for the

delusion-related alteration at level 8 (DE/I = 4.02%) compared to the hallucination-related alteration

at level 1 (DE/I = 21.61%). Also, the in silico DINT based on the summed E/I ratio alterations for indi-

vidual symptoms closely approximated the combined case of hallucinations and delusions (exem-

plary case 4), which consisted of a general increase in INT with no clear change in the hierarchical

gradient. This suggests that additivity of the local symptom-specific alterations could explain symp-

tom co-occurrence.

In a follow-up analysis, we further explored our in vivo data for evidence of the additive effect of

hallucinations and delusions, focusing on the auditory system. We first compared the average INT

across all auditory system parcels between patients with both high hallucination and delusion scores

(i.e. raw average data from subjects with a score of 5 for both symptoms; N = 11) and patients with

Figure 4 continued

pink. Yellow arrowheads denote the hypothesized hierarchical level of the maximum excitation-inhibition (E/I) ratio increase. (B) Simplified schematic of

a large-scale biophysical model of the macaque cortex and its variants (Materials and methods). The model consists of 29 nodes with local excitatory

(red triangles) and inhibitory (blue circles) pools of neurons; only two nodes—high (top) and low (bottom) hierarchical levels—are shown for illustrative

purposes. These nodes have both local (recurrent) and long-range (across-node) connections. Lightning bolts mark theoretical perturbations to the

model. Thicker or thinner lines with respect to the reference scenario reflect increased or decreased connection strengths, respectively. Note that E/I

ratio can be increased either by increasing local excitatory-to-excitatory connection strength or by decreasing local excitatory-to-inhibitory connection

strength, but these scenarios were modeled individually. (C) Scatterplots showing the difference in simulated INT values between each of the three

pathological biophysical models (‘elevated E/I ratio at low level’, ‘elevated E/I ratio at high level’, and ‘elevated E/I ratio at low and high levels’) with

respect to the reference biophysical model (‘unaltered model’) using the best-fitting E/I ratio parameters (in silico DINT). By allowing the E/I ratios to

vary, the biophysical model can recapitulate the in vivo INT changes with a negative (compressed) hierarchical-gradient effect for hallucinations, a

positive (expanded) hierarchical-gradient effect for delusions, and an overall INT increase (without a manifest hierarchical-gradient effect) for the

combined case of hallucinations and delusions. The visual hierarchy (V1, V2, V4, MT, 8l, and 46d) was used for these simulations given the lack of tract-

tracing data for the auditory cortex—other levels of the visual cortex are omitted for the same reason—but the qualitative pattern of results applies to

hierarchical-gradient effects in any given sensory system. Yellow arrowheads denote the hierarchical level of the maximum E/I ratio increase. (D)

Scatterplots showing the fitted changes to E/I ratios for the pathological biophysical models: the in vivo INT changes associated with hallucinations can

be recapitulated by elevated E/I ratio at the lowest hierarchical level and those associated with delusions by elevated E/I ratio (of smaller magnitude) at

the highest hierarchical level, with the addition of these two alterations capturing the changes in patients with both hallucinations and delusions. Note

that E/I ratio in level 9 of the hierarchy was fixed to its value in the unaltered model to prevent model instability (Materials and methods). LBelt, lateral

belt; MBelt, medial belt; PBelt, parabelt; RI, retroinsular cortex.

The online version of this article includes the following source data for figure 4:

Source data 1. Data and code to reproduce Figure 4.
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neither hallucinations nor delusions (i.e. subjects with a score of 0 for both symptoms; N = 18). Here,

we observed significantly higher average INT in patients with high-severity hallucinations and delu-

sions (t27 = 1.84, p=0.038; one-tailed two-sample t-test). Second, we fit a linear model predicting

auditory parcel INT as a function of hierarchical level, allowing separate intercepts for each of the

two groups, and an interaction between hierarchical level and group. Here, we found that the inter-

cept was indeed higher for patients with high-severity hallucinations and delusions compared to

patients with neither symptom (t257 = 2.04, p=0.043). Furthermore, we found no difference in the

hierarchical gradients between these groups, with a non-significant hierarchical-level-by-group inter-

action (t257 = 0.65, p=0.519). Although preliminary, these results supply some support for the notion

of additive hierarchical alterations in psychosis.

Control analyses examining alternative definitions of auditory
hierarchies
Given that the hierarchical-gradient effects supporting our initial hypotheses were clearest in the

auditory system—a system thought to comprise dual processing streams—we considered the impact

of alternative definitions of the auditory hierarchy on our results.

Diverging auditory streams with downstream projections to dorsal (areas 8a and 46) versus ven-

tral (areas 10 and 12vl) PFC have been described (Kaas and Hackett, 2000). We thus conducted an

ordering-selection analysis for the ventral stream, like that presented above for the dorsal stream

(Selection and Multimodal Validation of Neural Hierarchies). Within the ventral stream, area 12vl was

better predicted as the highest hierarchical level, and the winning ordering explained more variance

than chance based on a null distribution of random orderings (ventral auditory system:

Ppermutation < 10�4; Figure 1—figure supplement 6A). Furthermore, similar to the dorsal stream,

hierarchical level in the ventral stream correlated with INT (in-sample: rs = 0.87, p=0.005, Ppermuta-

tion = 0.003; out-of-sample: rs = 0.80, p=0.014; Figure 1—figure supplement 6B) and expression of

granular layer IV genes (rs = �0.91, p=0.001). Given these dual auditory streams and their corre-

sponding validated hierarchies, we explored potential differences in hierarchical-gradient effects of

hallucination and delusion severity for the dorsal versus ventral streams. The model explaining symp-

tom effects and their differences by hierarchical level and their interaction by symptoms and auditory

stream was significant (omnibus F7,27 = 8.60, p<10�4). We further found a significant difference in

the symptom-by-hierarchical-level effects between the dorsal and ventral auditory streams (symp-

tom-by-hierarchical-level-by-processing-stream interaction: t28 = 1.75 [1.02, 3.90], f2 = 0.12, Ppermuta-

tion = 0.005; Figure 3—figure supplement 4). In the ventral stream, we did not find a significant

difference in the hierarchical-gradient effects between hallucinations and delusions (symptom-by-

hierarchical-level interaction: t28 = 2.01 [–0.37, 6.43], f2 = 0.17, Ppermutation = 0.159; Figure 3—figure

supplement 4); we found a trend-level hierarchical-gradient effect of hallucination severity (hierarchi-

cal-level effect: t28 = �2.56 [–7.04,–0.73], f2 = 0.31, Ppermutation = 0.098; Figure 3—figure supple-

ment 4) and no effect of delusion severity (hierarchical-level effect: t28 = 0.28 [–2.42, 3.36], f2 = 0.00,

