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Abstract
Background: Prediction of function of proteins on the basis of structure and vice versa is a
partially solved problem, largely in the domain of biophysics and biochemistry. This underlies the
need of computational and bioinformatics approach to solve the problem. Large and organized
latent knowledge on protein classification exists in the form of independently created protein
classification databases. By creating probabilistic maps between classes of structural classification
databases (e.g. SCOP [1]) and classes of functional classification databases (e.g. PROSITE [2]),
structure and function of proteins could be probabilistically related.

Results: We demonstrate that PROSITE and SCOP have significant semantic overlap, in spite of
independent classification schemes. By training classifiers of SCOP using classes of PROSITE as
attributes and vice versa, accuracy of Support Vector Machine classifiers for both SCOP and
PROSITE was improved. Novel attributes, 2-D elastic profiles and Blocks were used to improve
time complexity and accuracy. Many relationships were extracted between classes of SCOP and
PROSITE using decision trees.

Conclusion: We demonstrate that presented approach can discover new probabilistic
relationships between classes of different taxonomies and render a more accurate classification.
Extensive mappings between existing protein classification databases can be created to link the
large amount of organized data. Probabilistic maps were created between classes of SCOP and
PROSITE allowing predictions of structure using function, and vice versa. In our experiments, we
also found that functions are indeed more strongly related to structure than are structure to
functions.

Background
Function and 3D structure of the proteins are said to be
related to each other [3]. However, prediction of function
on the basis of structure and vice versa still remains a par-
tially solved problem, and is largely in the domain of bio-
physics and biochemistry [4]. This underlines the need for

computational and bioinformatics methods to establish
relationships between functions and structures of pro-
teins. Previous attempts have been largely limited to
examining a single protein and predicting structure and
function based on its size, charge, sequence, and other
physical attributes [5-7]. Further, content knowledge of
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protein classification has also been used to predict struc-
ture and function using data mining techniques [8-10].
Large protein classification schemes (e.g. SCOP [1], CATH
[11], PROSITE [2], Pfam [12]) are available in public
domain in the form of protein classification databases.
Arguably, this latent knowledge has not been sufficiently
used to relate structure and function by establishing rela-
tionships between the various schemes. Various classifiers
are built using data mining techniques using the above
latent knowledge to designate a given protein to a struc-
tural or a functional class. We propose that probabilistic
linking of these classification databases could be used to
establish relation between function and structure of pro-
teins. In addition, individual classes in widely used pro-
tein databases could be linked together to further
consolidate the large amount of classification data on pro-
teins.

Growing proteomics data have motivated the design of
many schemes to classify proteins. Proteins can be classi-
fied according to a variety of classification schemes based
on features like proteins domains [13], structure [1,11],
phylogeny [14], ligand binding sites [15], subcellular
localization [16,17] etc. In addition to the schemes based
on biologically defined features, many schemes are based
on abstractions that are expected to correlate with biolog-
ical families (e.g. functional signatures [2,18], sequence
motifs [19]). Intuitively, in all these schemes there would
exist a semantic overlap. In other words, different schemes
of classification may not be completely independent of
each other, and relationships may exist between classes of
different taxonomies. For instance, proteins sharing a cer-
tain motif may also belong to a common phylogenetic
family.

Protein classification is performed by either manual anno-
tation [1], or automatic classification based on defined
feature sets [2,9,20,21]. Common classifiers like Support
Vector Machines (SVM) [22-25], Bayesian classifiers
[20,26] and others have been used to classify proteins
using attributes like primary sequences, size, localization
[16] etc. Existing methods for protein classification
include profiles for protein families [27], pairwise
sequence alignment [28], consensus patterns using motifs
[19] and hidden Markov models [29,30]. Though discrim-
inative classifiers (e.g. SVM) in general have higher accu-
racy, generative models (e.g. hidden Markov models)
have been preferred over discriminative models since var-
iable length of protein sequence data renders it difficult to
use discriminative classifiers [31]. SVMs have been shown
to outperform other basic classifiers like Naive Bayes [32]
in accuracy. Further, no assumption of the domain knowl-
edge is required to train SVM [23]. If the domain knowl-
edge is correctly known, it can be incorporated to improve

accuracy like in Fischer-SVMs [24] and SVM-mismatch
kernels [33], or even in non-linear SVM [34].

