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Pupil-linked arousal is driven by decision
uncertainty and alters serial choice bias
Anne E. Urai1,2, Anke Braun1 & Tobias H. Donner1,2,3

While judging their sensory environments, decision-makers seem to use the uncertainty

about their choices to guide adjustments of their subsequent behaviour. One possible source

of these behavioural adjustments is arousal: decision uncertainty might drive the brain’s

arousal systems, which control global brain state and might thereby shape subsequent

decision-making. Here, we measure pupil diameter, a proxy for central arousal state, in human

observers performing a perceptual choice task of varying difficulty. Pupil dilation, after choice

but before external feedback, reflects three hallmark signatures of decision uncertainty

derived from a computational model. This increase in pupil-linked arousal boosts observers’

tendency to alternate their choice on the subsequent trial. We conclude that decision

uncertainty drives rapid changes in pupil-linked arousal state, which shape the serial corre-

lation structure of ongoing choice behaviour.
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I
n perceptual and sensory-motor tasks, humans and animals
behave as if they make use of decision uncertainty—the
probability that a choice is correct, given the sensory

evidence1–3. Theoretical accounts postulate that decision
uncertainty should shape subsequent decision processing and,
thereby, subsequent choice behaviour1,4,5. But how decision
uncertainty is transformed into subsequent behavioural
adjustments has, so far, remained elusive.

One prominent idea is that the brain broadcasts uncertainty
signals across brain-wide neural circuits via low-level arousal
systems4,6,7. Arousal systems might be driven by uncertainty4,7–11,
and they profoundly shape the global state of the brain through the
action of modulatory neurotransmitters12–14. Uncertainty-
dependent changes in global brain state, in turn, might translate
into adjustments of choice behaviour. The goal of our study was to
investigate whether arousal (1) reflects decision uncertainty in a
perceptual choice task; and (2) predicts changes in subsequent
choice behaviour.

Changes in central arousal state (as assessed by various
measures of cortical dynamics) are tightly coupled to fluctuations
in pupil diameter under constant luminance13,15–18. We here
built on this connection and monitored pupil diameter as a proxy
for central arousal state. We used a model based on statistical
decision theory, illustrated in Fig. 1, in which decision uncertainty
is defined as the probability a choice is correct, given the available
evidence1,19. This operationalization of decision uncertainty
obviates the need for subjective confidence reports5, bridging to
the insight from animal physiology that neurons in a number of
brain regions encode decision uncertainty, as defined in Fig. 1
(refs 2,20–22).

The model assumes that observers base their judgment of each
stimulus on a noisy decision variable, sampled from a distribution
that depends on the identity and strength of the stimulus
(Fig. 1a). Two-alternative forced choice tasks entail comparing
this decision variable with a decision bound. When the decision
variable happens to fall on the wrong side of the bound, errors
occur. This happens more often for weaker stimuli, because the
distributions corresponding to the two possible stimuli show
higher overlap (Fig. 1b). A monotonic function of the distance
between the decision variable and the bound is a metric of

decision confidence; uncertainty is its complement2,19,23 (Fig. 1a
and Methods).

This model predicts three signatures of decision uncer-
tainty2,19: (1) uncertainty decreases with evidence strength for
correct choices (blue line in Fig. 1c) but, counter-intuitively,
increases with evidence strength for incorrect choices (red line in
Fig. 1c); (2) uncertainty predicts a monotonic decrease in choice
accuracy from 100 to 50% (Fig. 1d); (3) higher uncertainty
predicts lower choice accuracy, even for the same evidence
strength (Fig. 1e). The opposite, monotonic scaling of uncertainty
with evidence strength for correct and error trials (Fig. 1c) also
emerges from a variety of dynamic decision-making models,
including race models2, Bayesian attractor models24, and
biophysically detailed circuit models of cortical dynamics25,26.

We systematically manipulated the strength of sensory
evidence and tested whether pupil responses exhibited the three
signatures derived above. We then quantified the predictive
effects of pupil-linked arousal on subsequent behaviour in terms
of the key elements of the perceptual decision process: response
time (RT), perceptual sensitivity, lapse rate, and choice bias.
Choice bias was decomposed into an overall bias for one choice,
and a serial bias dependent on the history of previous choices or
stimuli. We found a predictive effect of pupil-linked arousal
responses on serial choice bias.

Results
Pupil responses reflect decision uncertainty. Twenty-seven
human observers performed a two-interval forced choice visual
motion coherence discrimination task (Fig. 2a and Methods). We
applied motion energy filtering27 to the stochastic random dot
motion stimuli, yielding a more fine-grained estimate of the
decision-relevant sensory evidence contained in the stochastic
stimuli than the nominal level of motion coherence (Fig. 2b,c and
Methods). The absolute value of this sensory evidence served as a
single-trial measure of evidence strength (Fig. 2b). As expected,
stronger evidence yielded higher choice accuracy and faster
responses (Fig. 2d and Supplementary Fig. 2a).