Ppermutation = 0.445; Figure 3—figure supplement 4). Interestingly, comparing the dorsal and ventral

auditory streams, we observed a significant difference in the hierarchical-gradient effect of delusion

severity (hierarchical-level-by-processing-stream interaction: t28 = 1.89 [1.39,3.49], f2 = 0.15, Ppermuta-

tion = 0.003; Figure 3—figure supplement 4). These results thus support the involvement of dorso-

lateral PFC in delusions, consistent with prior work (Corlett et al., 2007).

As an additional control for the uncertainty in defining the auditory hierarchy, we also adopted an

anatomically agnostic, data-driven approach. First, the symptom effects (M1primary) were estimated

for each voxel within the nine auditory-system parcels (600 voxels total). Second, each voxel was

ranked based on its INT value in the average INT map from the HCP dataset. Third, 10 equally

spaced bins along the INT ranking (60 voxels per bin) were created, which comprised the levels of

the data-driven hierarchy, and the voxelwise t-statistics (from M1primary) were averaged per bin. Simi-

lar to the main analysis (Figure 3), a model that included main effects and interactions of symptoms

on the hierarchical INT gradient was significant (omnibus F4,15 = 10.20, p=0.001). Within this model,

we found hierarchical-gradient effects that differed significantly between hallucinations and delu-

sions (symptom-by-hierarchical-level interaction: t16 = 5.19 [0.48 23.26], f2 = 10.12, Ppermuta-

tion = 0.003; Figure 3—figure supplement 5). This interaction was driven by significant hierarchical-

gradient effects in opposite directions for hallucinations (hierarchical-level effect: t16 = �2.79 [–

16.72, 2.40], f2 = 0.25, Ppermutation = 0.049; Figure 3—figure supplement 5) and delusions
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(hierarchical-level effect: t16 = 4.55, [1.04, 19.76], f2 = 4.04, Ppermutation = 0.008; Figure 3—figure

supplement 5).

Discussion
Using a recently developed method for measuring neural timescales from resting-state fMRI data,

we set out to test the hypothesis that hallucinations and delusions are associated with dysfunctions

at different levels of neural hierarchies. Using established structural indices of hierarchy (myelin and

cortical thickness) and INT (a functional index of hierarchy) in independent samples, we first vali-

dated extended sensory hierarchies for the auditory, visual, and somatosensory systems that cap-

tured substantial variability in the hierarchical MRI indices. After further showing excellent reliability

of the INT measure, in exploratory analyses, we showed for the first time that patients with schizo-

phrenia have globally reduced INT. Most importantly, our primary analyses comparing INT effects

for hallucinations versus delusions in the validated hierarchies demonstrated that these symptoms

are associated with distinct changes of the hierarchical gradients in the auditory and somatosensory

systems, an effect we failed to observe in the visual system.

Hierarchical models of perceptual inference posit that perceptions are shaped by prior beliefs

(Dayan et al., 1995; Friston and Kiebel, 2009; Kiebel, 2009; Lee and Mumford, 2003; Rao and

Ballard, 1999) through reciprocal message passing across different levels of sensory hierarchies, an

architecture that mirrors the known anatomy of sensory systems (Felleman and Van Essen, 1991;

Glasser et al., 2016; Kaas and Hackett, 2000; Markov et al., 2014a; Van Essen et al., 1992;

Young, 1993). In this scheme, higher levels of the neural hierarchy are thought to represent increas-

ingly abstract belief states that evolve at slower timescales (Kiebel, 2009). For instance, during

speech perception, the hierarchical structure of linguistic units can be parsed such that lower levels

of auditory processing encode syllable information at faster timescales while higher levels encode

sentence information at slower timescales (Ding et al., 2016). An emerging body of work in psycho-

sis has linked hallucinations to preferential biases toward prior beliefs in low-level inferences during

detection or estimation of stimulus features (Cassidy et al., 2018; Davies et al., 2018;

Powers et al., 2017; Teufel et al., 2015) and delusions to preferential biases toward prior beliefs in

higher-level inferences about more abstract, hidden states (Baker et al., 2019). The observed biases

toward prior beliefs in past behavioral work can be framed as primacy biases (Baker et al., 2019),

where past information is weighted more heavily during the inferential process, or equivalently,

where information is integrated over longer timescales (Glaze et al., 2015). Temporal integration is

at the core of the neural implementation of perceptual inference (Mazurek et al., 2003) and is

thought to depend crucially on recurrent network activity (Chaudhuri et al., 2015; Mante et al.,

2013). Thus, a plausible neuronal implementation of primacy biases at a given level of the hierarchy

would be through increases in the strength of recurrent excitation or decreases in the strength of

recurrent inhibition (i.e. elevated E/I ratio) leading to relative increases in neural timescales.

Here, we observed changes in neural timescales across levels of neural hierarchies that differed

between hallucinations and delusions, an effect that was most evident in the auditory hierarchy.

Patients with more severe hallucinations exhibited a less pronounced INT hierarchical gradient, con-

sistent with increased timescales at lower levels compared to those with less severe hallucinations;

those with more severe delusions instead exhibited a more pronounced INT hierarchical gradient,

consistent with increased timescales at higher levels compared to those with less severe delusions

(Figure 3C). We further recapitulated these findings by respectively elevating E/I ratios at low or

high hierarchical levels of a large-scale biophysical model (Chaudhuri et al., 2015). These E/I ratio

elevations could, in principle, result from alterations in NMDA or dopamine activation at these levels

and are thus plausible under widely supported glutamatergic and dopaminergic theories of psycho-

sis (Brunel and Wang, 2001; Corlett et al., 2009; Corlett et al., 2011; Durstewitz and Seamans,

2002; Jardri et al., 2016; Javitt et al., 2012; Weinstein et al., 2017). These results thus demon-

strate distinct hierarchical alterations for hallucinations and delusions that are generally consistent

with our hypothesized hierarchical framework, where distinct hierarchical alterations provide symp-

tom-specific pathways that together may explain symptom co-occurrence, thus providing a candi-

date biological mechanism for the psychotic syndrome.