With protein databases being populated at an astonishing
pace, it has become essential to consolidate the knowl-
edge latent in the existing and emerging databases. Pres-
ently these relationships can only be established by
manual annotations using static accession numbers.
These numbers (e.g. SwissProt accession number [35])
link protein entries in different classification databases,
without linking the classes in the databases [36]. This
underlines the need for computational methodologies to
identify relationships between various schemes, even if it
is probabilistic. In this paper we present a novel method
to establish these relationships between classes of taxono-
mies in a probabilistic manner between two widely used
and independent classification schemes: PROSITE and
SCOP. We demonstrate that this method could be effec-
tively used to establish probabilistic relations between
functional and structural classes of proteins. PROSITE [2]
and SCOP [1,37] are well annotated taxonomies based on
functional motif and structure of proteins respectively.
The relationships between PROSITE and SCOP are not
understood and completed and have never been explored
systemically before. There has been no attempt to cross
learn using existing two classifications and identify rela-
tionships between the two. It would be, therefore, instruc-
tive to look at relationships between the two classifying
schemes and assess if there is a semantic overlap between
the two independent classification systems.

We have modified previously reported cross-training algo-
rithm by introducing a hierarchy based approach [38] to
apply to biological databases. The method involves simul-
taneous training of two different sets of classification
schemes using a classifier iteratively, till semantic overlaps
cannot be utilized for further enhancement in accuracy.
We used the existing taxonomies of PROSITE and SCOP
and mutually trained them using hierarchical cross train-
ing. SVM was used as a classifier employing a variety of
attributes including a few that have been designed for this
special purpose. The motivation is to classify protein into
a known functional taxonomy, PROSITE, when the place-
ment in a known structural taxonomy, SCOP, is known.

Results and discussion
Partial taxonomies from SCOP and PROSITE were used
for hierarchical cross training using the features and pro-
cedures described in METHODS section. SwissProt [35]
database was taken for feature extraction. 5751 proteins
common to both PROSITE and SCOP were used to train
the respective SVMs. 30 most populated classes in
PROSITE, each class being a domain [39], and 37 most
populated classes in SCOP, each class being a superfamily
[40], were used in experiments. The most populated class
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in PROSITE contained 102 proteins while the least popu-
lated amongst the used 30 classes contained 24 proteins.
Out of the 5751 proteins considered, randomly half were
used for training of the SVM classifier for PROSITE and the
other half for SCOP (Figure 1).

In our experimentations, linear support vector machine
(SVM) was used as the classifier. SVMs have been shown
to outperform other basic classifiers like Naive Bayes [32]
in accuracy, are discriminative classifiers and require no
assumption regarding domain knowledge. The chief
advantage of using SVM is that it is easily scalable and
inclusion of new dimensions does not affect the accuracy
of the classifier. This property is very useful when large
numbers of features are used for training, as in our exper-
imentations. Further, hierarchical cross training requires
introduction of new dimensions in the classifier (see
METHODS), easily achievable in SVM. For all the above
reasons, SVM was chosen as the classifier.

The training of SVM is a bit expensive, of the order nk (typ-
ically, 1.8 ≤ k ≤ 2.1) but the testing is still linear and the
high accuracy advantage overrides the disadvantage of
higher training time [22,23].

Metrics
Performance evaluation for most of the functional classes
using structural classes as features resulted in high recall
(Equation 2) and precision (Equation 3) values. These two

quantities were unified into a single quantity called F-
measure (Equation 1) for analysis (Table 1, 2, 3). F-meas-
ure is the weighted harmonic mean between recall and
precision, both being evenly weighted. For a given class A,
F-measure was defined as follows:

Employing novel features for training resulted in reduced 
time complexity without compromising performance
Blocks and 2D elastic profile were used as novel features
to train the SVM classifiers for SCOP and PROSITE. As
detailed in the METHODS section, blocks were preferred
over k-length subsequences as features for training classi-
fiers (see METHODS). Using the value of k as 4 in overlap-
ping k-length subsequences resulted in more than 100000
unique features. To reduce the number of above features,
Principle Component Analysis (PCA) [41] was used to
discover principle components that define most of the
data variability. Application of PCA resulted in reduction
of unique features to 1000. k-length subsequences are
subsequences of optimal size that are able to capture most

F measure− = ∗ ∗
+

2 Recall Precision
Recall Precision

(1)

RecallA = proteins correctly found in A
total proteins in A

(2)

PrecisionA = proteins predicted correctly in A
total proteins  predicted in A

(3)

SVM training of SCOP and PROSITEFigure 1
SVM training of SCOP and PROSITE. 5751 protein instances common to both PROSITE and SCOP were taken to train 
the respective SVMs. 30 most populated classes in PROSITE and 37 most populated classes in SCOP were used. Randomly half 
of 5751 proteins were used to train the SVM classifier for PROSITE and other half for SCOP. Blocks, elastic 2-D profile, molec-
ular mass, size, percentage of helices, β chain were used as orthogonal features for 1 vs rest SVM training for each class.