In line with previous work19, RT exhibited all three signatures
of decision uncertainty derived in Fig. 1 above (Fig. 2e and
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Figure 1 | Operationalizing decision uncertainty. (a) Computations underlying choice and decision uncertainty. Due to noise, repeated presentations of a

generative stimulus produce a normal distribution of internal responses centred at the mean of this generative stimulus. The internal response on each trial

dvi is a sample drawn from this distribution. It is compared with a decision bound or criterion c, to compute the binary choice as well as a graded measure of

decision confidence (or its complement: uncertainty). (b) For two example levels of evidence strength, the average confidence is indicated by the shaded

regions, separately for correct (blue) and error (red) trials. (c) Confidence (top) and uncertainty (bottom) as a function of evidence strength (100 bins),

separately for correct and error trials. The two levels of evidence indicated by symbols (circles, triangles) correspond to the two example levels of evidence

strength in a,b. (d) Accuracy as a function of decision uncertainty (100 bins). (e) Accuracy as a function of evidence strength (100 bins), separately for

trials with high and low decision uncertainty (median split). For details, see Methods and refs 2,19.
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Supplementary Fig. 1b,c). This was true despite the interrogation
protocol28, in which the test stimulus had a fixed duration, its
offset prompted the choice, and observers were instructed to
maximize accuracy without speed pressure (response deadline
was 3 s after test offset). Specifically, RT decreased with evidence
strength on correct trials but increased with evidence strength on
errors (Fig. 2e). Further, RT predicted accuracy over a wide range,
but not below 50% (Supplementary Fig. 1b), indicating that RT
reflected decision uncertainty rather than error detection2. We
next assessed whether decision uncertainty also affected pupil-
linked arousal.

The pupil dilated during decision formation, peaking just after
the choice (button press) as observed in previous work29, and
then dilated again after feedback (Fig. 3a). Between these two
peaks, dilation amplitudes diverged between different conditions,

as predicted by decision uncertainty (compare with Fig. 1c): Pupil
responses were smallest after correct decisions based on strong
evidence, they were overall larger after errors than correct
choices, and largest after errors made on trials with strong
evidence (Fig. 3a).

To quantify the temporal evolution of uncertainty scaling in
the pupil, we regressed baseline-corrected pupil time courses
against each trial’s evidence strength, separately for correct and
error trials. From choice onwards, pupil dilation scaled positively
with evidence strength on error trials, and negatively on correct
trials (Fig. 3b,c and Supplementary Fig. 3a). In other words, the
scaling of the pupil response with evidence strength diagnostic of
decision uncertainty emerged in the interval between choice and
feedback. Consequently, this uncertainty scaling was not a
response to the external information about choice correctness
provided by the external feedback, but rather reflected internal
decision-related computations as described in Fig. 1. For
simplicity, we refer to the single-trial pupil dilation averaged
across the 250 ms interval before feedback as ‘pupil response’ in
the following.

The pupil response also exhibited the other two signatures of
decision uncertainty predicted by the model in Fig. 1. Larger
pupil responses were accompanied by an overall lower choice
accuracy (Fig. 3e and Supplementary Fig. 3c), and psychophysical
sensitivity was lower on trials with a larger pupil response (Fig. 3d
and Supplementary Fig. 3b). Specifically, the pupil response did
not predict choice accuracy below 50%, suggesting that it did not
signal the detection of errors (Supplementary Fig. 3c).

The scaling of the pupil response with decision uncertainty was
not inherited from the analogous scaling of RT, but was also
present after first removing (via linear regression) the trial-to-trial
variations accounted for by RT (Supplementary Fig. 3d–f).
Indeed, trial-to-trial correlations between pupil responses and
RTs were generally small (Pearson correlation, average r: 0.087
range: � 0.042 to 0.302, for log-transformed RT). For all
subsequent analyses reported in this paper, we removed
RT-fluctuations from the trial-to-trial fluctuations of single-trial
pupil responses via linear regression (see Methods).

Pupil-linked arousal alters subsequent choice behaviour. We
proceeded to test whether uncertainty-related pupil responses
predicted changes in subsequent choice behaviour. It has been
proposed that arousal signals control various aspects of learning
and decision-making4,6–8,11. In the context of our task, the choice
parameters of interest were perceptual sensitivity (measured as
the slope of the psychometric function, Supplementary Fig. 4a),
lapse rate (measured as the vertical distance of the asymptotes of
the psychometric function from 0 or 1, Supplementary Fig. 4a),
bias (measured as the horizontal shift of the psychometric
function, Supplementary Fig. 4a) and RT. For RT, we focussed on
increases after error trials, an effect referred to as post-error
slowing30, which was found to be modulated by pupil-linked
arousal in a speeded RT task31. Choice bias was further
decomposed into two parameters: overall bias (that is, a general
tendency towards one choice option, averaged across the entire
experiment, Supplementary Fig. 4b) and serial bias (that is, a
local, choice history-dependent tendency towards one option that
becomes evident when conditioning the psychometric function
on the preceding choice, Supplementary Fig. 4c (refs 32–34)).
Because in our task (as common in laboratory choice tasks), the
sensory evidence was independent across trials, any serial bias
was maladaptive, reducing observers’ performance below the
optimum they could achieve given their perceptual sensitivity.

The pupil response predicted a reduction of serial choice bias
(Fig. 4a and Supplementary Fig. 5). When a choice was followed
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Figure 2 | Perceptual choice task and behaviour. (a) Behavioural task.