Such hierarchical alterations may also fit well with the phenomenological timescale of these symp-

toms. Clinical observation indicates that hallucinations—like rapidly changing sensory events—
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change transiently and intermittently over seconds or minutes, while delusions—like slowly changing

‘conceptual’ beliefs—evolve more slowly over days or months, but their average severities over a

given period typically evolve in parallel. These clinical features are consistent with a hierarchical

structure of nested timescales (Kiebel et al., 2008). While our findings generally support this notion,

computational work explicitly laying out the proposed model in the context of inferential alterations

in psychosis and empirical confirmations are warranted. One outstanding question is how the delu-

sion-related alterations in neural timescales we observed—which may predominate in high levels of

the hierarchy but manifest as changes on the order of seconds—might drive delusions evolving over

much longer timescales. One possible explanation is that, while delusion maintenance may involve

long-term memory processes, the underlying mechanism initiating delusions transpires more rapidly

and disrupts inferences at timescales on the order of seconds, consistent with prior work

(Baker et al., 2019). Since encoded memories likely reflect inferences summarizing information at a

given timepoint (Shadlen and Shohamy, 2016), high-level inferential biases at shorter timescales

may be sufficient to shape long-term conceptual memories in a way that further propagates biases

over long time-periods, particularly under primacy biases that decrease the relative influence of

newer information. Although less critical, it is also worth noting that INT reflects differences in rest-

ing circuit dynamics, the timescale of which is likely to be substantially magnified when these circuits

are engaged (Chaudhuri et al., 2015; Hasson et al., 2008).

Our opposing findings for diagnosis (globally reduced INT) and symptom severity (focally

increased INT) may be reconciled within pathophysiological models of psychosis which posit a key

role for compensatory processes in schizophrenia. Hallucinations and delusions have been proposed

to represent a temporary state of the illness that results from a failed attempt to compensate for a

trait-like, baseline deficit (Adams et al., 2013; Moutoussis et al., 2011). Relatedly, long-standing

circuit-level theories have suggested that psychosis-related increases in striatal dopamine transmis-

sion are secondary to a primary cortical deficit (Weinberger, 1987). In particular, previous frame-

works suggest that psychotic states are associated with excessive prior biases in inferential

processes arising as an overcompensation for a baseline trait consisting of the opposite bias

(Adams et al., 2013; Horga and Abi-Dargham, 2019). From a biophysical-modeling standpoint, the

trait-like baseline deficit in schizophrenia could consist of globally reduced E/I ratio (for instance,

arising from NMDA-receptor hypofunction of excitatory neurons Cavanagh et al., 2019), which

behaviorally would translate into general recency biases. In contrast, a failed compensatory mecha-

nism could result in local increases in E/I ratio at different levels leading to distinct primacy biases

and psychotic symptoms (Lam et al., 2017). While speculative, the compensatory changes could

arise from dopaminergic alterations that effectively increase E/I ratio by preferentially boosting

NMDA-receptor function of excitatory neurons (or other changes dampening NMDA-receptor func-

tion of inhibitory neurons) (Brunel and Wang, 2001).

Our finding of preferential involvement of the auditory system for hallucinations is not surprising,

given that in schizophrenia this symptom tends to predominate in the auditory modality despite also

presenting in other modalities (Lim et al., 2016; Waters and Fernyhough, 2017); auditory-cortex

abnormalities in schizophrenia are also well established (Javitt and Sweet, 2015). Our finding of

somatosensory system involvement for delusions is also consistent with previous work on delusions

of passivity (Brüne et al., 2008; Spence et al., 1997) and deficits in sensory attenuation via motor

predictions in schizophrenia (Shergill et al., 2005; Shergill et al., 2014). However, despite our fail-

ure to detect differential alterations in the visual system, substantial evidence also suggests visual-

cortex abnormalities in schizophrenia (Butler et al., 2008; Cavuş et al., 2012; Dorph-

Petersen et al., 2007). And evidence from subclinical populations suggests symptom-specific hierar-

chical alterations in visual tasks (Davies et al., 2018). Furthermore, the general differences in INT val-

ues between sensory systems (Figure 1), while potentially relevant to psychosis in and of

themselves, could imply differential sensitivity in our analyses across sensory domains. Our null find-

ings in the visual system are also qualified by the poorer correspondence between levels of the visual

hierarchy and hierarchical MRI indices (not only for INT but also surprisingly for the structural indices)

compared to the other systems (Figure 1). This suggests the need for further investigation into the

sensitivity of available MRI measures of hierarchy to uncover the underlying gradients within the

visual cortex.

Previous empirical work using structural (Bassett et al., 2008) and functional measures

(Dondé et al., 2019; Leitman et al., 2010; Yang et al., 2016), suggests hierarchical alterations in
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schizophrenia. This work, however, did not evaluate hierarchical differences between symptoms and

used measures that differ fundamentally from INT. In exploratory analyses testing diagnostic effects,

we found global INT reductions in schizophrenia but no clear shifts in the hierarchical INT gradients

(see Figure 2—figure supplement 2 for initial evidence of an exponential effect). We used the same

approach as a previous study measuring INT in individuals with autism, which reported decreased

INT in the visual cortex (and increased INT in the caudate) (Watanabe et al., 2019). Consistent with

our interpretation, this INT phenotype was linked to other data in autism supporting excessive

weighting of sensory evidence (Gollo, 2019; Lawson et al., 2017)—akin to a decreased primacy

bias (i.e. a recency bias).

Some limitations are worth discussing. Because 93% of the patients (with available medication

data) were taking antipsychotics, we cannot definitively rule out medication confounds, particularly

on diagnosis effects. However, we observed similar effects when controlling for dose in our main

analysis, no correlations between dose and symptoms, and did not expect differential neural effects

on hallucinations versus delusions (Figure 3—figure supplement 1); future studies should elucidate

medication effects on INT. Additionally, our study was limited to investigating the effects of global

severity of hallucinations and delusions and could not resolve effects of symptom subtype or con-

tent, since detailed assessments were only available in a small subset of our patients. Larger studies

with more detailed assessments are needed to tease out these potential effects.