SCOP

D1 D2

(37 classes) (30 classes)
PROSITE

{S1,S2,...,S37} {P1,P2,...,P30}

1 vs Rest SVM for each class

Feature Extraction

5751 common Proteins
Page 3 of 12
(page number not for citation purposes)



BMC Structural Biology 2008, 8:40 http://www.biomedcentral.com/1472-6807/8/40
information represented in the sequence of the protein. In
addition, the k-length subsequence as a feature does not
give additional weight to subsequences that occur com-
monly and are conserved amongst polypeptides. Hence,
we employed a novel feature for classifiers called blocks
[42]. Blocks are multiple aligned ungapped segments cor-
responding to the most highly conserved regions of pro-
teins. In blocks [42] database, for each query protein a
'distance' is calculated against the corresponding most
conserved homologous block. Nearly 10,000 unique
blocks were generated for PROSITE dataset, and PCA
application reduced it to 100. For nearly all classes, F-
measure (Equation 1) obtained using blocks as features
were similar or slightly lower than the case when k-length
subsequence were used as features (Table 1). Statistically
speaking, a classifier using blocks as features will have
lower chances of "over-fitting" as the features are fewer in
number. Due to all the above advantages without signifi-
cant reduction in the F-measure, blocks were used as fea-
tures instead of k-length subsequence in our
experimentations.

Hierarchical cross training indicates semantic overlap 
between SCOP and PROSITE
Supervised cross training as a concept was introduced in
Chakrabarti et al [38]. If we have two taxonomies A and B
with strong semantic overlap, then information from A
can be used to train B and vice-versa (Figure 2). The
approach not only helps in improving accuracy but can
also be used to learn relationships between classes

belonging to different taxonomies. To establish a base-
line, we trained taxonomies of SCOP and PROSITE using
linear SVM classifiers with the set of features described
earlier. Hierarchical cross training of the taxonomies of
SCOP and PROSITE resulted in an average increase of
5.2% in F-measure for classes in the two taxonomies. This
improvement in accuracy obtained by cross training
PROSITE and SCOP classifiers demonstrates that a seman-
tic overlap exists between the classes of the two taxono-
mies. Further, it establishes that using information across
taxonomies improves learning, particularly in the case of
functional and structural classification schemes. It was
found that a cross-trained SVM outperforms standard
SVM and is specially effective in the case when baseline
accuracy levels are low. This was found to be true for the
structural classifiers which have low accuracy levels.
Results are summarized in Additional File 1.

F-measure obtained for classes in functional classifier
using structural classes as features were high, and exhib-
ited low false positive rates (Table 2). For a few classes like
Cytochrome c family, heme-binding site signature and Phos-
pholipase A2 active site signature, the F-measure was close to
0.95 on a 1.00 point scale with 0 false positives indicating
high confidence in establishing relationships from SCOP
to PROSITE. This indicates that the position of a given
protein in a functional class in PROSITE is strongly
dependent on the position of the protein in a SCOP class.

Table 1: Comparison between F measure while using Blocks and k-length subsequences

Class F (subsequences) F (Blocks)

Small proteins .78 .73
Globin like .71 .684

NAD P binding Rossmann fold domains .54 .537

Comparison of F-measure using k-length overlapping subsequences of length (k) equal to 4 and blocks as features. In the case of using blocks as 
features, F-measure was found to be only slightly lower for all the classes, while the size of feature set was many times smaller.