Dynamic random dot patterns were displayed throughout each trial. In two

successive intervals (onset cued by beeps), the dots moved in one of the

four diagonal directions (fixed per observer): A first ‘reference’ interval with

always 70% motion coherence, and a second ‘test’ interval with varying

levels of motion coherence, larger or smaller than the reference. Observers

reported whether the test stimulus contained stronger or weaker motion

than the reference by pressing one of two buttons. They received auditory

feedback after a variable delay. (b) Quantifying evidence strength. Each

random dot stimulus was convolved with a set of spatio-temporal filters27

to obtain a time course of motion energy. The difference between mean

motion energy during test and reference intervals was used as a measure of

single-trial measure evidence strength. (c) Probability distribution of

evidence strength as a function of difference in nominal motion coherence.

(d) Accuracy and median RT as a function of evidence strength (six bins).

(e) Median RT as function of evidence strength (six bins), split by correct

and error trials. (N¼ 27, group mean±s.e.m.).
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by a small pupil response, observers tended to repeat this choice
on the next trial; when the previous pupil response was large, this
serial bias was abolished (Fig. 4a). This predictive effect was
similar for correct and error trials (Supplementary Fig. 6a). An
analogous pattern of predictive effects was observed when
binning by previous trial RT: Fast, but not slow, RTs were
followed by a tendency to repeat the previous choice (Fig. 4f and
Supplementary Fig. 6b).

The pupil response predicted none of the other choice
parameters on the next trial (assessed by one-way repeated-
measures analysis of variance (ANOVA)), neither overall choice
bias (signed overall bias: F(2,52)¼ 0.939, P¼ 0.398, Bf10¼ 0.221;
absolute value of overall bias: F(2,52)¼ 1.817, P¼ 0.173, Fig. 4b),
nor perceptual sensitivity (F(2,52)¼ 1.936, P¼ 0.155, Fig. 4c), nor
lapse rate (F(2,52)¼ 2.213, P¼ 0.120, Fig. 4d), nor RT (overall RT:
F(2,52)¼ 3.232, P¼ 0.048, Bf10¼ 1.207; post-error slowing:
F(2,52)¼ 2.056, P¼ 0.138, Fig. 4e). Variations in RT, likewise,
did not predict a change in any of the other parameters of the
decision process (Fig. 4g–j, all P40.05). The overall pattern of
results implies that observers did not simply act more randomly
after large pupil responses or RT. Random button presses would
have reduced sensitivity, in other words, decreased the slope of
the psychometric function, contrary to our observations
(Fig. 4c,h). Rather, the pattern of results implies that, after large
pupil responses or RT, observers’ tendency towards one or the
other choice became less history-dependent.

In sum, large pupil responses and slow RTs were neither
followed by improved processing of sensory evidence
(a common effect of attention35), nor a change in overall
response bias. Large pupil responses and slow RTs were followed
by only minor (and statistically not significant) changes in
stimulus-independent lapses as well as small adjustments in
speed-accuracy trade-off, as observed after response conflict,
errors, or large pupil responses in speeded RT tasks31,36,37. The
weak effect on post-error slowing might be due to the use of an
interrogation protocol in our study, which did not require
observers to optimize their speed-accuracy trade-off28. However,
both RT and pupil-linked arousal had a robust effect on serial
choice bias, reducing an overall repetition bias that predominated
across the group of observers. This effect of both uncertainty-
related measures on the serial correlation structure of choice
behaviour has so far been unknown. We therefore proceeded to
model and comprehensively quantify this effect at the level of
individual observers.

Pupil-linked arousal predicts choice alternation. To this end, we
extended a previously established regression model of serial choice
biases33 with pupil- and RT-dependent modulatory effects. The
basic model (that is, without modulatory terms) quantified the
impact of the previous seven choices and stimuli on the current
choice bias in terms of linear combination weights (Fig. 5a, see
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using pupil responses to predict single-trial choice correctness. In b–e z-scored, log-transformed RTs were removed from the pupil signal via linear
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Methods and ref. 33). We added to this model multiplicative
interaction terms, that quantified how much the effect of previous
stimuli and choices was modulated by either pupil response or RT
on those same trials (Fig. 5a). Simultaneously modelling the effects
of both pupil responses and RT enabled us to estimate their
independent impact on serial choice bias; we found the same
results when fitting a separate regression model for each
modulatory variable (Supplementary Fig. 7).

The model fits revealed robust, and idiosyncratic, patterns of
serial choice biases in most observers (Fig. 5c,d; see
Supplementary Fig. 2b,c for individual sessions). As expected,
the contribution of past stimuli and choices to current behaviour
was strongest when sensory evidence was weak and decayed
strongly with evidence strength (Fig. 5b). The weight of the
immediately preceding choice was generally stronger than the
weight of the previous stimulus (Fig. 5d). The effect of previous
choices lasted up to seven trials in the past (corresponding to
about 60 s, Fig. 5c), but had the largest absolute magnitude on the
preceding trial (Fig. 5c, grey dashed line). There was large inter-
individual variability in choice weights (Fig. 5c,d). While the
majority of observers systematically repeated their choices (purple
symbols; 12 significant at Po0.05), a good fraction tended to
alternate their choices (orange symbols; 7 significant at Po0.05).