In conclusion, we have presented evidence for distinct hierarchical alterations in neural timescales

as a function of hallucination and delusion severity, lending initial neural support for hierarchical

views of psychosis. Additionally, our work suggests that INT (Watanabe et al., 2019) provides a reli-

able and interpretable measure of neural function with the potential to elucidate hierarchical altera-

tions and dysfunctions in circuit dynamics in schizophrenia and other neuropsychiatric disorders.

Materials and methods

Human Connectome Project dataset
T1w/T2w and cortical thickenss maps, and resting-state fMRI data were obtained for a subset of 100

unrelated young and healthy subjects from the Human Connectome Project (HCP) WU-Minn Consor-

tium (Van Essen et al., 2013). The first fMRI run (single-shot EPI with left-to-right phase encoding

direction) from the first fMRI session was obtained for each subject during eyes-open-on-fixation

with the following scanning parameters: repetition time (TR) = 720 ms; spatial resolution = 2 � 2�2

mm; timepoints = 1200. High-resolution (0.7 mm isotropic voxels) T1w and T2w anatomical images

were also acquired. Details regarding subject recruitment and MRI data acquisition have been previ-

ously reported (Smith et al., 2013; Van Essen et al., 2012). Preprocessing of the HCP data was per-

formed using the HCP minimal preprocessing pipeline (Glasser et al., 2013). The preprocessed

fMRI data were then used for the estimation of INT maps in 32k Conte69 mesh surface space and

MNI152_ICBM2009a_nlin volume space with native spatial resolution. The T1w/T2w (myelin) maps

(Glasser and Van Essen, 2011) in 32k Conte69 mesh surface space were used to compare functional

(INT) and structural (T1w/T2w) measures of hierarchy.

Schizophrenia combined dataset
T1w images and resting-state fMRI data were obtained for 331 healthy control subjects and 254

patients diagnosed with either schizophrenia (N = 241) or schizoaffective disorder (N = 13) from four

publicly available datasets. Three of these datasets were from the SchizConnect repository [Brain-

GluSchi (Bustillo et al., 2016), COBRE (Aine et al., 2017; Çetin et al., 2014), and NMorphCH

(Alpert et al., 2016)] and one was from the OpenfMRI repository (UCLA; Poldrack et al., 2016).

Data that survived a quality-control check (~95%) and motion-censoring check (~64%) included 140

patients and 225 controls. The quality control check consisted of visual inspection of the spatially

normalized images. The motion-censoring check consisted of determining if there were sufficient

degrees of freedom after motion censoring to perform nuisance variable regression. A subset of 158

controls was then selected that matched patients on gender and age. To minimize scanner- and site-

related differences, we excluded subjects if the signal-to-noise ratio (SNR) was less than 100 for any

of the standard regions-of-interest (Power et al., 2011). The final sample after quality-control checks

consisted of 127 patients and 152 age- and gender-matched controls (Table 1).
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The fMRI data were collected for each subject during eyes-open-on-fixation with the following

scanning parameters: TR = 2000 ms (except for NMorphCH, where TR = 2200 ms); timepoints (Brain-

GluSchi/COBRE/NMorphCH/UCLA) = 165/150/323/152; spatial resolution (mm) = 3.5�3.5�3.5/

3.5�3.5�3.5/4�4�4/3�3�3. Data were preprocessed using the AFNI afni_proc.py

function (Cox, 1996). The following steps were performed: (1) removal of the first five volumes with

the 3dTcat function; (2) slice-timing correction; (3) motion correction; (4) 12-parameter affine regis-

tration of the fMRI images to the T1w image; (5) spatial normalization of fMRI images to

MNI152_ICBM2009a_nlin volume space using nonlinear warping via the T1w image; (6) single-inter-

polation resampling of fMRI images combining motion correction and spatial normalization.

Symptom severity in patients was assessed with the Positive and Negative Syndrome Scale

(PANSS) (Kay et al., 1987) in the COBRE and BrainGluSchi samples, and with the Scale for the

Assessment of Positive Symptoms (SAPS) (Andreasen, 1984) and the Scale for the Assessment of

Negative Symptoms (SANS) (Andreasen, 1983) in the UCLA and NMorphCH samples. To appropri-

ately combine the scores across all four samples, we chose the subset of seven items that consti-

tuted unequivocal matches between the PANSS and SAPS/SANS (in parentheses): delusions (global

rating of delusions), conceptual disorganization (global rating of positive formal thought disorder),

hallucinatory behavior (global rating of hallucinations), blunted affect (global rating of affective flat-

tening), emotional withdrawal (global rating of anhedonia/asociality), passive/apathetic social with-

drawal (global rating of avolition/apathy), lack of spontaneity and flow of conversation (global rating

of alogia). PANSS scores were decreased by one point for all levels of severity and the severe and

moderately severe levels were combined into a single level so that scoring conformed to the SAPS/

SANS scale (from 0 to 5 with increasing severity).

Intrinsic neural timescale maps
Before estimating the voxelwise or vertexwise INT values, preprocessed fMRI data were further proc-

essed with the following steps: (1) regression of white-matter signal, cerebrospinal-fluid signal,

global-brain signal, and the six motion parameters along with their first derivatives; (2) bandpass fil-

tering in the 0.01–0.1 Hz range; (3) motion censoring of volumes with framewise

displacement (FD) (Power et al., 2012) greater than 0.3 mm along with the volumes directly preced-

ing and following that volume; (4) spatial smoothing with a 4 mm full-width-at-half-maximum Gauss-

ian kernel. INT maps were estimated following the procedure of Watanabe et al., 2019. At a single-

participant level, the processed resting-state fMRI data were used to estimate the INT value in each

voxel or vertex (for HCP dataset only). First, the autocorrelation function was estimated according

to:

ACFk ¼

P

T

t¼kþ1

yt ��yð Þ yt�k ��yð Þ

P

T

t¼1

yt ��yð Þ2
(1)

where k is the time lag, T is the total number of timepoints, and y is the fMRI signal. INT was then

estimated as the area under the curve of the ACF during the intial positive period:

INT ¼ TR �
X

N

k¼1

ACFk (2)

where TR is the repetition time of the fMRI signal and N is the lag directly preceeding the first nega-

tive ACF value.

