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Based on Codeço’s cholera model (2001), an epidemic cholera model that incorporates the pathogen diffusion and disease-related
death is proposed.The formula for minimal wave speed 𝑐∗ is given. To prove the existence of traveling wave solutions, an invariant
cone is constructed by upper and lower solutions and Schauder’s fixed point theorem is applied. The nonexistence of traveling
wave solutions is proved by two-sided Laplace transform. However, to apply two-sided Laplace transform, the prior estimate of
exponential decrease of travelingwave solutions is needed. For this aim, a newmethod is proposed,which can be applied to reaction-
diffusion systems consisting of more than three equations.

1. Introduction

In the past and at present, cholera has been a serious
threat to human health, which is an acute, diarrheal illness
caused by infection of the intestine with the bacteriumVibrio
cholera. An estimated 3–5 million cases and over 100,000
deaths occur each year around the world [1]. The cholera
bacterium is usually found in water or food sources that
have been contaminated by feces from a person infected with
cholera. Cholera is most likely to be found and spread in
places with inadequate water treatment, poor sanitation, and
inadequate hygiene. Therefore, cholera outbreaks have been
occurring in developing countries—for example, Iraq (2007-
2008), Guinea Bissau (2008), Zimbabwe (2008-2009), Haiti
(2010), Democratic Republic of Congo (2011-2012), and Sierra
Leone (2012) [2].

Manymathematicalmodels were proposed to understand
the propagation mechanism of cholera, the earlier one of
which was established by Capasso and Paveri-Fontana [3] to
study the 1973 cholera epidemic in the Mediterranean region
as follows:

𝑑𝐼

𝑑𝑡

= 𝑔 (𝐵) − 𝑎
22
𝐼,

𝑑𝐵

𝑑𝑡

= −𝑎
11
𝐵 + 𝑎

12
𝐼,

(1)
where𝐵(𝑡) and 𝐼(𝑡)denote the concentrations of the pathogen
and the infective populations, respectively. In addition,
Codeço [4] investigated the role of the aquatic pathogen
in dynamics of cholera through the following susceptible-
infective-pathogen mode:

𝑑𝑆

𝑑𝑡

= 𝑛 (𝐻 − 𝑆) − 𝑎

𝑆𝐵

𝐾 + 𝐵

,

𝑑𝐼

𝑑𝑡

= 𝑎

𝑆𝐵

𝐾 + 𝐵

− 𝑟𝐼,

𝑑𝐵

𝑑𝑡

= 𝑒𝐼 − (𝑚𝑏 − 𝑛𝑏) 𝐵,

(2)

where 𝑆(𝑡) is the susceptible individuals. In this model,
human is divided into two groups: the susceptible and
the infective. As pointed out in [4–8], bacterium Vibrio
cholera can spread by direct human-to-human and indirect
environment-to-human modes. To understand the complex
dynamics of cholera, model (2) is extended by [6, 9–15], and
so forth.
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In all previous models, the influences of space distribu-
tion of human on the transmission of cholera are omitted.
Cholera usually spreads in spacial wave [16]. Cholera bacteria
live in rivers and interact with the plankton on the surface
of the water [17]. When individuals drink contaminated
water and are infected, then they will release cholera bacteria
through excretion [18]. Capasso et al. [19–22] developed
model (1) by incorporating the bacterium diffusion in a
bounded area and studied the existence and stability of solu-
tions. To deeply investigate the interaction of transmission
modes and bacterium diffusion, Bertuzzo et al. [23, 24]
incorporated patchy structure into model (2) and supposed
that the pathogen in water could diffuse among these patches.
Furthermore, Mari et al. [25] studied the influence of dif-
fusion of both human and pathogen on cholera dynamics
through a patchy model.

Infectious case usually is found firstly at some location
and then spreads to other areas. Consequently, the most
important question for cholera is as follows: what is the
spreading speed of cholera? However, the above spacial
models mainly focus on the stability of solutions, not the
spreading speed. Traveling wave solution is an important tool
used to study the spreading speed of infectious diseases [26–
28]. Based on Capasso’s model (1), Zhao and Wang [29], Xu
and Zhao [30], Jin and Zhao [31], and Hsu and Yang [32]
studied the influences of pathogen diffusion on the spread
speed of cholera.

In above diffusive cholera models, diffusion of aquatic
pathogen is neglected. In this paper, we investigate the effects
of the disease-related death and aquatic pathogen in cholera
epidemic dynamics by developingmodel (2). Based onmodel
(2) and ignoring natural birth and death, a general diffusive
epidemic cholera model incorporating the disease-related
death and aquatic pathogen dynamics can be formulated as
the following reaction-diffusion system:

𝜕𝑆

𝜕𝑡

= −𝑓 (𝐵) 𝑆,

𝜕𝐼

𝜕𝑡

= 𝑓 (𝐵) 𝑆 − 𝛿𝐼,

𝜕𝐵

𝜕𝑡

= 𝑑

𝜕
2

𝐵

𝜕𝑥
2

+ 𝛾𝐼 − 𝑚𝐵,

(3)

where 𝑆 = 𝑆(𝑥, 𝑡) and 𝐼 = 𝐼(𝑥, 𝑡) denote the concentrations
of susceptible and infected individuals, respectively, and 𝐵 =

𝐵(𝑥, 𝑡) is the concentration of the infectious agents. 𝛿 is the
disease-related death rate, 𝛾 denotes the contribution of each
infected person to the concentration of cholera, and 𝑚 is
the net death rate of the vibrio. 𝑓(𝐵) is the environment-to-
human transmission incidence. Similar to [15], we assume
that 𝑓(𝐵) satisfies

(A1) 𝑓(0) = 0, lim
𝐵→+∞

𝑓(𝐵) < +∞, 𝑓󸀠(𝐵) > 0, −𝑀
0
≤

𝑓
󸀠󸀠

(𝐵) ≤ 0 for 𝐵 ≥ 0.

From hypothesis (A1), we have 𝑓(𝐵) ≤ 𝑓
󸀠

(0)𝐵.
In this paper, we study the traveling wave solutions of

model (3).The formula forminimalwave speed 𝑐∗ is given. To
prove the existence of traveling wave solutions for 𝑐 > 𝑐

∗, an

invariant cone is constructed and Schauder’s fixed point the-
orem is introduced. Schauder’s fixed point theorem is applied
widely to prove the existence of traveling wave solutions (e.g.,
[26, 33, 34]). However, unlike Wang and Wu [34], the cone
in our paper is bounded. Motivated by [34–37], we prove
the nonexistence of traveling wave solutions for 𝑐 < 𝑐

∗ by
two-sided Laplace transform, which was firstly introduced to
prove the nonexistence of traveling wave solutions by Carr
and Chmaj [37] and then was applied by [34–36]. To apply
two-sided Laplace transform, the exponential decrease of
traveling wave solutions is needed, which is proved in [34] by
analysis method. However, it cannot be applied to our model
due to the nonlinearity of cholera incidence. Therefore, in
this paper, a new method is proposed to get the exponential
decrease of traveling wave solutions, which is inspired by
the proof of Stable Manifold Theorem in [38]. In addition,
our method can be applied to reaction-diffusion systems
consisting of more than three equations.

This paper is organized as follows. Section 2 is focused on
the existence of traveling wave solutions. Firstly, the existence
of traveling wave solutions for original system is proved to be
equivalent to that of a new simple system. Then, two pairs of
upper and lower solutions are constructed to get an invariant
cone and Schauder’s fixed point theorem is applied for new
system. Section 3 is devoted to the nonexistence of traveling
wave solutions. For this aim, a new method is proposed to
show the exponential decrease of travelingwave solutions and
two-sided Laplace transform is used.

2. Existence of Traveling Wave Solutions

For convenience in discussing the model, we introduce
dimensionless variables and parameters. Setting

𝑢
1
=

𝑚

𝛿

𝑆, 𝑢
2
= 𝐼, 𝑢

3
=

𝑚

𝛾

𝐵,

𝜏 = 𝑚𝑡, 𝑦 = √

𝑚

𝑑

𝑥,

(4)

we obtain

𝑢
1,𝜏

= −𝑔 (𝑢
3
) 𝑢
1
,

𝑢
2,𝜏

= 𝜅 [𝑔 (𝑢
3
) 𝑢
1
− 𝑢

2
] ,

𝑢
3,𝜏

= 𝑢
3,𝑦𝑦

+ 𝑢
2
− 𝑢

3
,

(5)

where

𝜅 =

𝛿

𝑚

, 𝑔 (𝑢
3
) = 𝑓

(𝛾𝑢
3
/𝑚)

𝑚

,

𝑢
𝑖,𝜏

=

𝜕𝑢
𝑖

𝜕𝜏

, 𝑢
3,𝑦𝑦

=

𝜕
2

𝑢
3

𝜕𝑦
2

.

(6)

Obviously,𝑔(𝑢
3
) also satisfies assumption (A1) with𝑀

0
being

replaced by a new constant𝑀
0
.
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A traveling wave solution of system (5) is a nonnegative
nontrivial solution of the form

𝑢
1
(𝑦, 𝜏) = 𝑈 (𝜉) ,

𝑢
2
(𝑦, 𝜏) = 𝑊 (𝜉) ,

𝑢
3
(𝑦, 𝜏) = 𝑉 (𝜉) , 𝜉 = 𝑦 + 𝑐𝜏

(7)

satisfying boundary condition

(𝑈 (−∞) ,𝑊 (−∞) , 𝑉 (−∞)) = (𝑈
0

, 0, 0) ,

(𝑈 (+∞) ,𝑊 (+∞) , 𝑉 (+∞)) = (𝑈
1

, 0, 0) ,

(8)

where 𝑈0 > 𝑈
1

≥ 0.
Before giving the main theorem, we introduce the equa-

tion for minimal wave speed:

Δ (𝑐) = 𝑏
3
𝑐
6

+ 𝑏
2
𝑐
4

+ 𝑏
1
𝑐
2

+ 𝑏
0
= 0, (9)

where
𝑏
3
= −2𝜅 [2𝑔

󸀠

(0) 𝑈
0

− 1] − 1 − 𝜅
2

,

𝑏
2
= −2𝜅 [9𝑔

󸀠

(0) 𝑈
0

− 4] − 2𝜅
2

− 2𝜅
3

− 6𝜅
2

𝑔
󸀠

(0) 𝑈
0

− 4,

𝑏
1
= 8𝜅

2

− 8𝜅
3

− 𝜅
4

− 36𝜅
2

𝑔
󸀠

(0) 𝑈
0

+ 27𝜅
2

(𝑔
󸀠

(0) 𝑈
0

)

2

+ 6𝜅
3

𝑔
󸀠

(0) 𝑈
0

,

𝑏
0
= 4𝜅

4

[𝑔
󸀠

(0) 𝑈
0

− 1] .