Observers’ serial choices biases were unrelated to the (small)
serial correlations between stimuli. The transition probabilities
between stimulus categories (that is, s24s1 or s24s1) were close
to 0.5 (range across observers: 0.475–0.508), and did not correlate
with individual choice weights (Pearson correlation r¼ 0.010,
P¼ 0.960, Bf10¼ 0.149) or stimulus weights (Pearson correlation
r¼ � 0.176, P¼ 0.381, Bf10¼ 0.217). Likewise, the auto-correla-
tion of absolute motion coherence differences (that is, absolute
levels of evidence strength) was close to 0 (range across observers:
� 0.061 to 0.028) and did not correlate with individual choice
weights (Pearson correlation r¼ 0.123, P¼ 0.541, Bf10¼ 0.179) or
stimulus weights (Pearson correlation r¼ � 0.142, P¼ 0.480,
Bf10¼ 0.190).

Critically, pupil responses and RT both negatively interacted
with the effect of previous choices (Fig. 5e), in line with the
observation that large pupil responses or long RTs were followed
by less choice repetition (Fig. 4a,f). By contrast, neither pupil

responses nor RT interacted with the effect of the previous
stimulus (Fig. 5e). Pupil responses beyond one trial in the past, as
well as baseline pupil diameter on the current trial, did not
predict a modulation of serial biases (Supplementary Fig. 8).
Moreover, these results were not accounted for by trial-to-trial
variations in trial timing or the passage of time between trials
(Supplementary Fig. 9).

The pupil response after feedback did not contain information
predictive of serial choice bias, beyond the information already
present during the pre-feedback interval. The post-feedback pupil
responses similarly predicted modulation of serial choice biases,
but no longer did so when removing (via linear regression)
variance explained by pre-feedback pupil responses from the
post-feedback pupil signal (Supplementary Fig. 10).

While the modulatory effects associated with pupil responses
and RT were both negative on average, such an overall reduction
of the group-level repetition bias (Fig. 4a,f) might be due to two
alternative scenarios at the level of individual observers: either a
reduction of each observer’s intrinsic serial choice bias for
repetition or alternation (referred to as ‘bias reduction’ hereafter);
or, alternatively, a general boost of choice alternation, regardless
of the observer’s intrinsic serial bias (referred to as ‘alternation
boost’). We quantified intrinsic serial bias as each observer’s
choice weight (that is, the main effect of the previous on the
current choice estimated by our model). The bias reduction
scenario predicts a negative correlation between choice weights
and modulation weights across observers. The alternation boost
scenario predicts negative individual modulation weights for all
observers, independently of their corresponding choice weights
(that is, no correlation).

The analysis of these individual behavioural patterns revealed
dissociable effects of pupil-linked arousal and RT (Fig. 5f,g).
Modulation weights for the pupil were negative for most
observers, irrespective of their individual choice weight. When
splitting all 27 observers into ‘alternators’ and ‘repeaters’ based on
the sign of their intrinsic bias (that is, choice weight), we found
no correlation between individual modulation and choice weights
(Fig. 5f, Pearson correlation r¼ 0.017, P¼ 0.935, Bf10¼ 0.149).
Further, the modulation weights were negative for both
subgroups, and not significantly different between them
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(Fig. 5g). These observations are consistent with the idea that
pupil-linked arousal generally boosted observers’ tendency to
alternate their choice on the next trial.

The alternation boost scenario for pupil responses was further
supported by a striking contrast to RT-linked modulations, which
were in line with the bias reduction scenario. The RT-linked
modulation weights exhibited a strong negative correlation
with individual choice weights (Fig. 5f, Pearson correlation
r¼ � 0.634, Po0.001, Bf10¼ 76.359), were negative only for the
group of repeaters, and differed significantly between alternators
and repeaters (Fig. 5g). Correspondingly, the correlations with
individual choice weights were significantly different for pupil-
and RT-modulation weights (Fig. 5f). Moreover, RT-dependent
bias reduction was most pronounced after incorrect choices,
whereas the pupil-dependent alternation boost was most
pronounced after correct choices (Supplementary Fig. 11).

In sum, the modulatory effects associated with post-decision
pupil-linked arousal and RT both shaped the serial correlation
structure of choices, but in distinct ways: pupil-linked arousal
generally promoted choice alternation, regardless of the obser-
ver’s intrinsic bias, whereas RT-linked processes generally
reduced observers’ intrinsic bias.

Discussion
Decisions about an observer’s sensory environment do not only
depend on the momentary sensory input but also on the
behavioural context38. One such contextual factor is the history
of preceding choices and stimuli, which robustly biases even

highly trained decision-makers33. Although such serial choice
biases were first identified in psychophysical tasks about a century
ago32, their determinants have remained poorly understood.
Previous treatments of serial choice biases have conceptualized
experimental history as sequences of binary external events (past
stimulus identities, choices, or feedback)33,39. We here established
that these serial biases were also modulated by the decision-
maker’s pupil-linked arousal state on the previous trial, which, in
turn, reflected the uncertainty about the observer’s choice.