Table 2: Performance evaluation for some functional classes

Class Name FP Rate Precision Recall F-measure

Immunoglobulins and MHC protein 0.002 0.765 0.619 0.684
Ig-like domain profile 0.005 0.547 0.343 0.422

Cytochome c family, heme-binding site signature 0 0.988 0.908 0.946
Globins family 0.002 0.792 0.623 0.697

Pyridine nucleotide-disulphide oxidoreductases c-I 0.001 0.704 0.559 0.623
Serine protease trypsin family 0.001 0.918 0.789 0.848

ATP dependent helicases signatures 0.002 0.52 0.419 0.464
Phospholipase A2 active site signature 0 1 0.862 0.926

Nuclear hormones receptors DNA-binding 0.003 0.667 0.561 0.61

Performance evaluation while trying to classify functional classes using structural classes as the features. The high F-measure values (Equation 1) 
indicate that the function is strongly dependent on the structure that the protein has. F-measure was calculated as the harmonic mean between 
Recall and Precision. Class-name refers to domain in PROSITE database. Highly significant F-measure values are shown in bold.
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On the other hand, F-measure for classes in structural clas-
sifier using functional classes as features were found to be
low (Table 3). Most of the classes, with the exception of
All alpha protein.Globin-like superfamily, showed F-meas-
ure less than 0.30 on a 1.00 scale. Similarly, the false pos-
itives were higher than encountered in the cross training
product of PROSITE signature classes. This suggests that
either the structural properties are not highly dependent
on the function of the proteins, or the present features are
incapable in distinguishing them completely. Intuitively,
it seems correct, that it is with a greater confidence that the
function of the protein is predicted given the structure,
while it is not easy to predict the structure of a protein
given the function.

Decision Trees for SCOP and PROSITE relate two 
taxonomies in a probabilistic manner
Hierarchical cross training produced a complex mapping
(many to many) between classes of SCOP and PROSITE.
Decision trees were constructed to provide human visual-
ization between structural and functional classes of pro-
teins, and to extract probabilistic relationships between
them (see METHODS). If membership of a given protein
in PROSITE (or SCOP) is known, it can be used to find its
class in SCOP (or PROSITE). A probabilistic weighted
score was generated based on the decision tree.

Decision trees were obtained for both PROSITE (DT-
PROSITE) and SCOP (DT-SCOP). DT-PROSITE had
SCOP classes as features and DT-SCOP had PROSITE

Table 3: Performance evaluation for some structural classes

Class-Id FP Rate Precision Recall F-measure

α &β.NADP-bind Rossmann fold 0.008 0.25 0.259 0.254
Immunoglobulin β sandwich 0.018 0.296 0.282 0.289

α.globin like 0.005 0.649 0.61 0.629
Small proteins 0.063 0.245 0.216 0.213

Peptides 0.017 0.242 0.18 0.207

Performance evaluation while trying to classify structural classes using functional classes as the features. The low F-measure values indicate that 
though structure is dependent on function of the protein, the present features are incapable in distinguishing them completely. F-measure was 
calculated as the harmonic mean between Recall and Precision. Presented table lists classes which showed significant F-measure values. Class-name 
refers to superfamily in SCOP database. Highly significant F-measure values are shown in bold.

Cross training flowFigure 2
Cross training flow. Datasets are generated by cross training, where the taxonomy A (or B) had features as classes from tax-
onomy B (or A) respectively. In effect, classifier of PROSITE is trained using classes of SCOP as features and vice versa. SVM 
classifiers were created for both PROSITE and SCOP (Figure 1). Classes of PROSITE were used as features for SCOP and pro-
tein feature vector was updated. Similarly, classes of SCOP were used as features for classifier of PROSITE and protein feature 
vector was updated. Cross training was iterated till further gain in accuracy stops.

C(A )b C(B ) a

C(A )b C(B ) a

PROSITE SCOP
SVM Training

SVM Training

Testing Testing

Update Rule Update Rule

Updated Updated
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classes as features. DT-PROSITE showed low false positive
rates (Table 2) and high F-measure lending credibility to
the decision tree and the rules (of the form classes-in-SCOP
→ class-in-PROSITE) to be generated from it.

Simplification of the rules has generated direct relation-
ships from classes in SCOP to PROSITE and vice versa
with a probabilistic weighted score. A few significant rela-
tionships are shown in Table 4. Rules like All alpha pro-
teins. Globin-like → Globins family profile showed a high
score (Table 4) suggesting strong relationships between
the two classes. Significantly, a reverse relationship was
also found with a high score from PROSITE to SCOP. It is
noteworthy that the colloquial names for both classes also
implied that they were related. A similar case was found in
the rule All beta proteins.Cupredoxin-like → Type-1 copper
blue proteins signature with a high score. All alpha pro-
teins.Globin-like superfamily in SCOP also suggested a
strong relationship to the Legume lectin signature in
PROSITE, a rule also found in DT-SCOP with a high score.
Similarly, rules were obtained relating classes SCOP to
classes in PROSITE like α &β proteins. Thioredoxin fold →

Pyridine nucleotide-disulphide oxidoreductases class-I active
site with a score of 0.097, All β Proteins.Nucleoplasmin-like
VP viral coat & capsid proteins → DEAD & DEAH box families
ATP-dependent helicases signatures with score of 0.14.