(10)

The main result of this section is given as follows.

Theorem 1. Suppose 𝑈
0

> 1/𝑔
󸀠

(0). Then, there exists a
positive constant 𝑐∗ which is the only positive root of (9). For
any > 𝑐

∗, system (5) has a traveling wave solution (𝑈(𝑦 +

𝑐𝜏),𝑊(𝑦 + 𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) satisfying boundary condition (8)
such that𝑈(𝜉) is nonincreasing inR. Furthermore, one has that

∫

+∞

−∞

𝑊(𝜂) 𝑑𝜂 = ∫

+∞

−∞

𝑉 (𝜂) 𝑑𝜂 = 𝑐 (𝑈
0

− 𝑈
1

) ,

0 ≤ 𝑉 (𝜉) ≤ 𝑈
0

− 𝑈
1

.

(11)

To study the existence of traveling wave solutions, using
constant variationmethod in the second equation of (5) gives

𝑢
2
(𝑦, 𝜏) = 𝜅∫

𝜏

−∞

𝑒
−𝜅(𝜏−𝜁)

𝑔 (𝑢
3
(𝑦, 𝜁)) 𝑢

1
(𝑦, 𝜁) 𝑑𝜁

= 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑢
3
(𝑦, 𝜏 − 𝜂)) 𝑢

1
(𝑦, 𝜏 − 𝜂) 𝑑𝜂.

(12)

Then, system (5) changes into

𝑢
1,𝜏

= −𝑔 (𝑢
3
(𝑦, 𝜏)) 𝑢

1
(𝑦, 𝜏) ,

𝑢
3,𝜏

= 𝑢
3,𝑦𝑦

+ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑢
3
(𝑦, 𝜏 − 𝜂)) 𝑢

1
(𝑦, 𝜏 − 𝜂) 𝑑𝜂

− 𝑢
3
(𝑦, 𝜏) .

(13)

Lemma 2. (𝑈(𝑦+ 𝑐𝜏), 𝑉(𝑦+ 𝑐𝜏)) is a traveling wave solution
of system (13) satisfying boundary condition

𝑈 (−∞) = 𝑈
0

, 𝑈 (+∞) = 𝑈
1

,

𝑉 (−∞) = 𝑉 (+∞) = 0,

(14)

if and only if (𝑈(𝑦 + 𝑐𝜏),𝑊(𝑦 + 𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) is a traveling
wave solution of system (5) satisfying boundary condition (8),
where

𝑊(𝑦 + 𝑐𝜏)

= 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝑦 + 𝑐𝜏 − 𝑐𝜂))𝑈 (𝑦 + 𝑐𝜏 − 𝑐𝜂) 𝑑𝜂.

(15)

Proof. Assume (𝑈(𝑦 + 𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) is a traveling wave
solution of system (13) satisfying boundary condition (14).
Obviously, (𝑈(𝑦 + 𝑐𝜏),𝑊(𝑦 + 𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) is a solution of
system (5). To prove the necessity, it is enough to show that
𝑊(+∞) = 𝑊(−∞) = 0. Consider

lim
𝜉→±∞

𝑊(𝜉) = lim
𝜉→±∞

𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂

= lim
𝜉→±∞

(𝜅/𝑐) ∫

𝜉

−∞

𝑒
𝜅𝑠/𝑐

𝑔 (𝑉 (𝑠)) 𝑈 (𝑠) 𝑑𝑠

𝑒
𝜅𝜉/𝑐

= lim
𝜉→±∞

𝑔 (𝑉 (𝜉)) 𝑈 (𝜉) = 0,

(16)

where the third equality is due to L’Hopital principal.The suf-
ficiency is clear and is omitted. The proof is completed.

From Lemma 2, we only need to study traveling wave
solutions of (13) satisfying boundary condition (14). Substi-
tuting traveling profile

𝑢
1
(𝑦, 𝜏) = 𝑈 (𝜉) , 𝑢

3
(𝑦, 𝜏) = 𝑉 (𝜉) , 𝜉 = 𝑦 + 𝑐𝜏

(17)

into system (13) yields the following equations:

𝑐𝑈
󸀠

= −𝑔 (𝑉 (𝜉)) 𝑈 (𝜉) ,

𝑐𝑉
󸀠

= 𝑉
󸀠󸀠

+ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂 − 𝑉 (𝜉) ,

(18)

where 󸀠 denotes the derivative with respect to 𝜉.
In the following, we will use Schauder’s fixed point

theorem to prove the existence of traveling wave solutions.
To achieve this goal, we firstly linearize the second equation
of (18) at (𝑈0, 0) and obtain

𝑐𝜙
󸀠

= 𝜙
󸀠󸀠

+ 𝜅𝑔
󸀠

(0) 𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝜙 (𝜉 − 𝑐𝜂) 𝑑𝜂 − 𝜙 (𝜉) . (19)

Substituting 𝜙(𝜉) = 𝑒
𝜆𝜉V into (19), we get the characteristic

equation

Θ (𝜆) = 𝜆
2

− 𝑐𝜆 + 𝜅𝑔
󸀠

(0) 𝑈
0

∫

+∞

0

𝑒
−(𝜅+𝑐𝜆)𝜂

𝑑𝜂 − 1 = 0; (20)
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that is,

𝐻(𝜆) = 𝜆
3

+ 𝑎
2
𝜆
2

+ 𝑎
1
𝜆 + 𝑎

0
= 0, (21)

where 𝑎
0
= 𝜅[𝑔

󸀠

(0)𝑈
0

− 1]/𝑐, 𝑎
1
= −(1 + 𝜅) < 0, and 𝑎

2
=

(𝜅 − 𝑐
2

)/𝑐. To investigate distribution of roots of (21), denote

𝑝 = 𝑎
1
−

𝑎
2

2

3

,

𝑞 =

2𝑎
3

2

27

−

𝑎
1
𝑎
2

3

+ 𝑎
0
,

Δ
0
=

𝑞
2

4

+

𝑝
3

27

,

(22)

and introduce the following lemma [39].

Lemma3. (a) IfΔ
0
> 0, (21) has one real root and two nonreal

complex conjugate roots.
(b) If Δ

0
= 0, (21) has a multiple root and all its roots are

real.
(c) If Δ

0
< 0, (21) has three distinct real roots.

Then, we get the following lemma about the distribution
of eigenvalues.

Lemma4. Assume𝑈0 > 1/𝑔
󸀠

(0).Then, there exists a constant
𝑐
∗

> 0 which is the only positive root of (9) such that
(a) if 0 < 𝑐 < 𝑐

∗, (21) has a negative real root and
two nonreal complex conjugate roots with positive real
parts;

(b) if 𝑐 = 𝑐
∗, (21) has a negative real root and a positive

real multiple root;
(c) if 𝑐 > 𝑐

∗, (21) has a negative real root and two different
positive real roots;

(d) one can assume 𝑐 > 𝑐
∗ and let 𝜆

1
< 𝜆

2
be the two

positive roots of (21); then 𝐻(𝜆
1
+ 𝜀) < 0 if 0 < 𝜀 <

𝜆
2
− 𝜆

1
.

Proof. Obviously, 𝑏
3
< 0, 𝑏

2
< 0, and 𝑏

0
> 0. By Descartes’

rule of signs, Δ(𝑐) = 0 has only one positive root 𝑐∗ such
that Δ < 0 for 𝑐 > 𝑐

∗ and Δ > 0 for 0 < 𝑐 < 𝑐
∗. Direct

calculations show that Δ
0
= Δ/(108𝑐

4

). Since 𝑎
0
> 0 and

𝑎
1
< 0, Descartes’ rule of signs shows that (21) has only one

negative real root and Routh-Hurwitz criterion indicates that
(21) has roots with positive real parts. Then, the combination
of Lemma 3 and above analysis completes the proof of (a)–(c).
(d) is obviously true, since𝐻(𝜆) is a cubic polynomial.

In this section, we always suppose 𝑈0 > 1/𝑔
󸀠

(0) and 𝑐 >

𝑐
∗ unless other conditions are specified. Denote 𝜆

1
< 𝜆

2
to

be the two positive roots of (21) and define

𝑈 (𝜉) = max {𝑈0 − 𝜎𝑒
𝛼𝜉

, 0} ,

𝑉 (𝜉) = min {𝑒𝜆1𝜉, 𝑉0} ,

𝑉 (𝜉) = max {𝑒𝜆1𝜉 (1 −𝑀𝑒
𝜀𝜉

) , 0} ,

(23)

where 𝑉0 = 𝐽𝑈
0, 𝐽 = lim

𝑉→+∞
𝑔(𝑉).

Lemma 5. The function 𝑉(𝜉) satisfies inequality

𝑐𝑉

󸀠

≥ 𝑉

󸀠󸀠

+ 𝜅𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂)) 𝑑𝜂 − 𝑉 (𝜉) (24)

for any 𝜉 ̸= ln𝑉0/𝜆
1
.

Proof. Firstly, assume 𝜉 < ln𝑉0/𝜆
1
and, therefore, 𝑉(𝜉) =

𝑒
𝜆
1
𝜉. Since𝑉(𝜉) satisfies (19) and 𝑔󸀠󸀠(𝑉) ≤ 0 for any𝑉 ≥ 0, we

have

𝑐𝑉

󸀠

− 𝑉

󸀠󸀠

− 𝜅𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂)) 𝑑𝜂 + 𝑉 (𝜉)

= 𝑐𝑉

󸀠

− 𝑉

󸀠󸀠

− 𝜅𝑔
󸀠

(0) 𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝑉 (𝜉 − 𝑐𝜂) 𝑑𝜂 + 𝑉 (𝜉)

−

𝜅𝑈
0

2

∫

+∞

0

𝑒
−𝜅𝜂

[𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))] [𝑉 (𝜉 − 𝑐𝜂)]

2

𝑑𝜂

= −

𝜅𝑈
0

2

∫

+∞

0

𝑒
−𝜅𝜂

[𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))][𝑉 (𝜉 − 𝑐𝜂)]

2

𝑑𝜂 ≥ 0,

(25)

where 0 < 𝜃 < 1.
Secondly, set 𝜉 > ln𝑉0/𝜆

1
, which implies 𝑉(𝜉) = 𝑉

0. We
have that

𝑐𝑉

󸀠

− 𝑉

󸀠󸀠

− 𝜅𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂)) 𝑑𝜂 + 𝑉 (𝜉)

≥ 𝑉
0

− 𝜅𝑔 (𝑉
0

)𝑈
0

∫

+∞

0

𝑒
−𝜅𝜂

𝑑𝜂

= 𝑉
0

− 𝑔 (𝑉
0

)𝑈
0

= [𝐽 − 𝑔 (𝑉
0

)]𝑈
0

≥ 0.