Several important features of our approach allowed us to move
beyond previous work linking human pupil dynamics to
uncertainty and performance monitoring. First, different from
most previous studies, we here unravelled the temporal evolution
of uncertainty information in the pupil response, enabling
inferences about not only the existence, but also the time course
of this information (see ref. 40 for a similar approach). Second, the
model-based definition of decision uncertainty we used helped
dissociate decision uncertainty from error detection, which has
previously been linked to pupil dilation41. In a two-choice task, a
signal encoding decision uncertainty should predict behavioural
performance over a range from 100% to 50% correct
(corresponding to 50% for the maximum uncertainty signal, or
larger when encoding is imprecise). By contrast, an error detection
signal should predict performance over the range 100% to 0%
correct2. Our measurements were more consistent with decision
uncertainty than error detection (Supplementary Fig. 3c). Third, in
our task, decision uncertainty critically depended on internal noise
(the primary source of the variance in Fig. 1a). By contrast,
previous studies linking uncertainty to pupil dynamics9,10,40,42
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Figure 5 | Modelling the modulation of serial choice bias. (a) Schematic representation of the regression model with modulatory terms. (b) The

contribution of history terms (past choices and stimuli) as a fraction of the total variance in the decision variable33, decreased with stronger sensory

evidence. (c) Choice weights for the previous seven trials, obtained from the history model without modulatory terms. Each line corresponds to one

observer. Purple, ‘repeaters’ with positive choice weight for lag 1. Orange, ‘alternators’ with negative choice weights for lag 1. Black line, group mean. Grey

dashed line, group mean of absolute choice weight. (d) Choice weights at lag 1 plotted against the corresponding stimulus weights. Coloured dots and error

bars indicate individual observers±68% confidence intervals obtained from a bootstrap. See Methods for an interpretation of this graph in terms of

behavioural strategy. (e) Regression weights for the interaction between previous pupil response or RT and previous choices or stimuli. N¼ 27, group

mean±s.e.m. (f) Correlation between choice weights and their modulation by pupil dilation or RT. Colours indicate the choice weight as derived from the

basic model in d. Error bars are 68% confidence intervals obtained from a bootstrap. The intercept of the least-squares regression line, corresponding to

the mean beta weight across the group, is indicated with a triangle on the y axis. (g) Beta weights for interaction between previous pupil response or RT and

previous choices. Group split based on the sign of individual choice weights. ***Po0.001, **Po0.01, *Po0.05, NS P40.05, Pearson’s correlation

coefficient or permutation test.
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have used tasks in which the primary source of uncertainty was in
the observers’ environment. Last, in contrast to most previous
pupillometry studies29,42,43 we comprehensively quantified the
predictive effects of pupil-linked arousal on the parameters of
choice beyond the current trial, thereby complementing recent
work on the effects of pupil-linked arousal on learning9,40. Taken
together, our results critically advance the understanding of how
internal decision uncertainty is encoded in pupil-linked arousal in
humans, in a way that builds a direct bridge to single-unit
recording studies of decision uncertainty in animals2,20–22.

The neural sources of task-evoked pupil responses at constant
luminance are not yet fully identified44, but mounting evidence
points to the noradrenergic locus coeruleus (LC)45–47 (a core
component of the brain’s arousal system11) as well as the superior
and inferior colliculi48. Microstimulation of all three structures
triggers pupil dilation45. Among these structures, activity of the
LC (spontaneous or evoked by electrical stimulation) is followed
by pupil dilation at the shortest latency45. The LC also has
widespread, modulatory projections to the cortex implicated in
regulating central arousal11. Dopaminergic and cholinergic
systems, which are closely connected with the LC49, are likewise
implicated in central arousal state13 and may also contribute to
task-evoked pupil responses.

We propose that decision-makers’ uncertainty about their
choices might shape serial choice biases by recruiting pupil-linked
neuromodulatory systems. Frontal brain regions encoding
decision uncertainty send descending projections to several of
these systems11,49, which in turn project to large parts of the
cortex, including networks of regions involved in perceptual
inference and decision-making50. Neuromodulators like
noradrenaline can profoundly alter the dynamics and topology
of cortical networks13,15,51,52. Thus, these brainstem arousal
systems might be in an ideal position to transform variations in
decision uncertainty into adjustments of choice behaviour4,7.

The behavioural effect of pupil-linked arousal might be
explained by at least two (not mutually exclusive) scenarios.
First, arousal responses might promote choice alternation at the
level of response preparation, by altering the state of the motor
system53. Second, the arousal response might modulate the
decision stage—specifically the dynamic updating of beliefs about
the upcoming evidence, for example by shifting the criterion
(assumed to be constant in signal detection theory, Fig. 1) from
one choice to the next. When this criterion is shifted in the
direction opposite to the last choice, alternation ensues. In line
with these ideas, changes in pupil-linked arousal state can indeed
translate into specific behavioural effects15,29, presumably by
interacting with selective cortical circuitry54.

Our current observations are not easily reconciled with existing
theoretical accounts of the impact of phasic arousal on decision-
making. One account posits that threshold crossing of the
decision variable triggers phasic noradrenaline release, facilitating
the translation of the decision into a behavioural response11. In
contrast to our observations, this framework focuses on
functional effects of phasic arousal within the same trial, rather
than subsequent ones, and it predicts improvements in
sensitivity and/or RT55, rather than changes in bias. Other
accounts have proposed that phasic noradrenaline release
facilitates a ‘network reset’56, enabling the transition of neural
decision circuits to a new state8. Our group-level finding that
high pupil-linked arousal reduces serial biases might be
interpreted as the discarding of post-decisional activity traces
due to network reset57,58. However, our analysis of individual
choice patterns revealed that pupil-linked arousal boosted
alternation also in those observers who already exhibited a
tendency to alternate their choices, which is not easily reconciled
with the network reset idea.