In addition, we found that two PROSITE classes, Zinc fin-
ger RING-type signature and profile and Zinc finger C2H2-
type domain signature and profile, occurred together in most
of the rules. This leads us to project that these signatures
are highly related signatures and are commonly found in
the proteins in which they occur. It is noteworthy that
these classes occur commonly, and presence of these sig-
natures together in proteins may have potential biological
significance.

A few inferences can be drawn from the generated rules
listed in Table 4. Structural classes, as properties, have a
higher bearing on the functional classification for proteins
than vice versa. Few classes in SCOP and PROSITE were
obtained that were related in the form class-in-SCOP →
class-in-PROSITE AND class-in-PROSITE → class-in-SCOP
simultaneously with high probabilistic scores. Further, a

Table 4: Prediction rules between classes in SCOP and PROSITE obtained by cross-training

Rules: Structural-properties (SCOP class) ⇒ Functional-properties (PROSITE class)

All α Proteins.Globin like → Globinsfamily profile 0.323
All α Proteins.Globin like → Legume lectins signatures 0.079
All β Proteins.Cupredoxin like → Type-1 copper blue proteins signature 0.200
All β proteins.Galactose-binding domain-like →C-type lectin domain signature & profile 0.182
All β Proteins.Nucleoplasmin-like VP viral coat & capsid→ DEAD & DEAH box families ATP-dependent helicases signatures 0.14
α &β proteins.NADP- binding Rossmann-fold domains → C-type lectin domain signature & profile 0.103
All β proteins.Double-stranded β-helix → EF-hand calcium-binding domain 0.086
All α Proteins.EF Hand like → EF-hand calcium-binding domain 0.090
All β Proteins.Immunoglobulin-like β sandwich → Immunoglobulins & MHC proteins 0.034
All β Proteins.Immunoglobulin-like β sandwich → Ig-like domain profile 0.064
α &β Proteins.α β-Hydrolases → EF-hand calcium-binding domain 0.086
α &β proteins.Ferredoxin-like → 4Fe-4S ferredoxins iron sulfur binding region signature 0.024
α &βproteins. P-loop containing nucleoside triphosphatehydrolases → Heavy-metal-associated domain signature & profile 0.037
α &β proteins.Thioredoxin fold → Pyridine nucleotide-disulphide oxidoreductases class-I active site 0.097
All α proteins.Four-helical up-&-down bundle → Cytochrome c family heme-binding site signature 0.094
Membrane & cell surface proteins and peptides → C-type lectin domain signature & profile 0.092
All β proteins.Concanavalin A-like lectins glucanases → C-type lectin domain signature & profile 0.084
All α proteins.DNA RNA-binding 3-helical bundle → TNFR NGFR family cysteine-rich region signature & profile 0.062
Small proteins → Serine proteases trypsin family signatures & profile 0.010
Small proteins → Ig-like domain profile 0.047

Rules: Functional-properties (PROSITE class) ⇒ Structural-properties (SCOP class)

Globins family profile → All α proteins.Globin-like 0.369
Serine proteases trypsin family signatures & profile → Small proteins 0.722
Protein kinases signatures & profile → Small proteins 0.662
Legume lectins signatures → All α proteins.Globin-like 0.060
Cytochrome c family heme-binding site signature → All β proteins.Barrel-sandwich hybrid 0.029

Selected prediction rules found as a by-product of cross-training SCOP and PROSITE. Top panel shows rules probabilistically predicting the 
PROSITE domain/signature given the SCOP superfamily, while the bottom panel shows rules predicting SCOP superfamily given the PROSITE 
domains. DOT ('.') links parent class to child class in SCOP hierarchy. The bold value following each rule is the probabilistic weighted score found 
using cross training.
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few classes like C-type lectin domain signature and profile
and Zinc finger RING-type signature and profile in PROSITE
occur more commonly than others as the rhs (right hand
side) of rules with high scores. Statistically it means that
proteins having a structural property (left hand side of the
rule) were found to contain features commonly found in
proteins belonging to the said classes in PROSITE.