After INT estimation, the INT maps for subjects from the BrainGluSchi, COBRE, and NMorphCH

samples were resampled to a spatial resolution of 3�3�3 mm to match the UCLA sample.

HCP dataset analyses
Based on previous work showing that lower T1w/T2w map values co-localize with higher hierarchical

levels (Burt et al., 2018), as do longer neural timescales (Chaudhuri et al., 2015; Murray et al.,

2014), we examined the spatial relationship between T1w/T2w, cortical thickness, and INT values.

We restricted this examination to the HCP dataset since its high-resolution and high-quality
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structural MRI data allows for precise estimation of myelin maps. Group-averaged T1w/T2w, cortical

thickness, and INT maps in surface space were parcellated using the HCP-multimodal parcellation

(HCP-MMP1.0) (Glasser et al., 2016). The parcels were separated into either the six parcel groups

that the 22 sections described by Glasser et al. are divided into: (1) visual (sections 1–5); (2) sensori-

motor (sections 6–9); (3) auditory (sections 10–12); (4) remaining temporal cortex (sections 13–14);

(5) remaining posterior cortex (sections 15–18); (6) remaining anterior cortex (sections 19–22)

(Glasser et al., 2016); or 12 networks (Ji et al., 2019). We tested the parcel-wise spatial relationship

between T1w/T2w or cortical thickness and INT values using linear regression.

Findings from the parcel-wise analysis did not support a brain-wide, system- or network-indepen-

dent alignment of structural and functional hierarchies. This motivated a search for anatomically

informed hierarchies within the sensory systems (auditory, visual, and somatosensory). Linear mixed-

effects models were used to determine the best-fitting hierarchical ordering for each system. Models

predicted hierarchical level from fixed- and random-effects (per subject) of T1w/T2w and cortical

thickness values for parcels ordered accordingly. Hierarchical orderings were first determined for the

sensory cortices. The four most likely orderings for each sensory system were determined based on

the primate anatomy literature (Felleman and Van Essen, 1991; Galaburda and Pandya, 1983;

Hyvärinen and Poranen, 1978; Kaas and Hackett, 2000; Morel et al., 1993). The auditory cortex

regions were A1, lateral belt (LBelt), medial belt (MBelt), parabelt (PBelt), retroinsular cortex (RI), A4,

and A5. The positions of LBelt and MBelt were allowed to take either level 2 or 3 of the hierarchy;

PBelt and RI were allowed to take either level 4 or 5; A1 was level 1, A4 was level 6, and A5 was level

7 in all cases. The visual regions were V1, V2, V3, V4, middle temporal area (MT), V6, and V7. The

positions of V4 and MT were allowed to take either level 4 or 5 of the hierarchy; V6 and V7 were

allowed to take either level 6 or 7; V1 was level 1, V2 was level 2, and V3 was level 3 in all cases. The

somatosensory cortex regions were areas 3b, 3a, 1, 2, 5m, 7b, and 7a. The positions of areas 3b and

3a were allowed to take either level 1 or 2 of the hierarchy; areas 1 and 2 were allowed to take either

level 3 or 4; area 5m was level 5, area 7b was level 6, and area 7a was level 7 in all cases. Since all

compared models had the same number of variables, the winning models for each system were sim-

ply determined based on the orderings that explained the most variance (R2). After selection of the

hierarchies in the sensory cortices, two downstream prefrontal cortex regions (areas 8a and 46) were

added as either level 8 or 9 of the hierarchy based on a second model comparison. The PFC-

extended winning hierarchies were then validated by determining the relationship of hierarchical lev-

els with INT values using non-parametric Spearman correlations (rs) both in the HCP (in-sample) data-

set and in the control group from the schizophrenia combined (out-of-sample) dataset. Following

prior work (Burt et al., 2018), the winning hierarchies were additionally validated against human

postmortem gene-expression data from the Allen Human Brain Atlas (Hawrylycz et al., 2012).

HCP robustness analyses
Because the schizophrenia combined dataset was analyzed in volume space, HCP dataset single-sub-

ject and group-averaged INT maps were also estimated in volume space and parcellated into 180

cortical parcels using HCP-MMP1.0 in volume space (https://identifiers.org/neurovault.collection:

1549) and 8 FreeSurfer (Fischl, 2012) subcortical parcels (thalamus, caudate, putamen, pallidum, hip-

pocampus, amygdala, nucleus accumbens, and ventral diencephalon). The reliability of INT maps

was assessed at the voxel level in volume space using the two-way random, single score intraclass

correlation coefficient [ICC(2,1)] (Shrout and Fleiss, 1979). INT maps for each of the 100 subjects

estimated using the first 5 min of data acquisition (similar to the amount of data available for the

schizophrenia datasets) were compared to those estimated using the last 5 min of data acquisition

of a single 14-min run. To evaluate potential confounds of the INT values, we examined their rela-

tionship with age, gender, and head motion—based on mean framewise displacement

(Power et al., 2012) (FD)—using linear regression.

Schizophrenia combined dataset analyses
INT maps were parcellated into 180 cortical parcels using HCP-MMP1.0 in volumetric space (https://

identifiers.org/neurovault.collection:1549) and 8 FreeSurfer (Fischl, 2012) subcortical parcels (thala-

mus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, and ventral dien-

cephalon). In an exploratory analysis, differences in INT map values between patients with
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schizophrenia and healthy controls were investigated using a linear-regression model (M1exploratory)

predicting parcel-wise INT as a function of diagnosis while controlling for age, gender, mean FD,

and sample-acquisition site (BrainGluSchi, COBRE, NMorphCH, and UCLA). To test our hypothesis

of hallucination- and delusion-specific alterations of INT, we evaluated the relationships between

symptom severity and INT values using a linear-regression model (M1primary) predicting parcel-

wise INT with each of the seven symptoms (hallucinations, delusions, conceptual disorganization,

emotional withdrawal, social withdrawal, blunted affect, and alogia) as regressors while controlling

for age, gender, mean FD, and sample-acquisition site. We did not use voxelwise statistical

parametric mapping approaches because our main focus was on effects along hierarchical gradients

not necessarily dependent on anatomical proximity. Our main test focused on differences between

hallucinations and delusions in INT gradient effects within anatomically informed hierarchies of the

auditory, visual, and somatosensory systems—reflecting symptom-specific INT alterations at different

hierarchical levels. We specifically tested our primary hypothesis using a linear-regression model

(M2) predicting auditory, visual, and somataosensroy system t-statistics for hallucination and delu-

sion severity from M1primary as a function of symptom, hierarchical level, and sensory system. The

interactions of symptom-by-hierarchical-level were used to directly test our hypothesis. This model

included full interactions for all varaibles (symptoms, heirarchical level, and sensory systems). We

included sensory-system interactions to allow for differences between sensory systems. A post-hoc

power analysis for M2 showed our analyses had between 88% and 99% power to detect effect sizes

(Cohen’s f2) between 0.19 and 0.36 (a = 0.05).