Previous theories of arousal and neuromodulation have
coarsely distinguished between two timescales of arousal fluctua-
tions: tonic fluctuations over the course of seconds to hours, and
phasic responses on a sub-second timescale, time-locked to
rapid cognitive acts7,8,11. Changes in tonic arousal occur
spontaneously13,59, and might also track changes in task utility
or uncertainty7,9–11. Pupil-linked changes in tonic arousal
strongly shape the operating mode of cortical circuits, including
early sensory cortices, on slow timescales13. Phasic pupil-linked
arousal responses, on the other hand, predict behaviour related to
the same transient cognitive processes that drive them29,42,60. The
uncertainty-linked pupil responses we identified here built up
slowly after choice and predicted choice behaviour several
seconds later. Thus, our current results suggest that pupil-
linked arousal systems are driven by, and interact with, cognitive
processes also at intermediate timescales; faster than tonic
arousal, but more sustained than task-evoked phasic responses.

The dissociation between pupil- and RT-linked modulatory
effects (Fig. 5f and Supplementary Fig. 11) on serial choice bias
suggests that decision uncertainty signals were propagated along
distinct central neural pathways, one linked to pupil responses
and the other to RT, which then shaped serial choice biases in
different ways. Even if the same uncertainty signals fed into these
pathways, they might have become decoupled through indepen-
dent internal noise. Specifically, it is tempting to speculate that
the pupil-linked alternation boost reflected neuromodulator
release from brainstem centres (such as noradrenaline from the
LC58), whereas RT-linked bias reduction was driven by frontal
cortical areas involved in explicit performance monitoring and
top-down control (such as anterior cingulate cortex)36,61,62. Top-
down effects of prefrontal cortex on decision-making36,63 are
commonly associated with explicit strategic effects that are
adaptive within the experimental task. Indeed, the RT-linked
modulation of serial bias was adaptive, in that it generally reduced
observers’ intrinsic serial bias. By contrast, pupil-linked arousal
modulated serial choice patterns in a way that was maladaptive
for part of the observers (the alternators). This finding might be
related to the observation that maladaptive serial choice biases
remain prevalent even in highly trained observers who know the
statistics of the task32,33. Taken together, the dissociation between
pupil- and RT-linked effects suggest that serial choice biases
result from a complex interplay between low-level, pupil-linked
arousal systems and higher-level systems for strategic control.
Future studies should pinpoint the neural systems underlying
these distinct effects, as well as their interactions58.

In conclusion, our study identified decision uncertainty as a
high-level driver of phasic arousal, and it uncovered a role of this
pupil-linked arousal response in shaping the dynamics of serial
choice biases—a pervasive but often ignored characteristic of
human decision-making. These insights shed new light on the
link between decision uncertainty, pupil-linked arousal state, and
serial dependencies in decision-making. They set the stage for
further investigations into the neural bases of arousal-dependent
modulations of serial choice behaviour.

Methods
Operationalizing decision uncertainty. In signal detection theory, a decision
variable dvi is drawn on each trial from a normal distribution N(m, s) with m
corresponding to that trial’s sensory evidence and s reflecting the internal noise. In
Fig. 1, we used the range of single-trial motion energy values [� 6, 6] as our m. We
estimated s from the data using a probit psychometric function fit on data com-
bined across observers. The probit slope b¼ 0.367, where its inverse s¼ 2.723
reflected the standard deviation of the dv distribution. The decision bound c was
set to 0, reflecting an observer without overall choice bias. The two pairs of dis-
tributions in Fig. 1 were generated using m¼ � 1 and m¼ 1 for weak evidence, and
m¼ � 4 and m¼ 4 for strong evidence. To calculate the relationship between
evidence strength and decision uncertainty (Fig. 1c), we simulated a normal dis-
tribution of dv for each level of evidence strength, with m¼ [0,6] and s¼ 2.723.
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Since these uncertainty computations are symmetrical with respect to choice
identity, we visualized only the pattern corresponding to m40 (stimulus B in
Fig. 1a). All samples from such a distribution were split into correct and error parts
based on their position with respect to the decision bound c. For each combination
of evidence strength and choice, the average uncertainty level is

Uncertainty ¼ 1� 1
n
�
Xn

i¼1

f ðjdvij � c jÞ ð1Þ

where f is the cumulative distribution function of the normal distribution

f ðxÞ ¼ 1
2

1þ erf
x

s
ffiffiffi
2
p

� �� �
ð2Þ

which transforms the distance between dv and c into the probability of a correct
response21.

We simulated ten million trials based on the range of evidence in the data, and
for each we computed a binary choice, the corresponding level of decision
uncertainty, and the accuracy of the choice. Figure 1c–e visualizes the relationship
between evidence strength, uncertainty and choice accuracy in these simulated data.

Participants and sample size. Twenty-seven healthy human observers (10 male,
aged 23±5.2 years) participated in the study. The ethics committee at the Uni-
versity of Amsterdam approved the study, and all observers gave their informed
consent. We included all observers in each analyses presented in the paper. Each
observer participated in one practice session and five main experimental sessions,
each of approximately two hours and comprising 500 trials of the task. The number
of observers was selected to allow for robust analyses of individual differences, as in
previous pupillometry work from our laboratory29, and the total number of trials
per observer was chosen to allow for robust psychometric function fits and
detection of subtle changes in the fit parameters.