Conclusion
In this paper, we describe a methodology to establish
structured relationships between two independent pro-
tein taxonomies using hierarchical cross training of classi-
fiers for each taxonomy. Previous studies have described
classifiers developed for various protein taxonomies using
a variety of features [33]. However, no attempt to cross
train two taxonomies using the classes of one as a feature
to train the classifier for the other taxonomy has been
made so far. We demonstrated that strong semantic over-
laps exist between SCOP and PROSITE, in spite of the
independent classification schemes. It should be noted
that SCOP is a manually annotated taxonomy, while in
PROSITE annotation is automated. Hierarchical cross
training allows the knowledge of label assignment in one
taxonomy to be used in another taxonomy and establish
relationships between the two. This, therefore, is a novel
attempt to link two widely used protein classification
databases and find probabilistic relationships between
the classes of either. SCOP and PROSITE have different
taxonomical structures and different ways of static classi-
fication of proteins, having evolved entirely independ-
ently of each other. Since SCOP is a structural
classification and PROSITE is essentially a functional clas-
sification, our method also provides a non commutative
map between functional and structural classes of proteins,
rendering it the first datamining effort in this direction.

Blocks and 2D elastic profile are novel features used to
train the decision tree and are more informative than k-
length subsequences. Blocks resulted in reduced feature
set, time complexity of SVM without compromising per-
formance. This may be because most of the k-length sub-
sequences were not adding extra information and only a
few were actually participating in classification. Most of
the other classifiers use the whole sequence or overlap-
ping standard sized subsequences as features, rendering
the feature set extremely large. The number of features
used for training in our method is therefore small making
the method fast yet effective. Since the accuracy of the clas-
sifier for functional classes using structural classes as fea-
tures is very high, we believe that these features could also
be used as standard features for protein classification
mechanisms. However, better and more informative fea-
tures might be necessary to train structural classifier using
functional classes as features. In addition, non linear
SVMs (polynomial [22], or radial basis function [34])

may be used to improve the accuracy of classifiers.
Though no such exercise has been performed using cross
training on protein taxonomies, but we believe that other
structural and functional protein databases can be cross
trained using our method to generate more informative
rules.

F-measure of certain classes is lower than other classes
since proteins belonging to one PROSITE class may
belong to multiple SCOP superfamilies. The extent of this
mismatch is difficult to assess since large number of pro-
teins are not known in their 3D structures. Similarly,
many proteins in the SCOP database do not have con-
served sequence motifs identifiable in the PROSITE data-
base, and thus can not be assigned to a PROSITE class. A
probable reason is that PROSITE only collects well estab-
lished sequence motifs with significant population in the
sequence databases. In such cases, the method prediction
here would provide lower confidence for prediction of
relationships. Hence, we neglected rules below a certain
threshold probabilistic score.

In addition, it must be remembered that the cross training
described here is aimed at showing the efficacy of the
methodology, and hence is performed on partial taxono-
mies (5751 proteins) of SCOP and PROSITE. Many more
rules can be generated if the method is applied to the com-
plete taxonomies. It is unlikely that the presented rules
would change appreciably since most of the remaining
classes in SCOP and PROSITE are sparsely populated. Fur-
ther, it must be noted that the method is essentially a data
mining effort, and reflects any inherent bias of the taxon-
omies on which it is conducted. Such biases could occur
due to the biased research in favor of proteins that are
already discovered, are more relevant to human pathol-
ogy, or biased evolution in proteomics in favor of certain
classes of proteins. In addition, a repetition of hierarchical
cross training for PROSITE and CATH [11], another hier-
archical structural classification database may generate
more informed relationships between functions and
structures of proteins. It would be instructive to find out
semantic overlaps and generate probabilistic maps
between classes of taxonomies that are based on function,
but different schemes, eg. PROSITE and Pfam [12]. We
would like to envisage the bigger goal to generate exten-
sive "probabilistic linkage maps" between various promi-
nent protein classification databases which can be
updated in time. Typically proteins are linked only
through accession ids of databases and no static link can
be developed between classes in different taxonomies
[36]. Therefore, a probabilistic linkage between classes of
proteins in different databases would be a significant step
forward to link the whole of proteomic data [36,43,44].
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Methods
Relationships between classes were discovered as a by-
product of cross training. The approach can be broadly
divided into two parts. The first part deals with feature
extraction and representation of a protein to train the clas-
sifiers for both PROSITE and SCOP. The second part
involves hierarchical cross training and extraction of rela-
tionships between classes of PROSITE and SCOP.