Permutation testing
To assess statistical significance while controlling for multiple comparisons, we used permutation

tests, which provide adequate protection against false positives in fMRI analyses (Eklund et al.,

2016). Permutation tests compared observed effects (t-statistics of individual regression coefficients

from M2 [or M1exploratory]) to those in a null distribution obtained from 10,000 surrogate datasets in

which the values of the predictor variables of interest in M1primary (or M1exploratory) were randomly

shuffled. Corrected p-values at 0.05 (‘Ppermutation’), two-sided, are reported. Permutation tests were

also used to determine null distributions of the hierarchy model-comparison for determining the

hierarchical orderings. There, null distributions were obtained from 10,000 surrogate datasets in

which the hierarchical level of each region was randomly assigned. Corrected p-values at 0.05, one-

sided, are reported for the model-comparison step while corrected p-values at 0.05, two-sided, are

reported for the in-sample INT correlation.

Bootstrap confidence intervals
Bootstrap confidence intervals were determined for the results from M2 using the accelerated bias-

corrected (BCa) percentile method (Efron, 1987). 10,000 bootstraps were performed at the level of

M1primary and two-sided 95% confidence intervals were determined.

Large-scale biophysical model of cortical neural timescales
We implemented the model of Chaudhuri et al., 2015, a large-scale biophysical model of hierarchi-

cal dynamic processing in the primate cortex. We chose this model because it was constructed using

gold-standard tract-tracing experiments to determine the directed- and weighted-connectivity

strengths between nodes (unlike similar models of the human cortex). Additionally, this model cap-

tures the observed hierarchy of intrinsic neural timescales Murray et al., 2014. The model contains

29 nodes, each consisting of an excitatory and inhibitory population. The populations are described

by:

t E
d
dt
vE ¼�vE þbE IE½ �þ

t I
d
dt
vI ¼�vI þbI II½ �þ

(3)

vE is the firing rate of the excitatory population, with intrinsic time constant t E and input current

IE, and for which the f-I curve has the slope bE. IE½ �þ= max(IE, 0). The inhibitory population has corre-

sponding parameters vI , t I , II and bI . Values for t E, t I , bE, and bI are given below and taken from

prior work (Binzegger et al., 2009).
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At each node, the input currents have a component originating within the area (i.e. local input)

and another originating from other areas (i.e. long-range input):

I iE ¼ 1þhhið Þ wEEv
i
E þ I ilr;E

� �

�wEIv
i
I þ I iext;E

I iI ¼ 1þhhið Þ wIEv
i
E þ I ilr;I

� �

�wIIv
i
I þ I iext;I

(4)

The super- and sub-script, i, denotes the node (1 – 29), wEE and wEI are couplings to the excit-

atory population from the local excitatory and inhibitory population respectively, I ilr;E is the long-

range input to the excitatory population, and I iext;E is external input (both stimulus input and any

noise added to the system). wIE, wII , I
i
lr;I , and I iext;E are the corresponding parameters for the inhibi-

tory population.

The excitatory inputs to an area, both local and long-range, are scaled by its position in the hier-

archy, hi (see below for details). hi is normalized between 0 and 1, and h is a scaling parameter that

controls the effect of hierarchy. By setting h = 0, the intrinsic differences between areas are

removed. Note that both local and long-range projections were scaled by hierarchy, rather than just

local projections, following prior observations (Markov et al., 2011).

Long-range input is modeled as excitatory current to both excitatory and inhibitory cells:

I ilr;E ¼ �EE

P

29

j¼1

FLNijv
j
E

I ilr;I ¼ �IE

P

29

j¼1

FLNijv
j
E

(5)

Here, j ranges over all areas. I ilr;E and I ilr;I are the long-range inputs to the excitatory and inhibitory

populations, vjE is the firing rate of the excitatory population in area j and FLNij is the fraction of

labeled neurons (FLN; see below for details) projecting from area j to area i. �EE and �IE are scaling

parameters that control the strengths of long-range input to the excitatory and inhibitory popula-

tions, respectively, and do not vary between connections; all the specificity comes from the FLN.

Long-range connectivity is thus determined by three parameters: �EE and �IE control the connection

strengths of long-range projections, and h maps the hierarchy into excitatory connection strengths.

The excitatory-to-inhibitory ratio of input current, g¼ Iinp;E=Iinp;I , was chosen such that the steady-

state firing rate of the excitatory population does not change when the current is present. Given an

input of Iinp;E to the excitatory population, an input of gIinp;E to the inhibitory population increases

the inhibitory firing rate sufficiently to cancel out the additional input to the excitatory population.

�EE and �IE were chosen with a ratio slightly above this value so that projections are weakly

excitatory.

Parameter values were: t E = 20 ms, t I = 10 ms, bE = 0.066 Hz/pA, bI = 0.351 Hz/pA, wEE = 24.3

pA/Hz, wIE = 12.2 pA/Hz, wEI = 19.7 pA/Hz, wII = 12.5 pA/Hz, �EE = 33.7 pA/Hz, �IE = 25.3 pA/Hz

and h = 0.68. Background input for each area was chosen so that the excitatory and inhibitory popu-

lations had rates of 10 and 35 Hz, respectively. As in Chaudhuri et al., we added an external input of

white-noise to all areas with a mean of 0 Hz and a standard deviation of 10�5 Hz to simulate the rest-

ing-state condition.