Task and procedure. Observers performed a two-interval forced choice motion
coherence discrimination task at constant luminance (Fig. 2a). Observers judged
the difference in motion coherence between two successively presented random dot
kinematograms (RDKs): a constant reference stimulus (70% motion coherence)
and a test stimulus (varying motion coherence levels specified below). The intervals
before, in between, and after (until the inter-trial interval) these two task-relevant
stimuli had variable duration (numbers in Fig. 2a) and contained incoherent
motion. A beep (50 ms, 440 Hz) indicated the onset of each (test and reference)
stimulus. After offset of the test stimulus, observers had 3 s to report their judgment
(button press with left or right index finger, counterbalanced across observers).
After a variable interval (1.5–2.5 s), a feedback tone was played (150 ms, 880 or
200 Hz, feedback-tone mapping counterbalanced across observers). Dot motion
was stopped 2–2.5 s after feedback, with stationary dots indicating the inter-trial
interval, during which observers were allowed to blink their eyes. Observers self-
initiated the next trial by button press (range of median inter-trial intervals across
observers: 0.68–2.05 s).

The difference between motion coherence of test and reference was taken from
three sets: easy (2.5, 5, 10, 20, 30), medium (1.25, 2.5, 5, 10, 30) and hard (0.625,
1.25, 2.5, 5, 20). All observers started with the easy set. We switched to the medium
set when their psychophysical thresholds (70% accuracy defined by a cumulative
Weibull fit) dropped below 15%, and to the hard set when thresholds dropped
below 10%, in a given session.

Motion coherence differences were randomly shuffled within each block. We
applied a counterbalancing scheme ensuring that within a block, each stimulus
category (s24or o s1) was followed by itself or its opposite equally often64. The
algorithm generated sequences of 53 trials, of which the first 50 were used per
block.

Random dot kinematograms. Stimuli were generated using PsychToolbox-3
(ref. 65) and presented on a 220 0 CRT monitor with a resolution of 1024� 768
pixels and a refresh rate of 60 Hz. A red ‘bulls-eye’ fixation target66 of 1.5� diameter
was present in the centre of the screen. Dynamic random noise was presented in a
central annulus (outer radius 12�, inner radius 2�) around fixation. The annulus
was defined by a field of dots with a density of 1.7 dots/degrees2, resulting in 768
dots on the screen in any given frame. Dots were 0.2� in diameter and had 100%
contrast from the black screen background. All dots were divided into ‘signal dots’
and ‘noise dots’, whose proportions defined the varying motion coherence levels.
Signal dots were randomly selected on each frame, and moved with 11.5� s� 1 in
one of four diagonal directions (counterbalanced across observers). Signal dots that
left the annulus wrapped around and reappeared on the other side. Signal dots had
a limited ‘lifetime’ and were re-plotted in a random location after being on the
screen for four consecutive frames. Noise dots were assigned a random location
within the annulus on each frame, resulting in ‘random position’ noise with a
‘different’ rule67. Three independent motion sequences were interleaved68, making
the effective speed of signal dots in the display 3.8� s� 1.

Motion energy filtering. Due to the stochastic nature of the dynamic RDKs, the
sensory evidence fluctuated within and across trials, around the nominal motion

coherence level. To quantify behaviour and pupil responses as a function of the
actual, rather than the nominal, single-trial evidence, we used motion energy fil-
tering to estimate those fluctuations27.

Two spatial filters, resembling weighted sinusoids in opposite phase, were
defined by

f1 x; yð Þ ¼ cos4 að Þ cos 4að Þ exp
� y2

2s2
g

 !
ð3Þ

f2 x; yð Þ ¼ cos4 að Þ sin 4að Þ exp
� y2

2s2
g

 !
ð4Þ

where a ¼ tan� 1ðx=scÞ. The parameters sg¼ 0.05 and sc¼ 0.35 defined the
carrier sinusoid and the Gaussian envelope, respectively, in line with the response
properties of MT neurons69. The coordinate system (x, y) was rotated to match the
stimulus’ target direction or its 180� opposite. Two temporal filters were defined by

g1 tð Þ ¼ ðktÞns exp � ktð Þ 1
ns !
� ðktÞ2

ns þ 2ð Þ !

� �
ð5Þ

g2 tð Þ ¼ ðktÞnf exp � ktð Þ 1
nf !
� ðktÞ2

nf þ 2
� �

!

� �
ð6Þ

where k¼ 60 reflected the envelope of the temporal filters, and ns¼ 3 and nf ¼ 5
controlled the width of the slow and fast filters, respectively69. A pair of spatio-
temporal filters in quadrature pair was obtained by f1g1þ f2g2 and f2g1–f1g2. We
convolved each filter with the single-trial random dot movies. The resulting values
were squared, and summed together across the two filters27.

This filtering procedure was performed for each observer’s individual target
direction as well as its 180� opposite. To avoid cardinal biases in motion
perception, we used the four diagonals as target directions counterbalanced across
observers. Outputs of the two filtering operations were subtracted to yield a
direction-selective signal over time69. To obtain a single measure of sensory
evidence per trial, we averaged overall timepoints within each stimulus interval,
and took the difference between motion energy in the first and second interval as
our measure of single-trial sensory evidence. Evidence strength was defined by
taking the absolute value of this sensory evidence, collapsing over the two stimulus
identities (Fig. 2b).