(26)

The proof is completed.

Lemma 6. For 𝛼 > 0 sufficiently small and 𝜎 > 0 sufficiently
large, the function 𝑈(𝜉) satisfies

𝑐𝑈
󸀠

≤ −𝑔 (𝑉 (𝜉))𝑈 (𝜉) (27)

for any 𝜉 ̸= 1/𝛼 ln(𝑈0/𝜎).

Proof. Let𝜎 > 0 be sufficiently large to ensure 1/𝛼 ln(𝑈0/𝜎) <
ln𝑉0/𝜆

1
. When 𝜉 > 1/𝛼 ln(𝑈0/𝜎), then 𝑈(𝜉) = 0 and the
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lemma is obviously true. Now, suppose 𝜉 < 1/𝛼 ln(𝑈0/𝜎).
Then, 𝑈(𝜉) = 𝑈

0

− 𝜎𝑒
𝛼𝜉 and

− 𝑐𝑈
󸀠

− 𝑔 (𝑉 (𝜉))𝑈 (𝜉)

= 𝑐𝜎𝛼𝑒
𝛼𝜉

− [𝑔
󸀠

(0) 𝑉 (𝜉) +

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉))

2

(𝑉 (𝜉))

2

]

× (𝑈
0

− 𝜎𝑒
𝛼𝜉

)

= 𝑐𝜎𝛼𝑒
𝛼𝜉

− 𝑔
󸀠

(0) 𝑈
0

𝑒
𝜆
1
𝜉

+ 𝑔
󸀠

(0) 𝑉 (𝜉) 𝜎𝑒
𝛼𝜉

−

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉))

2

(𝑉 (𝜉))

2

(𝑈
0

− 𝜎𝑒
𝛼𝜉

)

≥ 𝑒
𝛼𝜉

[𝑐𝜎𝛼 − 𝑔
󸀠

(0) 𝑈
0

𝑒
(𝜆
1
−𝛼)(1/𝛼) ln(𝑈0/𝜎)

]

= 𝑒
𝛼𝜉

[𝑐𝜎𝛼 − 𝑔
󸀠

(0) 𝑈
0

𝑒
(𝜆
1
−𝛼)

(

𝑈
0

𝜎

)

1/𝛼

] ,

(28)

where 0 < 𝜃 < 1. Let 𝜎 = 1/𝛼. Since

lim
𝛼→0

+

(

𝑈
0

𝜎

)

1/𝛼

= lim
𝛼→0

+

(𝑈
0

𝛼)

1/𝛼

= 0, (29)

we can find 𝛼 > 0 sufficiently small and 𝜎 > 0 sufficiently
large such that

−𝑐𝑈
󸀠

− 𝑔 (𝑉 (𝜉))𝑈 (𝜉) ≥ 0. (30)

Thus, the proof is completed.

Lemma 7. Let 𝜀 = min{𝛼, 𝜆
1
, 𝜆
2
− 𝜆

1
}/2. Then, for 𝑀 > 0

large enough, the function 𝑉(𝜉) satisfies

𝑐𝑉
󸀠

≤ 𝑉
󸀠󸀠

+ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂 − 𝑉 (𝜉)

(31)

for any 𝜉 ̸= 1/𝜀 ln(1/𝑀).

Proof. It is clear that𝑈(𝜉) = 0 if and only if 𝜉 = 1/𝛼 ln(𝑈0/𝜎),
that 𝑉(𝜉) = 0 if and only if 𝜉 = 1/𝜀 ln(1/𝑀), and that
1/𝜀 ln(1/𝑀) < 1/𝛼 ln(𝑈0/𝜎) if and only if 𝑀 > (𝜎/𝑈

0

)
(𝜀/𝛼).

Let 𝑀 > (𝜎/𝑈
0

)
(𝜀/𝛼). When 𝜉 > 1/𝜀 ln(1/𝑀), then 𝑒

𝜆
1
𝜉

(1 −

𝑀𝑒
𝜀𝜉

) < 0, 𝑉(𝜉) = 0, and Lemma 7 holds.

In this paragraph, assume 𝜉 < 1/𝜀 ln(1/𝑀). Then, 𝜉 <

1/𝛼 ln(𝑈0/𝜎), 𝑈(𝜉) = 𝑈
0

− 𝜎𝑒
𝛼𝜉

> 0, and 𝑉(𝜉) = 𝑒
𝜆
1
𝜉

(1 −

𝑀𝑒
𝜀𝜉

) > 0. To prove this lemma, it is enough to show

0 ≤ 𝑒
−𝜆
1
𝜉

[𝑉
󸀠󸀠

− 𝑐𝑉
󸀠

+ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))

× 𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂 − 𝑉 (𝜉) ]

= 𝜆
2

1
−𝑀(𝜆

1
+ 𝜀)

2

𝑒
𝜀𝜉

− 𝑐𝜆
1
+ 𝑐𝑀(𝜆

1
+ 𝜀) 𝑒

𝜀𝜉

− 1

+𝑀𝑒
𝜀𝜉

+ 𝑒
−𝜆
1
𝜉

𝜅∫

+∞

0

𝑒
−𝜅𝜂

× [𝑔
󸀠

(0) 𝑉 (𝜉 − 𝑐𝜂)

+

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))

2

𝑉
2

(𝜉 − 𝑐𝜂)]

× 𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂

= 𝜆
2

1
− 𝑐𝜆

1
+ 𝜅𝑔

󸀠

(0) 𝑈
0

∫

+∞

0

𝑒
−(𝜅+𝑐𝜆

1
)𝜂

𝑑𝜂 − 1

+𝑀[ − (𝜆
1
+ 𝜀)

2

+ 𝑐 (𝜆
1
+ 𝜀)

− 𝜅𝑔
󸀠

(0) 𝑈
0

∫

+∞

0

𝑒
−(𝜅+𝑐(𝜆

1
+𝜀))𝜂

𝑑𝜂 + 1] 𝑒
𝜀𝜉

− 𝜅𝑔
󸀠

(0) 𝜎𝑒
𝛼𝜉

∫

+∞

0

𝑒
−(𝜅+𝑐𝜆

1
+𝑐𝛼)𝜂

𝑑𝜂

+𝑀𝜅𝑔
󸀠

(0) 𝜎𝑒
(𝛼+𝜀)𝜉

∫

+∞

0

𝑒
−(𝜅+𝑐𝜆

1
+𝑐𝜀+𝑐𝛼)𝜂

𝑑𝜂

+

𝜅

2

𝑒
𝜆
1
𝜉

∫

+∞

0

𝑒
−(𝜅+2𝑐𝜆

1
)𝜂

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))

× (1 −𝑀𝑒
𝜀𝜉

𝑒
−𝜀𝑐𝜂

)

2

𝑈(𝜉 − 𝑐𝜂) 𝑑𝜂

= 𝑀

−𝑐𝐻 (𝜆
1
+ 𝜀)

𝜅 + 𝑐𝜆
1
+ 𝑐𝜀

𝑒
𝜀𝜉

−

𝜅𝑔
󸀠

(0) 𝜎

𝜅 + 𝑐𝜆
1
+ 𝑐𝛼

𝑒
𝛼𝜉

+

𝑀𝜅𝑔
󸀠

(0) 𝜎

𝜅 + 𝑐𝜆
1
+ 𝑐𝜀 + 𝑐𝛼

𝑒
(𝛼+𝜀)𝜉

+

𝜅

2

𝑒
𝜆
1
𝜉

∫

+∞

0

𝑒
−(𝜅+2𝑐𝜆

1
)𝜂

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))

× (1 −𝑀𝑒
𝜀𝜉

𝑒
−𝜀𝑐𝜂

)

2

𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂,

(32)

where 0 < 𝜃 < 1. Since

0 ≥

𝜅

2

𝑒
𝜆
1
𝜉

∫

+∞

0

𝑒
−(𝜅+2𝑐𝜆

1
)𝜂

𝑔
󸀠󸀠

(𝜃𝑉 (𝜉 − 𝑐𝜂))

× (1 −𝑀𝑒
𝜀𝜉

𝑒
−𝜀𝑐𝜂

)

2

𝑈(𝜉 − 𝑐𝜂) 𝑑𝜂
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≥ −

𝜅

2

𝑒
𝜆
1
𝜉

∫

+∞

0

𝑒
−(𝜅+2𝑐𝜆

1
)𝜂

𝑀
0
𝑈
0

𝑑𝜂

= −

𝜅𝑀
0
𝑈
0

2 (𝜅 + 2𝑐𝜆
1
)

𝑒
𝜆
1
𝜉

,

(33)

we only need to show

𝑀

−𝑐𝐻 (𝜆
1
+ 𝜀)

𝜅 + 𝑐𝜆
1

≥

𝜅𝑔
󸀠

(0) 𝜎

𝜅 + 𝑐𝜆
1
+ 𝑐𝛼

𝑒
(𝛼−𝜀)𝜉

+

𝜅𝑀
0
𝑈
0

2 (𝜅 + 2𝑐𝜆
1
)

𝑒
(𝜆
1
−𝜀)𝜉

.

(34)

Since 𝜉 < 1/𝛼 ln(𝑈0/𝜎), then

𝑒
(𝛼−𝜀)𝜉

< (𝑈
0

𝜎
−1

)

(𝛼−𝜀)/𝛼

,

𝑒
(𝜆
1
−𝜀)𝜉

< (𝑈
0

𝜎
−1

)

(𝜆
1
−𝜀)/𝛼

.

(35)

Since𝐻(𝜆
1
+ 𝜀) < 0, inequality (34) satisfies if

𝑀 > −[

𝜅𝑔
󸀠

(0) 𝜎

𝜅 + 𝑐𝜆
1
+ 𝑐𝛼

(𝑈
0

𝜎
−1

)

(𝛼−𝜀)/𝛼

+

𝜅𝑀
0
𝑈
0

2 (𝜅 + 2𝑐𝜆
1
)

(𝑈
0

𝜎
−1

)

(𝜆
1
−𝜀)/𝛼

]

×

𝜅 + 𝑐𝜆
1

𝑐𝐻 (𝜆
1
+ 𝜀)

.