Feature Sets
A variety of features are typically used in training a classi-
fier. These choices are mostly empirical and intuitive and
making these choices is a non trivial problem with signif-
icant bearing on the accuracy of classification [22]. We
have used novel features detailed below to train our clas-
sifiers.

Subsequences
Previous attempts have included fixed and variable length
subsequences as feature sets [45]. Consecutive and over-
lapping subsequences of length k are chosen as features.
However, k being small would result in lower accuracy,
while a large k would lead to over-fitting. Therefore, a
locally-optimal value of k was chosen to maximize the
accuracy of classifier and enhance its statistical signifi-
cance.

Subroutine to find optimal k:

Dataset with the primary sequence = DP

mean-ss = 0

k = 0

while (mean-accuracy increase) ≥ 0 and (ss ≥ mean-ss) do

k = k + 1

Create D from DP with sequence features of length k

for i = 1 to 10

(TR [i], TE [i]) = Split dataset D in train and test sets

Train a classifier(SVM) CL using training data TR [i]

accuracy [i] = test classifier CL on testing data TE [i]

end for

mean-accuracy = mean of accuracy [i] for i = 1 to 10

Calculate ss for this set using the t-test.

mean-ss = (mean-ss*(k-1) + ss)/k

end while

The value of statistical significance ss was defined as

Optimal k was found to be 4 on PROSITE dataset. For a
given protein pi the count of a k-length subsequence f was
defined as

where L is the length of the complete protein sequence

Count is the approximate number of occurrences of the
feature f in a protein pi. To introduce added weightage to
the active sites in the protein, the occurrence, Occ, was
counted multiple times (c times). SwissProt [35] entries
were used to determine the active site. The value of c was
taken as 10 in our experimentations.

Blocks
Blocks were defined as features and count was calculated
as

Count = Block length/(1 + Block distance) (8)

where distance is the dissimilarity index

with the most conserved

corresponding block

This definition ensures that more weightage is given to
larger blocks, which are assumed to preserve more biolog-
ical information. Further, weightage is inversely propor-
tional to the block distance (dissimilarity index) with the
most conserved block [42].
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2-D elastic profile
Previous attempts to use secondary structure as features
for protein classification have been mostly limited to uti-
lization secondary structure content [46,47], or localized
secondary structure [48]. No previous attempt in our
knowledge has been made to use the global secondary
profile of the protein as a feature. One of the reasons is
that proteins have variable lengths which makes the com-
parison difficult. This problem was solved by introducing
a notion of elastic secondary structure. The secondary
structure profile was extracted from SwissProt and was lin-
early scaled to a length of 100 resulting in an 'elastic' pro-
file through stretching or compressing. Here the number
100 was chosen just for convenience. Intuitively, it also
behaved like a global feature, as it was not only influenced
by changes in the locality but also by additions or dele-
tions at other locations in the protein.

Formally, for a protein p of size L, a secondary structure
array was defined as

Then using this array the 2-D elastic feature was defined as

Other Features
Molecular mass, size, percentage of helices, beta strands in
the whole protein etc. were other features used for classi-
fication. One column/dimension was maintained for
each feature. Value of each feature was either equal to the
absolute value (like mass in case of molecular-mass) or it
was binary (1, if the feature was present; 0 otherwise).
Equal interval binning was used for many features (e.g.
percentage of helices, beta strands etc.) to allow generali-
zation.

Final representation
A protein was represented as a vector of all the above fea-
tures. This representation is based on an assumption that
features are orthogonal to each other. This assumption
was made for the sake of time efficiency and to reduce the
complexity of algorithm.

Hierarchical Cross-training

Hierarchical cross training on SVM involves introduction
of new artificial dimensions/features to distinguish
between the otherwise indistinguishable instances using

normal feature sets. So if A-classes are a good predictors of
B-classes, classification accuracy of proteins in B may be
improved by allocating for each protein in B a set of new
columns/features, one for each A-class (Figure 2). Hence,

the altered protein  is represented as:

Here,  refers to the enhanced feature set for each pro-

tein in B obtained from classes in A. While adding new
dimensions to the protein feature-vector, an assumption
is made that the kernel space remains orthogonal. Specif-
ically, the new set of dimensions Cmi are also orthogonal

to all other features. Since protein classes are taken from a
hierarchy, this assumption is not entirely true. This con-
cern was addressed by modifying the algorithm and
adapting it for hierarchical biological taxonomies.