Connectivity data are from an ongoing project that is quantitatively measuring all connections

between cortical areas in the macaque cortex (Markov et al., 2013; Markov et al., 2014a). The con-

nection strengths between areas are measured by counting the number of neurons labeled by retro-

grade tracer injections. To control for injection size, these counts are normalized by the total

number of neurons labeled in the injection, giving a fraction of labeled neurons (FLN):

FLNj!i ¼
number of neurons projecting to area i from area j

total number of neurons projecting to area i from all areas
(6)

These data were also used to estimate the fraction of neurons in a projection originating in the

supragranular layers (SLN):

SLNj!i ¼
number of supragranular neurons projecting to area i from area j

number of neurons projecting to area i from area j
(7)
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The hierarchy was constructed following a similar framework to Markov et al., 2014b, using a

generalized linear model. Hierarchical values were assigned to each area such that the difference in

values predicts SLN (Barone et al., 2000):

SLNj!i »g
�1 hi� hj
� �

(8)

where g�1 is a logistic function (logistic regression) and hi is the hierarchy value of area i. In the fit,

the contribution of each projection is weighted by the log of its FLN to preferentially match stronger

and less noisy projections (Chaudhuri et al., 2015). All connectivity data can be downloaded from

www.core-nets.org.

The simulated neuronal activity was converted to blood-oxygen-level-dependent (BOLD) fMRI sig-

nal using the Balloon-Windkessel hemodynamic model (Stephan et al., 2007), a dynamical model

that describes the transduction of neuronal activity (vE) to changes in a vasodilatory signal (s) that is

subject to autoregulatory feedback. This vasodilatory signal is coupled to changes in cerebral blood

flow (f ) that result in changes to the normalized total deoxyhemoglobin content (q) and normalized

venous blood volume (v). For each area (i), these biophysical variables are defined by the following

equations:

dsi

dt
¼ viE �ksi�g fi � 1ð Þ (9)

dfi

dt
¼ si (10)

t MTT

dvi

dt
¼ fi� v

1

a

i (11)

t MTT

dqi

dt
¼ fi

1� 1� �ð Þ
1

fi

�
�v

1

a

i

qi

vi
(12)

where t MTT is the mean transit time of blood, � is the resting oxygen extraction fraction, and a rep-

resents the resistance of the veins (i.e. stiffness). For each area (i), the BOLD signal (B), is a static

nonlinear function of deoxyhemoglobin content (q) and venous blood volume (v), that comprises a

volume-weighted sum of extravascular and intravascular signals:

Bi ¼ V0 k1 1� qið Þþ k2 1� qi
vi

� �

þ k3 1� við Þ
h i

k1 ¼ 4:3#0�TE

k2 ¼ "r0�TE

k3 ¼ 1� "

(13)

where V0 is the resting venous blood volume fraction, #0 is the frequency offset at the outer surface

of the magnetized vessel for fully deoxygenated blood, " is the ratio of intra- and extra-vascular sig-

nals, r0 is the slope of the relation between the intravascular relaxation rate R2I* and oxygen satura-

tion, and TE is the echo time of the fMRI acquisition. Parameters for the Balloon-Windkessel model

matched those used previously for 3T fMRI experiments (Stephan et al., 2007). Simulated BOLD sig-

nals were downsampled to a temporal resolution of 2 s (i.e. TR = 2 s) to match the in vivo data and

INT was estimated as for the in vivo data.

Biophysical model analysis
To simulate the observed effects of hallucination and delusion severity on INT, we perturbed the

strength of the couplings to the excitatory population from the local excitatory population (wEE) or

to the inhibitory population from the local excitatory population (wIE) for specific nodes. Note that

the original definition of the model assigned the same values of wEE and wIE to all nodes, but here

we manipulated these values differentially across nodes. We investigated alterations in excitation-

inhibition (E/I) ratios by allowing the strength of recurrent connections to vary in five of the six nodes

that correspond to levels of our hierarchy (V1, V2, V4, MT, 8l, and 46d, with the latter being fixed) to
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recapitulate our in vivo observations. Recurrent connection strength was fixed for 46d to avoid

model instability upon small parameter changes (E/I ratio changes of ~1%) due to the strong connec-

tivity at this level. The E/I ratio changes were modeled as a triangle function where a local maximum

exhibited a peak E/I ratio increase and other nodes had E/I ratio changes that decreased linearly as

a function of absolute distance in hierarchical levels from the peak. This function was described by

three free parameters. (i) The hierarchical level of the peak E/I ratio increase, which was allowed to

take any integer between 1 and 8. Given their stationary nature, these parameters were held con-

stant such that fitting was performed for each combination of peak E/I ratio increase (1–8 for halluci-

nations and 1–8 for delusions) using a grid search. (ii) The magnitude of the E/I ratio increase at the

peak (expressed as percent change to the local recurrent connection strength), which was allowed

to vary between 0% and 40%. (iii) The magnitude of the E/I ratio change at the minimum (i.e. at the

hierarchical level furthest from the peak), which was allowed to vary between -30% and 40%.

To facilitate fitting the biophysical model, we used regression fits from M1primary in the auditory

system to estimate INT values at each level of the hierarchy for 4 ’exemplary cases’: (1) no hallucina-

tions or delusions (fitted INT values from M1primary with minimum scores of 0 for both symptoms); (2)

hallucinations only (maximum score of 5 for hallucinations and score of 0 for delusions); (3) delusions

only (scores of 0 for hallucinations and 5 for delusions); (4) hallucinations and delusions (scores of 5

for both symptoms). For all exemplary cases, the severity of other symptoms and the values of cova-

riates were set to the average values from all patients. Changes of INT for exemplary cases 2–4 were

determined as the difference in INT relative to the ‘no hallucinations or delusions’ case (in vivo

DINT). Model-derived in silico DINT were calculated for each node as the difference in INT from the

unaltered biophysical model (i.e. wIE = 12.2 pA/Hz for all nodes). The parameters describing the E/I

ratio changes were fit by minimizing the sum of squared errors between the in silico DINT (nodes: V1