(36)

The proof is completed.

To apply Schauder’s fixed point theorem, we will intro-
duce a topology in 𝐶(R,R2). Let 𝜇 be a positive constant
which will be specified in the following. For Φ(𝜉) =

(𝜙
1
(𝜉), 𝜙

2
(𝜉)), define

|Φ (⋅)|
𝜇
= max{sup

𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝜙
1
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

, sup
𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝜙
2
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

} ,

𝐵
𝜇
(R,R

2

) = {Φ (⋅) ∈ 𝐶 (R,R
2

) : |Φ (⋅)|
𝜇
< +∞} .

(37)

We will find traveling wave solutions in the following profile
set:

Γ = {(𝑈 (⋅) , 𝑉 (⋅)) ∈ 𝐶 (R,R
2

) : 𝑈 (𝜉) ≤ 𝑈 (𝜉) ≤ 𝑈
0

,

𝑉 (𝜉) ≤ 𝑉 (𝜉) ≤ 𝑉 (𝜉) for any 𝜉 ∈ R} .

(38)

Obviously, Γ is closed and convex in 𝐶(R,R2). Firstly, we
change system (18) into the following form:

𝑐𝑈
󸀠

+ 𝛽
1
𝑈 (𝜉) = 𝐻

1
(𝑈, 𝑉) (𝜉) ,

−𝑉
󸀠󸀠

+ 𝑐𝑉
󸀠

+ 𝑉 (𝜉) = 𝐻
2
(𝑈, 𝑉) (𝜉) ,

(39)

where 𝛽
1
> lim

𝑉→+∞
𝑔(𝑉),

𝐻
1
(𝑈, 𝑉) (𝜉) = [𝛽

1
− 𝑔 (𝑉 (𝜉))] 𝑈 (𝜉) ,

𝐻
2
(𝑈, 𝑉) (𝜉) = 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂.

(40)

SupposeΛ
1
< 0 < Λ

2
are the two roots of equationΛ2−𝑐Λ−

1 = 0. Furthermore, define 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → 𝐶(R,R2) by

𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) =

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝐻
1
(𝑈, 𝑉) (𝑡) 𝑑𝑡,

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) =

1

Λ
2
− Λ

1

× [∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡] .

(41)

In the remainder of this paper, it is always assumed that 𝜇 <

min{𝛽
1
/𝑐, 𝜅/𝑐, −Λ

1
, Λ

2
}.

Lemma 8. Consider 𝐹(Γ) ⊂ Γ.

Proof. Let (𝑈(⋅), 𝑉(⋅)) ∈ Γ; that is 𝑈(𝜉) ≤ 𝑈(𝜉) ≤ 𝑈
0, 𝑉(𝜉) ≤

𝑉(𝜉) ≤ 𝑉(𝜉). Then, we need to prove that

𝑈 (𝜉) ≤ 𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑈

0

,

𝑉 (𝜉) ≤ 𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) ≤ 𝑉 (𝜉) .

(42)

First of all, we have

𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) =

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝐻
1
(𝑈, 𝑉) (𝑡) 𝑑𝑡,

≤

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝛽
1
𝑈
0

𝑑𝑡

= 𝑈
0

.

(43)

From Lemma 6 and system (39), we get

𝑐𝑈
󸀠

+ 𝛽
1
𝑈 (𝜉) ≤ 𝐻

1
(𝑈, 𝑉) (𝜉)

= [𝛽
1
− 𝑔 (𝑉 (𝜉))]𝑈 (𝜉)

≤ [𝛽
1
− 𝑔 (𝑉 (𝜉))] 𝑈 (𝜉)

= 𝐻
1
(𝑈, 𝑉) (𝜉) ,

(44)
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where the second inequality is due to 𝛽
1
> lim

𝑉→+∞
𝑔(𝑉).

Then,

𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) =

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝐻
1
(𝑈, 𝑉) (𝑡) 𝑑𝑡,

≥

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

[𝑐𝑈
󸀠

(𝑡) + 𝛽
1
𝑈 (𝑡)] 𝑑𝑡

= 𝑈 (𝜉) .

(45)

Therefore, we have proved 𝑈(𝜉) ≤ 𝐹
1
(𝑈(⋅), 𝑉(⋅))(𝜉) ≤ 𝑈

0.
Now, we study 𝐹

2
(𝑈(⋅), 𝑉(⋅))(𝜉). If 𝜉 ≥ 𝜉

0
≜ 1/𝜀 ln(1/𝑀),

then 𝑉(𝜉) = 0, which implies that 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉)

since 𝑈(𝜉) ≥ 𝑈(𝜉) ≥ 0, 𝑉(𝜉) ≥ 𝑉(𝜉) ≥ 0. Assume 𝜉 < 𝜉
0
.

From Lemma 7 and system (39), it is clear that

−𝑉
󸀠󸀠

+ 𝑐𝑉
󸀠

+ 𝑉 (𝜉) ≤ 𝐻
2
(𝑈, 𝑉) (𝜉)

= 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂

≤ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂

= 𝐻
2
(𝑈, 𝑉) (𝜉) ,

(46)

which implies

𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=

1

Λ
2
− Λ

1

[∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡]

≥

1

Λ
2
− Λ

1

∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

[−𝑉
󸀠󸀠

(𝑡) + 𝑐𝑉
󸀠

(𝑡) + 𝑉 (𝑡)] 𝑑𝑡

+

1

Λ
2
− Λ

1

∫

𝜉
0

𝜉

𝑒
Λ
2
(𝜉−𝑡)

[−𝑉
󸀠󸀠

(𝑡) + 𝑐𝑉
󸀠

(𝑡) + 𝑉 (𝑡)] 𝑑𝑡

+

1

Λ
2
− Λ

1

∫

+∞

𝜉
0

𝑒
Λ
2
(𝜉−𝑡)

[−𝑉
󸀠󸀠

(𝑡) + 𝑐𝑉
󸀠

(𝑡) + 𝑉 (𝑡)] 𝑑𝑡

= 𝑉 (𝜉) +

1

Λ
2
− Λ

1

𝑒
Λ
2
(𝜉−𝜉
0
)

[𝑉
󸀠

(𝜉
0
+ 0) − 𝑉

󸀠

(𝜉
0
− 0)]

≥ 𝑉 (𝜉) ,

(47)

where the final inequality is due to𝑉󸀠(𝜉
0
+0) = 0 and𝑉󸀠(𝜉

0
−

0) < 0. In conclusion, 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≥ 𝑉(𝜉) for any 𝜉 ∈ R.

Similarly, we can show 𝐹
2
(𝑈(⋅), 𝑉(⋅))(𝜉) ≤ 𝑉(𝜉) and the

proof is completed.

Lemma 9. Map 𝐹 = (𝐹
1
, 𝐹
2
) : Γ → 𝐶(R,R2) is continuous

with respect to the norm | ⋅ |
𝜇
in 𝐵

𝜇
(R,R2).

Proof. ForΦ
1
(⋅) = (𝑈

1
(⋅), 𝑉

1
(⋅)), Φ

2
(⋅) = (𝑈

2
(⋅), 𝑉

2
(⋅)) ∈ Γ, we

have

󵄨
󵄨
󵄨
󵄨
𝐻
1
(𝑈
1
, 𝑉
1
) (𝜉) − 𝐻

1
(𝑈
2
, 𝑉
2
) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝛽
1

󵄨
󵄨
󵄨
󵄨
𝑈
1
(𝜉) − 𝑈

2
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑉

1
(𝜉)) 𝑈

1
(𝜉) − 𝑔 (𝑉

2
(𝜉)) 𝑈

2
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝛽
1

󵄨
󵄨
󵄨
󵄨
𝑈
1
(⋅) − 𝑈

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑉

1
(𝜉)) [𝑈

1
(𝜉) − 𝑈

2
(𝜉)]

+ 𝑈
2
(𝜉) [𝑔 (𝑉

1
(𝜉)) − 𝑔 (𝑉

2
(𝜉))]

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝛽
1

󵄨
󵄨
󵄨
󵄨
𝑈
1
(⋅) − 𝑈

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
+ 𝐽

󵄨
󵄨
󵄨
󵄨
𝑈
1
(𝜉) − 𝑈

2
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

+ 𝑈
0

𝑔
󸀠

(𝑉
∗

)
󵄨
󵄨
󵄨
󵄨
𝑉
1
(𝜉) − 𝑉

2
(𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ (𝛽
1
+ 𝐽)

󵄨
󵄨
󵄨
󵄨
𝑈
1
(⋅) − 𝑈

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
+ 𝑈

0

𝑔
󸀠

(0)
󵄨
󵄨
󵄨
󵄨
𝑉
1
(⋅) − 𝑉

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

≤ 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
,

(48)

where 𝑀
1
= 𝛽

1
+ 𝐽 + 𝑈

0

𝑔
󸀠

(0), and 𝑉
∗ is between 𝑉

1
(𝜉) and

𝑉
2
(𝜉). Therefore, we have

󵄨
󵄨
󵄨
󵄨
𝐻
1
(Φ

1
(⋅)) − 𝐻

1
(Φ

2
(⋅))

󵄨
󵄨
󵄨
󵄨𝜇
≤ 𝑀

1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
. (49)

Then,

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

1
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤

1

𝑐

𝑒
−𝜇|𝜉|

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

×
󵄨
󵄨
󵄨
󵄨
𝐻
1
(𝑈
1
, 𝑉
1
) (𝑡) − 𝐻

1
(𝑈
2
, 𝑉
2
) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

=

1

𝑐

𝑒
−𝜇|𝜉|−(𝛽

1
/𝑐)𝜉

∫

𝜉

−∞

𝑒
(𝛽
1
/𝑐)𝑡+𝜇|𝑡|

×
󵄨
󵄨
󵄨
󵄨
𝐻
1
(𝑈
1
, 𝑉
1
) (𝑡) − 𝐻

1
(𝑈
2
, 𝑉
2
) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝑡|

𝑑𝑡

≤ 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

1

𝑐

𝑒
−𝜇|𝜉|−(𝛽

1
/𝑐)𝜉

∫

𝜉

−∞

𝑒
(𝛽
1
/𝑐)𝑡+𝜇|𝑡|

𝑑𝑡.