Firstly, one-vs-rest SVMs are trained for each class. For
training a non-leaf class the positive data used is present
within the descendant leaf nodes, while the rest of the
data is taken as negative examples. While dealing with a
hierarchy during cross training, the basic idea used was
that a protein that belongs to a child class also belongs to
the corresponding parent class. To be more specific, let p
be a protein, c any class and Anscc be set of all classes
ancestor to class c. Two cases arise:

1. Rule1: p has a high probability to belong to class c:
Then p has a high probability to belong to the ancestor
classes Anscc too.

2. Rule2: p has a low probability to belong to class c: In
this particular case, nothing can be said about p's relation
with the ancestor classes Anscc.

Cross Train Algorithm:

Train SVMs for A-classes (CA) using

proteins from dataset-A (DA).

Train SVMs for B-classes (CB)

using proteins from dataset-B (DB).

Each protein pi in DB is classified

using CA and the corresponding

class-membership vector (Cmi = )
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(class-membership represents the probability of an

instance belonging to various classes in a

taxonomy) is calculated.

Here  is the SVM score obtained

by 'testing' protein pi with SVM

for the jth class.

Update-Protein: Using the class-membership Cmi

for every protein in B, the protein features

are updated using protein update rule.

Similarly repeat the above steps for proteins in A.

Retrain CA using the modified proteins from DA.

Retrain CB using the modified proteins from DB.

Return to step 3 if there is increase in

classification accuracy of CA and CB.

The above information is incorporated in the protein
update rule. Further, it needs to be established when does
a given protein belongs to a particular class c with "high
probability". One simple way of estimation is by calculat-
ing the class-membership vector Cmp for any given protein
p by testing it with the SVM-classifier for each class. The
class with the maximum positive value in Cmp is defined
as the only class to which the protein p belongs to with
"high probability". This method is, however, naive and
would miss the correct class in case more than two classes
have high and close positive values. Also, during experi-
mentations it was found that in many instances the entire
Cmp vector is negative and hence no single positive value
exists. A softer version was therefore developed which can
replace the cross training update rule where Cmp was re-
scaled and then the above two rules were used to update
the membership values of the ancestor classes.

Subroutine to update Protein Vector:

I/P : protein p, O/P : updated protein

Calculate the class-membership vector Cmp.

Rescaling step: Find maximum class-membership

value valmax. Add (1 - valmax)

to each element in the vector. This step will

ensure a positive value for at least one class.

Identifying high probability classes: Find all

classes Cp for which class-membership

value is positive.

for every class c ∈ Cp {

Let the class-membership value of c is valc.

Find the ancestor classes Anscc.

Updating ancestor classes: Increase

class-membership for each class in Anscc by valc.}

end Subroutine

Extracting relationship using the decision tree
The decision tree [49] algorithm induces a series of com-
parison in form of a binary tree, where each non-leaf node
is expressed as a comparison of a feature fi (classes from
taxonomy A) value with a constant value. The comparison
decides whether to go to either the left or right subtree.
The leaf-nodes are classes to which the instant can belong
to (classes from taxonomy B). Hence, if we know the cor-
responding membership in one taxonomy for a protein, it
can be used to find its class in the other taxonomy. The
advantage of this approach is that the protein is not
required to belong to only a single class and the user can
input the strength for each class. A probabilistic weighted
score is generated based on the decision tree. We
employed the decision tree algorithm to find out the
probability of proteins belonging to a class in SCOP to
belong to a given class in PROSITE, and vice versa. This
created a probability map from SCOP to PROSITE, and
vice versa, linking all the classes in either taxonomy to
each other with a probabilistic weight. Since PROSITE is a
functional classification scheme and SCOP is a structural
classification scheme, by corollary, the above probabilis-
tic map can be construed as a probabilistic map between
functional and structural properties of proteins.

Subroutine to create decision tree:

A &B are taxonomies.

DA = dataset for A after full cross-training with B.

Calculate class-membership vector Cmi∀pi ∈ DA

cmi
j
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using classes in B.

Represent every protein pi in A using Cmi.

Call it .

Train a decision tree DTA using this dataset .

Repeat the above steps for B to get decision tree DTB.

Each path in DTA is a rule

classes-in-B → class-in-A.

Each path in DTB is a rule

classes-in-A → class-in-B.

end Subroutine
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