[level 1], V2 [level 2], V4 [level 4], MT [level 5], 8l [level 8], and 46d [level 9]) and the in vivo DINT (par-

cels: A1 [level 1], LBelt [level 2], PBelt [level 4], RI [level 5], 8a [level 8], and 46 [level 9]). We simulta-

neously fit the three free parameters for each symptom (three parameters for hallucinations and

three parameters for delusions) using in vivo DINT for exemplary cases 2–4 (18 data points) with the

combined effect of hallucinations and delusions fit by the sum of E/I ratio changes for hallucinations

and the E/I ratio changes for delusions. This was done by calculating the error between the biophysi-

cal model with E/I ratio changes for the hallucination parameters and exemplary case 2; the error

between the biophysical model with E/I ratio changes for the delusion parameters and exemplary

case 3; the error between the biophysical model with E/I ratio changes determined by the sum of

the E/I ratio changes for the hallucination parameters and the E/I ratio changes for the delusion

parameters, and exemplary case 4; and minimizing the sum of squared errors. Results are shown for

reductions to wIE, but similar effects were observed when increasing wEE since both effectively

increase the E/I ratio.
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2014. Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory
paradigms in schizophrenia. NeuroImage 97:117–126. DOI: https://doi.org/10.1016/j.neuroimage.2014.04.009,
PMID: 24736181

Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang XJ. 2015. A Large-Scale circuit mechanism for
hierarchical dynamical processing in the primate cortex. Neuron 88:419–431. DOI: https://doi.org/10.1016/j.
neuron.2015.09.008, PMID: 26439530

Corlett PR, Murray GK, Honey GD, Aitken MR, Shanks DR, Robbins TW, Bullmore ET, Dickinson A, Fletcher PC.
2007. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain
130:2387–2400. DOI: https://doi.org/10.1093/brain/awm173, PMID: 17690132

Wengler et al. eLife 2020;9:e56151. DOI: https://doi.org/10.7554/eLife.56151 23 of 27

Research article Neuroscience

https://doi.org/10.3389/fpsyt.2013.00047
http://www.ncbi.nlm.nih.gov/pubmed/23750138
https://doi.org/10.1523/JNEUROSCI.3163-17.2018
https://doi.org/10.1523/JNEUROSCI.3163-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30185463
https://doi.org/10.1007/s12021-017-9338-9
http://www.ncbi.nlm.nih.gov/pubmed/28812221
https://doi.org/10.1016/j.neuroimage.2015.05.060
http://www.ncbi.nlm.nih.gov/pubmed/26032888
http://www.ncbi.nlm.nih.gov/pubmed/26032888
https://doi.org/10.1093/brain/awz051
http://www.ncbi.nlm.nih.gov/pubmed/30895299
https://doi.org/10.1523/JNEUROSCI.20-09-03263.2000
https://doi.org/10.1523/JNEUROSCI.20-09-03263.2000
http://www.ncbi.nlm.nih.gov/pubmed/10777791
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18784304
https://doi.org/10.1016/S0278-5846(03)00080-0
http://www.ncbi.nlm.nih.gov/pubmed/12787858
https://doi.org/10.1016/j.neunet.2009.07.011
http://www.ncbi.nlm.nih.gov/pubmed/19632814
https://doi.org/10.1016/j.neuropsychologia.2008.01.023
http://www.ncbi.nlm.nih.gov/pubmed/18329671
https://doi.org/10.1023/a:1011204814320
https://doi.org/10.1023/a:1011204814320
http://www.ncbi.nlm.nih.gov/pubmed/11524578
https://doi.org/10.1038/s41593-018-0195-0
http://www.ncbi.nlm.nih.gov/pubmed/30082915
http://www.ncbi.nlm.nih.gov/pubmed/30082915
https://doi.org/10.1093/schbul/sbw122
https://doi.org/10.1016/j.biopsych.2008.03.023
http://www.ncbi.nlm.nih.gov/pubmed/18549875
https://doi.org/10.1016/j.cub.2017.12.059
http://www.ncbi.nlm.nih.gov/pubmed/29398218
https://doi.org/10.1101/826214
https://doi.org/10.1016/j.biopsych.2012.01.013
https://doi.org/10.1016/j.biopsych.2012.01.013
http://www.ncbi.nlm.nih.gov/pubmed/22364738
https://doi.org/10.1016/j.neuroimage.2014.04.009
http://www.ncbi.nlm.nih.gov/pubmed/24736181
https://doi.org/10.1016/j.neuron.2015.09.008
https://doi.org/10.1016/j.neuron.2015.09.008
http://www.ncbi.nlm.nih.gov/pubmed/26439530
https://doi.org/10.1093/brain/awm173
http://www.ncbi.nlm.nih.gov/pubmed/17690132
https://doi.org/10.7554/eLife.56151


Corlett PR, Frith CD, Fletcher PC. 2009. From drugs to deprivation: a bayesian framework for understanding
models of psychosis. Psychopharmacology 206:515–530. DOI: https://doi.org/10.1007/s00213-009-1561-0,
PMID: 19475401

Corlett PR, Honey GD, Krystal JH, Fletcher PC. 2011. Glutamatergic model psychoses: prediction error, learning,
and inference. Neuropsychopharmacology 36:294–315. DOI: https://doi.org/10.1038/npp.2010.163, PMID: 20
861831

Corlett PR, Horga G, Fletcher PC, Alderson-Day B, Schmack K, Powers AR. 2019. Hallucinations and strong
priors. Trends in Cognitive Sciences 23:114–127. DOI: https://doi.org/10.1016/j.tics.2018.12.001, PMID: 30583
945

Cox RW. 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Computers and Biomedical Research 29:162–173. DOI: https://doi.org/10.1006/cbmr.1996.0014, PMID:
8812068

Davies DJ, Teufel C, Fletcher PC. 2018. Anomalous perceptions and beliefs are associated with shifts toward
different types of prior knowledge in perceptual inference. Schizophrenia Bulletin 44:1245–1253. DOI: https://
doi.org/10.1093/schbul/sbx177, PMID: 29294128

Dayan P, Hinton GE, Neal RM, Zemel RS. 1995. The Helmholtz machine. Neural Computation 7:889–904.
DOI: https://doi.org/10.1162/neco.1995.7.5.889, PMID: 7584891

Ding N, Melloni L, Zhang H, Tian X, Poeppel D. 2016. Cortical tracking of hierarchical linguistic structures in
connected speech. Nature Neuroscience 19:158–164. DOI: https://doi.org/10.1038/nn.4186, PMID: 26642090
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