(50)

Thus, when 𝜉 ≤ 0, we get

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

1
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(𝜉) − Φ

2
(𝜉)

󵄨
󵄨
󵄨
󵄨𝜇

1

𝑐

𝑒
(𝜇−𝛽
1
/𝑐)𝜉

∫

𝜉

−∞

𝑒
(𝛽
1
/𝑐−𝜇)𝑡

𝑑𝑡

=

𝑀
1

𝛽
1
− 𝑐𝜇

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
.

(51)



8 The Scientific World Journal

When 𝜉 > 0, it follows that

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

1
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

1

𝑐

𝑒
−𝜇|𝜉|−(𝛽

1
/𝑐)𝜉

∫

𝜉

−∞

𝑒
(𝛽
1
/𝑐)𝑡+𝜇|𝑡|

𝑑𝑡

= 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

1

𝑐

𝑒
−𝜇𝜉−(𝛽

1
/𝑐)𝜉

× [∫

0

−∞

𝑒
(𝛽
1
/𝑐)𝑡−𝜇𝑡

𝑑𝑡 + ∫

𝜉

0

𝑒
(𝛽
1
/𝑐)𝑡+𝜇𝑡

𝑑𝑡]

= 𝑀
1

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

1

𝑐

𝑒
−𝜇𝜉−(𝛽

1
/𝑐)𝜉

× [

2𝑐
2

𝜇

𝛽
2

1
− 𝑐

2
𝜇
2

+

𝑐

𝛽
1
+ 𝑐𝜇

𝑒
(𝛽
1
/𝑐+𝜇)𝜉

]

≤ 𝑀
1
(

2𝑐𝜇

𝛽
2

1
− 𝑐

2
𝜇
2

+

1

𝛽
1
+ 𝑐𝜇

)
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
.

(52)

Consequently, we have proved that

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

1
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝑀
2

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

(53)

for any 𝜉 ∈ R, where

𝑀
2
= max{ 𝑀

1

𝛽
1
− 𝑐𝜇

,𝑀
1
(

2𝑐𝜇

𝛽
2

1
− 𝑐

2
𝜇
2

+

1

𝛽
1
+ 𝑐𝜇

)} . (54)

That is,
󵄨
󵄨
󵄨
󵄨
𝐹
1
(Φ

1
(⋅)) − 𝐹

1
(Φ

2
(⋅))

󵄨
󵄨
󵄨
󵄨𝜇
≤ 𝑀

2

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
. (55)

In conclusion, 𝐹
1
: Γ → 𝐶(R,R) is continuous with respect

to the norm | ⋅ |
𝜇
in 𝐵

𝜇
(R,R).

In addition, consider 𝐹
2
(𝑈(𝜉), 𝑉(𝜉)). Firstly, we have

󵄨
󵄨
󵄨
󵄨
𝐻
2
(𝑈
1
, 𝑉
1
) (𝜉) − 𝐻

2
(𝑈
2
, 𝑉
2
) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 𝜅𝑒
−𝜇|𝜉|

∫

+∞

0

𝑒
−𝜅𝜂 󵄨

󵄨
󵄨
󵄨
𝑔 (𝑉

1
(𝜉 − 𝑐𝜂))𝑈

1
(𝜉 − 𝑐𝜂)

−𝑔 (𝑉
2
(𝜉 − 𝑐𝜂))𝑈

2
(𝜉 − 𝑐𝜂)

󵄨
󵄨
󵄨
󵄨
𝑑𝜂

≤ 𝜅𝑒
−𝜇|𝜉|

∫

+∞

0

𝑒
−𝜅𝜂

[𝐽
󵄨
󵄨
󵄨
󵄨
𝑈
1
(𝜉 − 𝑐𝜂) − 𝑈

2
(𝜉 − 𝑐𝜂)

󵄨
󵄨
󵄨
󵄨

+ 𝑈
0

𝑔
󸀠

(0)

×
󵄨
󵄨
󵄨
󵄨
𝑉
1
(𝜉 − 𝑐𝜂) − 𝑉

2
(𝜉 − 𝑐𝜂)

󵄨
󵄨
󵄨
󵄨
] 𝑑𝜂

≤ [𝐽
󵄨
󵄨
󵄨
󵄨
𝑈
1
(⋅) − 𝑈

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
+ 𝑈

0

𝑔
󸀠

(0)
󵄨
󵄨
󵄨
󵄨
𝑉
1
(𝜉) − 𝑉

2
(𝜉)

󵄨
󵄨
󵄨
󵄨𝜇
]

× 𝜅𝑒
−𝜇|𝜉|

∫

+∞

0

𝑒
−𝜅𝜂+𝜇|𝜉−𝑐𝜂|

𝑑𝜂

≤
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

× [(𝐽 + 𝑈
0

𝑔
󸀠

(0)) 𝜅∫

+∞

0

𝑒
−𝜇|𝜉|−𝜅𝜂+𝜇|𝜉−𝑐𝜂|

𝑑𝜂]

≤
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

× [(𝐽 + 𝑈
0

𝑔
󸀠

(0)) 𝜅∫

+∞

0

𝑒
−(𝜅−𝑐𝜇)𝜂

𝑑𝜂]

= 𝑀
3

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
,

(56)

where𝑀
3
= (𝐽 + 𝑈

0

𝑔
󸀠

(0))𝜅/(𝜅 − 𝑐𝜇). Therefore,

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

2
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤

𝑒
−𝜇|𝜉|

Λ
2
− Λ

1

× [∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡) 󵄨

󵄨
󵄨
󵄨
𝐻
2
(𝑈
1
, 𝑉
1
) (𝑡) − 𝐻

2
(𝑈
2
, 𝑉
2
) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+ ∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡) 󵄨

󵄨
󵄨
󵄨
𝐻
2
(𝑈
1
, 𝑉
1
) (𝑡) − 𝐻

2
(𝑈
2
, 𝑉
2
) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡]

≤

𝑀
3
𝑒
−𝜇|𝜉|

Λ
2
− Λ

1

× [∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡 + ∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)+𝜇|𝑡|

𝑑𝑡]

×
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
.

(57)

If 𝜉 < 0, it holds that

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

2
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤

𝑀
3
𝑒
𝜇𝜉

Λ
2
− Λ

1

× [𝑒
Λ
1
𝜉

∫

𝜉

−∞

𝑒
−(Λ
1
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
2
𝜉

∫

0

𝜉

𝑒
−(Λ
2
+𝜇)𝑡

𝑑𝑡

+𝑒
Λ
2
𝜉

∫

+∞

0

𝑒
(𝜇−Λ

2
)𝑡

𝑑𝑡]
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

=

𝑀
3

Λ
2
− Λ

1

× [

1

−Λ
1
− 𝜇

+

1 − 𝑒
(Λ
2
+𝜇)𝜉

Λ
2
+ 𝜇

+

𝑒
(Λ
2
+𝜇)𝜉

Λ
2
− 𝜇

]

×
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
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≤

𝑀
3

Λ
2
− Λ

1

× (

1

−Λ
1
− 𝜇

+

1

Λ
2
+ 𝜇

+

1

Λ
2
− 𝜇

)
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
.

(58)

If 𝜉 ≥ 0, we have

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑈
1
(⋅) , 𝑉

1
(⋅)) (𝜉) − 𝐹

2
(𝑈
2
(⋅) , 𝑉

2
(⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤

𝑀
3
𝑒
−𝜇𝜉

Λ
2
− Λ

1

× [𝑒
Λ
1
𝜉

∫

0

−∞

𝑒
−(Λ
1
+𝜇)𝑡

𝑑𝑡 + 𝑒
Λ
1
𝜉

∫

𝜉

0

𝑒
(𝜇−Λ

1
)𝑡

𝑑𝑡

+𝑒
Λ
2
𝜉

∫

+∞

𝜉

𝑒
(𝜇−Λ

2
)𝑡

𝑑𝑡]
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

=

𝑀
3

Λ
2
− Λ

1

[

𝑒
(Λ
1
−𝜇)𝜉

−Λ
1
− 𝜇

+

1 − 𝑒
(Λ
1
−𝜇)𝜉

𝜇 − Λ
1

+

1

Λ
2
− 𝜇

]

×
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇

≤

𝑀
3

Λ
2
− Λ

1

(

1

−Λ
1
− 𝜇

+

1

𝜇 − Λ
1

+

1

Λ
2
− 𝜇

)

×
󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
.

(59)

Consequently, we conclude that

󵄨
󵄨
󵄨
󵄨
𝐹
2
(Φ

1
(⋅)) − 𝐹

2
(Φ

2
(⋅))

󵄨
󵄨
󵄨
󵄨𝜇
≤ 𝑀

4

󵄨
󵄨
󵄨
󵄨
Φ
1
(⋅) − Φ

2
(⋅)
󵄨
󵄨
󵄨
󵄨𝜇
, (60)

where

𝑀
4
=

𝑀
3

Λ
2
− Λ

1

×max{ 1

−Λ
1
− 𝜇

+

1

Λ
2
+ 𝜇

+

1

Λ
2
− 𝜇

,

1

−Λ
1
− 𝜇

+

1

𝜇 − Λ
1

+

1

Λ
2
− 𝜇

} .

(61)

Thus, 𝐹
2
: Γ → 𝐶(R,R) is continuous with respect to the

norm | ⋅ |
𝜇
in 𝐵

𝜇
(R,R). The proof is completed.

Lemma 10. Map𝐹 = (𝐹
1
, 𝐹
2
) : Γ → Γ is compact with respect

to the norm | ⋅ |
𝜇
in 𝐵

𝜇
(R,R2).

Proof. For anyΦ(𝜉) = (𝑈(𝜉), 𝑉(𝜉)) ∈ Γ, it is clear that

𝑑

𝑑𝜉

𝐹
1
(Φ (⋅)) (𝜉) =

1

𝑐

𝐻
1
(Φ (⋅)) (𝜉)

−

𝛽
1

𝑐
2

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝐻
1
(Φ (⋅)) (𝑡) 𝑑𝑡.

(62)

Since |𝐻
1
(𝑈, 𝑉)(𝜉)| = |[𝛽

1
− 𝑔(𝑉(𝜉))]𝑈(𝜉)| ≤ 𝛽

1
𝑈
0, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝜉

𝐹
1
(Φ (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
−𝜇|𝜉|

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝜉

𝐹
1
(Φ (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝛽
1
𝑈
0

𝑐

+

𝛽
1

𝑐
2

𝑒
−(𝛽
1
/𝑐)𝜉

∫

𝜉

−∞

𝑒
(𝛽
1
/𝑐)𝑡

𝛽
1
𝑈
0

𝑑𝑡

=

2𝛽
1
𝑈
0

𝑐

,

(63)

which implies that |(𝑑/𝑑𝜉)𝐹
1
(Φ(⋅))(⋅)|

𝜇
< 2𝛽

1
𝑈
0

/𝑐. Since
Φ(⋅) = (𝑈(⋅), 𝑉(⋅)) ∈ Γ, we get

󵄨
󵄨
󵄨
󵄨
𝐻
2
(𝑈, 𝑉) (𝜉)

󵄨
󵄨
󵄨
󵄨
= 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂

≤ 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝛽
1
𝑈
0

𝑑𝜂 + 𝑉
0

= 𝛽
1
𝑈
0

+ 𝑉
0

.

(64)

Then,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝜉

𝐹
2
(Φ (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

Λ
2
− Λ

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Λ
1
∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

+Λ
2
∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)

𝐻
2
(𝑈, 𝑉) (𝑡) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝛽
1
𝑈
0

+ 𝑉
0

Λ
2
− Λ

1

× [
󵄨
󵄨
󵄨
󵄨
Λ
1

󵄨
󵄨
󵄨
󵄨
∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

𝑑𝑡 + Λ
2
∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)

𝑑𝑡]

=

2 (𝛽
1
𝑈
0

+ 𝑉
0

)

Λ
2
− Λ

1

,

(65)

which implies that |(𝑑/𝑑𝜉)𝐹
2
(Φ(⋅))(⋅)|

𝜇
< 2(𝛽

1
𝑈
0

+ 𝑉
0

)/

(Λ
2

− Λ
1
). Consequently, |(𝑑/𝑑𝜉)𝐹

1
(Φ(⋅))(⋅)|

𝜇
and

|(𝑑/𝑑𝜉)𝐹
2
(Φ(⋅))(⋅)|

𝜇
are bounded, which shows that 𝐹(Γ) is

uniformly bounded and equicontinuous with respect to the
norm | ⋅ |

𝜇
in 𝐵

𝜇
(R,R2).

Furthermore, for any positive integer 𝑛, define

𝐹
𝑛

(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

=

{
{

{
{

{

𝐹 (𝑈 (⋅) , 𝑉 (⋅)) (𝜉) , 𝜉 ∈ [−𝑛, 𝑛] ,

𝐹 (𝑈 (⋅) , 𝑉 (⋅)) (−𝑛) , 𝜉 ∈ (−∞, −𝑛] ,

𝐹 (𝑈 (⋅) , 𝑉 (⋅)) (𝑛) , 𝜉 ∈ [𝑛, +∞] .

(66)
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Obviously, for fixed 𝑛, 𝐹𝑛(Γ) is uniformly bounded and
equicontinuous with respect to the norm | ⋅ |

𝜇
in 𝐵

𝜇
(R,R2),

which implies that 𝐹𝑛 : Γ → Γ is a compact operator. Since

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
≤

1

𝑐

∫

𝜉

−∞

𝑒
−(𝛽
1
/𝑐)(𝜉−𝑡)

𝛽
1
𝑈
0

𝑑𝑡 = 𝑈
0

,

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
≤

𝛽
1
𝑈
0

+ 𝑉
0

Λ
2
− Λ

1

× {∫

𝜉

−∞

𝑒
Λ
1
(𝜉−𝑡)

𝑑𝑡 + ∫

+∞

𝜉

𝑒
Λ
2
(𝜉−𝑡)

𝑑𝑡}

=

𝛽
1
𝑈
0

+ 𝑉
0

󵄨
󵄨
󵄨
󵄨
Λ
1

󵄨
󵄨
󵄨
󵄨
Λ
2

,

(67)

we have that

󵄨
󵄨
󵄨
󵄨
𝐹
𝑛

1
(𝑈 (⋅) , 𝑉 (⋅)) (⋅) − 𝐹

1
(𝑈 (⋅) , 𝑉 (⋅)) (⋅)

󵄨
󵄨
󵄨
󵄨𝜇

= sup
𝜉∈R

󵄨
󵄨
󵄨
󵄨
𝐹
𝑛

1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉) − 𝐹

1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

= sup
𝜉∈(−∞,−𝑛]∪[𝑛,+∞)

󵄨
󵄨
󵄨
󵄨
𝐹
𝑛

1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

−𝐹
1
(𝑈 (⋅) , 𝑉 (⋅)) (𝜉)

󵄨
󵄨
󵄨
󵄨
𝑒
−𝜇|𝜉|

≤ 2𝑈
0

𝑒
−𝜇𝑛

󳨀→ 0, as 𝑛 󳨀→ +∞.

(68)

Similarly, we can prove that |𝐹
𝑛

2
(𝑈(⋅), 𝑉(⋅))(⋅) − 𝐹

2
(𝑈(⋅),

𝑉(⋅))(⋅)|
𝜇

→ 0 when 𝑛 → +∞. Thus, |𝐹𝑛(𝑈(⋅), 𝑉(⋅))(⋅) −
𝐹(𝑈(⋅), 𝑉(⋅))(⋅)|

𝜇
→ 0when 𝑛 → +∞. By Proposition 2.1 in

Zeilder [40], we have that 𝐹𝑛 converges to 𝐹 in Γwith respect
to the norm | ⋅ |

𝜇
. Consequently, 𝐹 : Γ → Γ is compact with

respect to the norm | ⋅ |
𝜇
. The proof is completed.

Proof of Theorem 1. Combination of Schauder’s fixed point
theorem and Lemmas 8, 9, and 10 shows that there exists a
nonnegative traveling wave solution (𝑈

𝑐
(⋅), 𝑉

𝑐
(⋅)) ∈ Γ such

that (𝑈
𝑐
(𝜉), 𝑉

𝑐
(𝜉)) → (𝑈

0

, 0) when 𝜉 → −∞. By the
definition of 𝑈(𝜉) and 𝑉(𝜉), there is a 𝜉

0
< 0 such that

𝑈(𝜉) > 0 and 𝑉(𝜉) > 0 when 𝜉 < 𝜉
0
. Therefore, if 𝜉 < 𝜉

0
,

we have that 𝑐𝑈󸀠
𝑐
= −𝑔(𝑉

𝑐
(𝜉))𝑈(𝜉) < 0 which implies that

𝑈
0

> 𝑈
1

≥ 0. It is clear that 𝑈
𝑐
(𝜉) is nonincreasing in R.

From Lemma 2 and system (18), it follows that

𝑐𝑈
󸀠

𝑐
= −𝑔 (𝑉

𝑐
(𝜉)) 𝑈

𝑐
(𝜉) ,

𝑊
𝑐
(𝜉) = 𝜅∫

+∞

0

𝑒
−𝜅𝜂

𝑔 (𝑉
𝑐
(𝜉 − 𝑐𝜂))𝑈

𝑐
(𝜉 − 𝑐𝜂) 𝑑𝜂,

𝑐𝑉
󸀠

𝑐
= 𝑉

󸀠󸀠

𝑐
+𝑊

𝑐
(𝜉) − 𝑉

𝑐
(𝜉) .

(69)

By the first and second equation of (69), we have

∫

+∞

−∞

𝑊
𝑐
(𝜉) 𝑑𝜉

= −𝜅𝑐∫

+∞

−∞

∫

+∞

0

𝑒
−𝜅𝜂

𝑈
󸀠

𝑐
(𝜉 − 𝑐𝜂) 𝑑𝜂 𝑑𝜉

= −𝜅𝑐∫

+∞

0

𝑒
−𝜅𝜂

∫

+∞

−∞

𝑈
󸀠

𝑐
(𝜉 − 𝑐𝜂) 𝑑𝜉 𝑑𝜂

= (𝑈
0

− 𝑈
1

) 𝜅𝑐∫

+∞

0

𝑒
−𝜅𝜂

𝑑𝜂

= 𝑐 (𝑈
0

− 𝑈
1

) .

(70)

Since the traveling wave solution (𝑈
𝑐
(⋅), 𝑉

𝑐
(⋅)) ∈ Γ and

is the fixed point of the operator 𝐹, thus (𝑈
𝑐
(𝜉), 𝑉

𝑐
(𝜉)) =

𝐹(𝑈
𝑐
(⋅), 𝑉

𝑐
(⋅))(𝜉). The proof of Lemma 10 shows that 𝑉󸀠

𝑐
(𝜉) =

𝐹
󸀠

2
(𝑈
𝑐
(⋅), 𝑉

𝑐
(⋅))(𝜉) is bounded. Using L’Hopital principal

shows that

𝑉
󸀠

𝑐
(−∞) = 𝐹

󸀠

2
(𝑈
𝑐
(⋅) , 𝑉

𝑐
(⋅)) (−∞) = 0. (71)

Integrating the third equation of (69) from −∞ to 𝜉 yields

𝑐𝑉
𝑐
(𝜉) = 𝑉

󸀠

𝑐
(𝜉) + ∫

𝜉

−∞

𝑊
𝑐
(𝜂) 𝑑𝜂 − ∫

𝜉

−∞

𝑉
𝑐
(𝜂) 𝑑𝜂. (72)

Then, the boundedness of 𝑉
𝑐
(𝜉) and 𝑉

󸀠

𝑐
(𝜉) implies

∫

+∞

−∞

𝑉
𝑐
(𝜂)𝑑𝜂 < +∞, which shows that lim

𝜉→+∞
𝑉
𝑐
(𝜉) = 0

and ∫+∞
−∞

𝑊
𝑐
(𝜂)𝑑𝜂 = ∫

+∞

−∞

𝑉
𝑐
(𝜂)𝑑𝜂 = 𝑐(𝑈

0

− 𝑈
1

).
Next, we prove 0 ≤ 𝑉

𝑐
(𝜉) ≤ 𝑈

0

− 𝑈
1, which is motivated

by Wang and Wu [34]. Define

𝑅 (𝜉) =

1

𝑐

∫

𝜉

−∞

𝑉
𝑐
(𝜂) 𝑑𝜂 +

1

𝑐

∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜂)

𝑉
𝑐
(𝜂) 𝑑𝜂. (73)

It is clear that 𝑅(𝜉) satisfies

𝑐𝑅
󸀠

= 𝑅
󸀠󸀠

+ 𝑅 (𝜉) , (74)

𝑅(−∞) = 0, and 𝑅(+∞) = 𝑈
0

− 𝑈
1. Denote𝑁(𝜉) = 𝑉

𝑐
(𝜉) +

𝑅(𝜉), which satisfies

𝑐𝑁
󸀠

= 𝑁
󸀠󸀠

+𝑊
𝑐
(𝜉) . (75)

Due to𝑁󸀠

(+∞) = 0, it follows that

𝑁
󸀠

(𝜉) = ∫

+∞

𝜉

𝑒
𝑐(𝜉−𝜂)

𝑊
𝑐
(𝜂) 𝑑𝜂 ≥ 0, (76)

which implies that 𝑁(𝜉) is nondecreasing in R. Since
𝑁(−∞) = 0 and 𝑁(+∞) = 𝑈

0

− 𝑈
1, we have 0 ≤ 𝑉

𝑐
(𝜉) ≤

𝑈
0

− 𝑈
1 for all 𝜉 ∈ R. The proof is completed.

3. Nonexistence of Traveling Wave Solutions

In this section, we give the conditions on which system (5)
has no traveling wave solutions.
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Theorem 11. (I) Assume 𝑈0 > 1/𝑔
󸀠

(0). Then, for any 0 <

𝑐 < 𝑐
∗, system (5) has no nonnegative nontrivial traveling wave

solutions (𝑈(𝑦+𝑐𝜏),𝑊(𝑦+𝑐𝜏), 𝑉(𝑦+𝑐𝜏)) satisfying boundary
condition (8).

(II) Suppose 0 < 𝑈
0

≤ 1/𝑔
󸀠

(0). Then, for any 𝑐 > 0, system
(5) has no traveling wave solutions (𝑈(𝑦+𝑐𝜏),𝑊(𝑦+𝑐𝜏), 𝑉(𝑦+

𝑐𝜏)) satisfying boundary condition (8).

To prove (I) by two-sided Laplace transform, the follow-
ing lemma about the exponential decrease of traveling wave
solutions is needed.

Lemma 12. Assume 𝑈
0

> 1/𝑔
󸀠

(0). If (𝑈(𝑦 + 𝑐𝜏),𝑊(𝑦 +

𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) is a nonnegative nontrivial traveling wave
solution of (5) satisfying boundary condition (8), there exists
a positive constant 𝛼 such that

sup
𝜉∈R

{𝑊 (𝜉) 𝑒
−𝛼𝜉

} < +∞, sup
𝜉∈R

{𝑉 (𝜉) 𝑒
−𝛼𝜉

} < +∞. (77)

Proof. Substituting traveling wave profile

𝑢
2
(𝑦, 𝜏) = 𝑊 (𝜉) , 𝑢

3
(𝑦, 𝜏) = 𝑉 (𝜉) , 𝜉 = 𝑦 + 𝑐𝜏

(78)

into the second and third equations of (5), it follows that

𝑐𝑊
󸀠

= 𝜅 [𝑔 (𝑉)𝑈 −𝑊] ,

𝑐𝑉
󸀠

= 𝑉
󸀠󸀠

+𝑊 − 𝑉.

(79)

Setting 𝑉󸀠 = 𝑍, we have

𝑐𝑊
󸀠

= 𝜅 [𝑔 (𝑉)𝑈 −𝑊] ,

𝑉
󸀠

= 𝑍,

𝑍
󸀠

= 𝑐𝑍 + 𝑉 −𝑊.

(80)

Furthermore, system (80) can be written as

𝜓
󸀠

= 𝐴𝜓 + 𝑓 (𝜉, 𝜓) , (81)

where

𝐴 =

[

[

[

[

[

−

𝜅

𝑐

𝜅𝑔
󸀠

(0) 𝑈
0

𝑐

0

0 0 1

−1 1 𝑐

]

]

]

]

]

,

𝜓 =
[

[

𝑊

𝑉

𝑍

]

]

,

𝑓 (𝜉, 𝜓) =

[

[

[

[

𝜅𝑈
0

𝐺 (𝑉)

𝑐

+

𝜅 (𝑈 − 𝑈
0

) 𝑔 (𝑉)

𝑐

0

0

]

]

]

]

,

(82)

and 𝐺(𝑉) = 𝑔(𝑉) − 𝑔
󸀠

(0)𝑉. Obviously, 𝐺󸀠(0) = 0. Since

lim
𝜉→−∞

𝑈 (𝜉) = 𝑈
0

, lim
𝜉→−∞

𝜓 (𝜉) = 0, (83)

and𝑔󸀠(𝑉) is bounded in [0, +∞), for any small constant 𝜀 > 0,
there exists 𝜉

0
∈ R such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝜉, 𝜓

1
) − 𝑓 (𝜉, 𝜓

2
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜀

󵄩
󵄩
󵄩
󵄩
𝜓
1
− 𝜓

2

󵄩
󵄩
󵄩
󵄩

(84)

for all 𝜉 ≤ 𝜉
0
.

Since (𝑈(𝜉),𝑊(𝜉), 𝑉(𝜉)) is the solution of (79) if and only
if (𝑈(𝜉 − 𝜂),𝑊(𝜉 − 𝜂), 𝑉(𝜉 − 𝜂)) is the solution of (79) for any
𝜂 ∈ R and they satisfy the same boundary condition at ±∞,
we can select large 𝜂 such that (84) holds with 𝜉

0
= 0 and

(𝑈(𝜉),𝑊(𝜉), 𝑉(𝜉)) being replaced by (𝑈(𝜉−𝜂),𝑊(𝜉−𝜂), 𝑉(𝜉−

𝜂)). Therefore, we suppose 𝜉
0
= 0.

Calculations show that the eigenfunction of 𝐴 is 𝐻(𝜆)

defined by (21). Then, by Lemma 4, there exists constant
matrix 𝐶 such that

𝐶
−1

𝐴𝐶 = 𝐵 = [

𝜆
0

0

0 𝑄
] , (85)

where 𝜆
0
< 0 and the eigenvalues 𝜆

1
, 𝜆
2
of 2 × 2 matrix 𝑄

have positive real parts. Setting 𝜓 = 𝐶𝜑, the system (81) then
has the form

𝑑𝜑

𝑑𝜉

= 𝐵𝜑 + 𝐺 (𝜉, 𝜑) . (86)

Obviously, lim
𝜉→−∞

𝜑(𝜉) = 0 and 𝐺(𝜉, 𝜑) = 𝐶
−1

𝑓(𝜉, 𝐶𝜓)

satisfies (84). Denote

Φ
1
(𝜉) = [

𝑒
𝜆
0
𝜉

0

0 0

] , Φ
2
(𝜉) = [

0 0

0 𝑒
𝑄𝜉
] . (87)

Then,Φ󸀠
1
= 𝐵Φ

1
, Φ󸀠

2
= 𝐵Φ

2
, and

𝑒
𝐵𝜉

= Φ
1
(𝜉) + Φ

2
(𝜉) . (88)

It is not difficult to see that we can choose positive constants
𝛼 and 𝐿 such that

󵄩
󵄩
󵄩
󵄩
Φ
1
(𝜉)

󵄩
󵄩
󵄩
󵄩
≤ 𝐿𝑒

−2𝛼𝜉 for any 𝜉 ≥ 0,

󵄩
󵄩
󵄩
󵄩
Φ
2
(𝜉)

󵄩
󵄩
󵄩
󵄩
≤ 𝐿𝑒

2𝛼𝜉 for any 𝜉 ≤ 0.

(89)

It is clear that (86) is equivalent to

𝑢
1
(𝜉) = 𝑒

𝜆
0
𝜉

𝑢
1
(0) + ∫

𝜉

0

𝑒
𝜆
0
(𝜉−𝜂)

𝐺
1
(𝜂, 𝑢 (𝜂)) 𝑑𝜂,

𝑢
2
(𝜉) = 𝑒

𝑄𝜉

𝑢
2
(0) + ∫

𝜉

0

𝑒
𝑄(𝜉−𝜂)

𝐺
2
(𝜂, 𝑢 (𝜂)) 𝑑𝜂,

(90)

where

𝑢 = (𝑢
1
, 𝑢
𝑇

2
)

𝑇

= 𝜑, 𝑢
1
= 𝜑

1
, 𝑢

2
= (𝜑

2
, 𝜑
3
)
𝑇

,

(𝐺
1
(𝜂, 𝑢) , 𝐺

2
(𝜂, 𝑢)

𝑇

)

𝑇

= 𝐺 (𝜂, 𝑢) .

(91)

Since lim
𝜉→−∞

𝑢(𝜉) = 0, then multiplying the first equality of
(90) by 𝑒−𝜆0𝜉 and setting 𝜉 → −∞ yield

𝑢
1
(0) + ∫

−∞

0

𝑒
−𝜆
0
𝜂

𝐺
1
(𝜂, 𝑢 (𝜂)) 𝑑𝜂 = 0 (92)



12 The Scientific World Journal

or

𝑢
1
(0) = ∫

0

−∞

𝑒
−𝜆
0
𝜂

𝐺
1
(𝜂, 𝑢 (𝜂)) 𝑑𝜂. (93)

Thus, (90) has the form

𝑢 (𝜉) = ∫

𝜉

−∞

Φ
1
(𝜉 − 𝜂)𝐺 (𝜂, 𝑢 (𝜂)) 𝑑𝜂

+ Φ
2
(𝜉) 𝑢

0
− ∫

0

𝜉

Φ
2
(𝜉 − 𝜂)𝐺 (𝜂, 𝑢 (𝜂)) 𝑑𝜂.

(94)

where 𝑢
0
= (0, 𝑢

2
(0)

𝑇

)

𝑇

.
To study the properties of 𝑢(𝜉), we need to construct a

functional sequence. Define

𝑢
0

(𝜉) = 0,

𝑢
𝑗+1

(𝜉) = ∫

𝜉

−∞

Φ
1
(𝜉 − 𝜂)𝐺 (𝜂, 𝑢

𝑗

(𝜂)) 𝑑𝜂 + Φ
2
(𝜉) 𝑢

0

− ∫

0

𝜉

Φ
2
(𝜉 − 𝜂)𝐺 (𝜂, 𝑢

𝑗

(𝜂)) 𝑑𝜂

(95)

for 𝜉 ≤ 0. Obviously, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
1

(𝜉) − 𝑢
0

(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
Φ
2
(𝜉) 𝑢

0

󵄩
󵄩
󵄩
󵄩
≤ 𝐿

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉 (96)

for any 𝜉 ≤ 0. Assume that the induction hypothesis

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑗

(𝜉) − 𝑢
𝑗−1

(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉

2
𝑗−1

(97)

holds for 𝑗 = 1, 2, . . . , 𝑚 and 𝜉 ≤ 0. Then, using the condition
(84) satisfied by the function 𝐺, it follows from the induction
hypothesis that for 𝜉 ≤ 0 we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚+1

(𝜉) − 𝑢
𝑚

(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ ∫

𝜉

−∞

󵄩
󵄩
󵄩
󵄩
Φ
1
(𝜉 − 𝜂)

󵄩
󵄩
󵄩
󵄩
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚

(𝜂) − 𝑢
𝑚−1

(𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝜂

+ ∫

0

𝜉

󵄩
󵄩
󵄩
󵄩
Φ
2
(𝜉 − 𝜂)

󵄩
󵄩
󵄩
󵄩
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚

(𝜂) − 𝑢
𝑚−1

(𝜂)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝜂

≤ 𝜀∫

𝜉

−∞

𝐿𝑒
−2𝛼(𝜉−𝜂)

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜂

2
𝑚−1

𝑑𝜂

+ 𝜀∫

0

𝜉

𝐿𝑒
2𝛼(𝜉−𝜂)

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜂

2
𝑚−1

𝑑𝜂

≤

𝜀𝐿
2 󵄩󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉

3𝛼2
𝑚−1

+

𝜀𝐿
2 󵄩󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉

𝛼2
𝑚−1

=

8𝜀𝐿

3𝛼

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉

2
𝑚

.

(98)

Setting 𝜀 ≤ 3𝛼/(8𝐿) yields

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚+1

(𝜉) − 𝑢
𝑚

(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉

2
𝑚

.
(99)

It then follows by induction that (97) holds for all 𝑗 =

1, 2, 3, . . . and 𝜉 < 0. Thus, for any 𝑛 > 𝑚 > 𝑁 and 𝜉 < 0,
we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

(𝜉) − 𝑢
𝑚

(𝜉)
󵄩
󵄩
󵄩
󵄩
≤

∞

∑

𝑗=𝑁

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑗+1

(𝜉) − 𝑢
𝑗

(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

∞

∑

𝑗=𝑁

1

2
𝑗

=

𝐿
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2
𝑁−1

,

(100)

which implies that {𝑢𝑗(𝜉)} is a Cauchy sequence of continuous
functions. It follows that

lim
𝑗→∞

𝑢
𝑗

(𝜉) = 𝑢 (𝜉) (101)

uniformly for all 𝜉 < 0. Taking the limit of both sides
of (95), it follows from the uniform convergence that the
continuous function 𝑢(𝜉) satisfies the integral equation (94).
Then, the uniqueness of solution of (94) implies 𝑢(𝜉) = 𝑢(𝜉).
Consequently, (97) and

𝑢
𝑚

(𝜉) =

𝑚

∑

𝑗=1

[𝑢
𝑗

(𝜉) − 𝑢
𝑗−1

(𝜉)] (102)

show that

󵄩
󵄩
󵄩
󵄩
𝑢 (𝜉)

󵄩
󵄩
󵄩
󵄩
≤ 2𝐿

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝛼𝜉 (103)

for any 𝜉 < 0. Since lim
𝜉→+∞

𝑢(𝜉) = 0, it follows ‖𝑢(𝜉)𝑒−𝛼𝜉‖ <
+∞. Thus,

sup
𝜉∈R

{𝐼
𝑢
(𝜉) 𝑒

−𝛼𝜉

} < +∞, sup
𝜉∈R

{𝐼
𝑡
(𝜉) 𝑒

−𝛼𝜉

} < +∞ (104)

and the proof is completed.

Proof of Theorem 11(I). Assume (5) has a traveling wave solu-
tion (𝑈(𝑦 + 𝑐𝜏),𝑊(𝑦 + 𝑐𝜏), 𝑉(𝑦 + 𝑐𝜏)) satisfying boundary
condition (8). From the first equation of (18), it follows

𝑈 (𝜉) = 𝑈
0

𝑒
−(1/𝑐) ∫

𝜉

−∞
𝑔(𝑉(𝜂))𝑑𝜂

,

𝑈
0

− 𝑈 (𝜉) = 𝑈
0

[1 − 𝑒
−(1/𝑐) ∫

𝜉

−∞
𝑔(𝑉(𝜂))𝑑𝜂

] .

(105)

By Lemma 12, there exists a positive constant 𝛼󸀠 such that

sup
𝜉∈R

{[𝑈
0

− 𝑈 (𝜉)] 𝑒
−𝛼
󸀠
𝜉

} < +∞. (106)

For 0 < 𝜆 < 𝛼, define two-sided Laplace transform as follows:

L [𝑉 (⋅)] (𝜆) := ∫

+∞

−∞

𝑒
−𝜆𝜉

𝑉 (𝜉) 𝑑𝜉. (107)

Obviously, there exists 𝜆∗ > 0 andL[𝑉(⋅)](𝜆) is increasing in
[0, 𝜆

∗

) such that 𝜆∗ < +∞ satisfying lim
𝜆→𝜆

∗−L[𝑉(⋅)](𝜆) =

+∞ or 𝜆∗ = +∞.
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Furthermore, we have

L [∫

+∞

0

𝑒
−𝜅𝜂

𝐽 (𝑉 (⋅ − 𝑐𝜂)) 𝑑𝜂] (𝜆)

= ∫

+∞

0

𝑒
−𝜅𝜂

∫

+∞

−∞

𝑒
−𝜆𝜉

𝐽 (𝑉 (⋅ − 𝑐𝜂)) 𝑑𝜉 𝑑𝜂

= ∫

+∞

0

𝑒
−𝜅𝜂

∫

+∞

−∞

𝑒
−𝜆(𝑡+𝑐𝜂)

𝐽 (𝑉 (𝑡)) 𝑑𝑡 𝑑𝜂

= ∫

+∞

0

𝑒
−(𝜅+𝑐𝜆)𝜂

∫

+∞

−∞

𝑒
−𝜆𝑡

𝐽 (𝑉 (𝑡)) 𝑑𝑡 𝑑𝜂

=

1

𝜅 + 𝑐𝜆

L [𝐽 (𝑉 (⋅))] (𝜆) .

(108)

The second equality of (18) can be rewritten as

𝐿 [𝑉 (⋅)] (𝜉) = ∫

+∞

0

𝜅𝑒
−𝜅𝜂

𝑄 (𝜉 − 𝑐𝜂) 𝑑𝜂, (109)

where

𝐿 [𝑉 (⋅)] (𝜉) := 𝑉
󸀠󸀠

(𝜉) − 𝑐𝑉
󸀠

(𝜉) + 𝜅𝑔
󸀠

(0) 𝑈
0

× ∫

+∞

0

𝑒
−𝜅𝜂

𝑉 (𝜉 − 𝑐𝜂) 𝑑𝜂 − 𝑉 (𝜉) ,

𝑄 (𝜉) := [𝑔
󸀠

(0) 𝑉 (𝜉)𝑈
0

− 𝑔 (𝑉 (𝜉)) 𝑈 (𝜉)] .

(110)

Denote G(𝑉) := 𝑔
󸀠

(0)𝑉 − 𝑔(𝑉), from which it follows that
G󸀠(0) = 0. Since 𝑔(𝑉) satisfies hypothesis (A1), we have
G(𝑉) ≥ 0 for any 𝑉 ≥ 0.

Taking two-sided Laplace transform of (109), we have

Θ (𝜆)L [𝑉 (⋅)] (𝜆) =

𝜅

𝜅 + 𝑐𝜆

L [𝑄 (⋅)] (𝜆) . (111)

If 𝜆∗ < +∞, it is clear thatL[𝑉(⋅)](𝜆
∗

−) = +∞. Since

𝑄 (𝜉) = 𝑔
󸀠

(0) 𝑉 (𝜉) [𝑈
0

− 𝑈 (𝜉)] +G (𝑉 (𝜉)) 𝑈 (𝜉) , (112)

Lemma 12, inequality (106), and 𝐺
󸀠

(0) = 0 imply
L[𝑄(⋅)](𝜆

∗

) < +∞. However, Lemma 4 shows that 0 <

Θ(𝜆
∗

) < +∞, which contradicts (111). Hence, we have 𝜆∗ =

+∞. Furthermore, (111) can be rewritten as

∫

+∞

−∞

𝑒
−𝜆𝜉

[Θ (𝜆)𝑉 (𝜉) − ∫

+∞

0

𝜅𝑒
−𝜅𝜂

𝑄 (𝜉 − 𝑐𝜂) 𝑑𝜂] 𝑑𝜉 = 0.

(113)

Since lim
𝜆→+∞

Θ(𝜆) = +∞, it is impossible that the above
equality holds, again a contradiction.

Proof of Theorem 11(II). Suppose (𝑈(𝑦+𝑐𝜏),𝑊(𝑦+𝑐𝜏), 𝑉(𝑦+

𝑐𝜏)) is a traveling wave solution of system (5) satisfying

boundary condition (8).Then, by the proof ofTheorem 1, it is
clear that ∫+∞

−∞

𝑉(𝜉)𝑑𝜉 = ∫

+∞

−∞

𝐻
2
(𝑈, 𝑉)(𝜉)𝑑𝜉. Furthermore,

∫

+∞

−∞

𝐻
2
(𝑈, 𝑉) (𝜉) 𝑑𝜉

= ∫

+∞

−∞

∫

+∞

0

𝜅𝑒
−𝜅𝜂

𝑔 (𝑉 (𝜉 − 𝑐𝜂))𝑈 (𝜉 − 𝑐𝜂) 𝑑𝜂 𝑑𝜉

< ∫

+∞

−∞

∫

+∞

0

𝜅𝑒
−𝜅𝜂

𝑔
󸀠

(0) 𝑉 (𝜉 − 𝑐𝜂)𝑈
0

𝑑𝜂 𝑑𝜉

= 𝑔
󸀠

(0) 𝑈
0

∫

+∞

0

𝜅𝑒
−𝜅𝜂

∫

+∞

−∞

𝑉 (𝜉 − 𝑐𝜂) 𝑑𝜉 𝑑𝜂

≤ ∫

+∞

0

𝜅𝑒
−𝜅𝜂

∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉 𝑑𝜂

= ∫

+∞

−∞

𝑉 (𝜉) 𝑑𝜉,

(114)

which is a contradiction. The proof is completed.
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