Pupillometry. Observers sat in a dark room with their head in a chinrest at 50 cm
from the screen. Horizontal and vertical gaze position, as well as the area of the
pupil, were monitored in the left eye using an EyeLink 1000 desktop mount
(SR Research, sampling rate: 1,000 Hz). The eye tracker was calibrated before each
block of 50 trials.

Missing data and blinks, as detected by the EyeLink software, were padded by
150 ms and linearly interpolated. Additional blinks were found using peak
detection on the velocity of the pupil signal and linearly interpolated. We estimated
the effect of blinks and saccades on the pupil response through deconvolution, and
removed these responses from the data using linear regression using a procedure
detailed in ref. 70. The residual pupil time series were bandpass filtered using a
0.01–10 Hz second-order Butterworth filter, z-scored per run, and resampled to
100 Hz. We epoched trials, and baseline corrected each trial by subtracting the
mean pupil diameter 500 ms before onset of the reference stimulus.

We included all trials from all five main sessions (that is, excluding the practice
session) in the analyses reported in this paper. The time series of consecutive trial-
wise stimuli, choices, RTs and pupil responses was necessary for the regression
model of serial bias modulation. Observers were well-practiced in the task structure
after the practice session. As a consequence, they made few blinks during the trial
intervals (on average across observers, only 7.7% of trials contained more than 50%
interpolated samples). The percentage of interpolated trials did not correlate with
the estimated effect of pupil responses on serial choice bias (r¼ � 0.268, P¼ 0.175,
Bf10¼ 0.369).

Quantifying pupil time courses and single-trial responses. To characterize the
time-course of uncertainty encoding in the pupil response, we regressed across-trial
evidence strength onto each sample of the baseline-corrected pupil signal, sepa-
rately for correct and error trials (Fig. 3b). The design matrix for this regression
also included an intercept and three nuisance covariates: (i) log-transformed RTs;
(ii) sample-by-sample horizontal gaze coordinates; and (iii) sample-by-sample
vertical gaze coordinates. We tested the significance of this regression time course
using cluster-based permutation statistics71.

We took the mean baseline-corrected pupil signal during 250 ms before
feedback delivery as our single-trial measure of pupil response. Because of the
temporal low-pass characteristics of the sluggish peripheral pupil apparatus72, trial-
to-trial variations in RT can cause trial-to-trial in pupil responses, even in the
absence of amplitude variations in the underlying neural responses. To specifically
isolate trial-to-trial variations in the amplitude (not duration) of the underlying
neural responses, we removed components explained by RT via linear regression

y0 ¼ y� yT r
� �

r ð7Þ

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14637

8 NATURE COMMUNICATIONS | 8:14637 | DOI: 10.1038/ncomms14637 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


where y was the original vector of pupil responses, r was the vector of the
corresponding single-trial RTs (log-transformed and normalized to a unit vector),
and T denoted matrix transpose. The residual y0 thus reflected pupil responses,
after removing variance explained by trial-by-trial RTs. This residual pupil
response was used for all analyses reported in the main text.

Quantifying post-error slowing. We quantified post-error slowing, for tertiles of
previous trial pupil responses, as described in ref. 30. Briefly, we selected those
error trials that were both preceded and followed by a correct trial, and subtracted
the pre-error RT from the associated post-error RT. This procedure ensured that
estimates of post-error slowing could not be driven by error-unrelated, intrinsic
fluctuations in RT over the course of a session. Before this subtraction, we removed
trial-by-trial evidence strength from RTs using linear regression, to account for the
large variations in RT with stronger sensory evidence (Fig. 2d).

Quantifying the psychometric function. We modelled the psychometric function
(Supplementary Fig. 4a) as follows. The probability of a particular response rt¼ 1
on trial t was described as

P rt ¼ 1jestð Þ ¼ gþ 1� g� lð Þ g dþ aestð Þ ð8Þ

where l and g were the probabilities of stimulus-independent errors (‘lapses’),est was the signed stimulus intensity (here: signed sensory evidence as in Fig. 2b),
g(x)¼ 1/(1þ e� x) was the logistic function, a was perceptual sensitivity, and d was a
bias term. The free parameters g, l, a and d were estimated by minimizing the
negative log-likelihood of the data (using Matlab’s fminsearchbnd). We constrained
g and l to be identical, so as to estimate a single, choice-independent lapse rate.

For the quantification of serial choice bias (Supplementary Fig. 5), we binned
the data by previous choices and by previous pupil responses or RT. For each of
those subsets of trials, we fit the psychometric function (equation (8)) to
choices on the subsequent trials. The resulting bias term d was transformed from
log-odds into probability by P¼ ed/(1þ ed). This quantified P(rt¼ 1) for
ambiguous evidence (that is, strength of zero). Collapsing these values across the
two-choice options (shown separately in Supplementary Fig. 5) yielded the pooled
measure of choice repetition probability in Fig. 4a,f.

Quantifying perceptual sensitivity using cumulative Weibull function fits. In
Fig. 3d and Supplementary Figs 1c and 3b, we fit a cumulative Weibull function to
accuracy as a function of evidence strength. The probability of a correct response
ct¼ 1 on trial t was defined as

P ct ¼ 1jstð Þ ¼ 1� 0:5� lð Þ f
st

y

	 
b� �
ð9Þ

where st was the absolute evidence strength, f(x)¼ (1–e� x) was the cumulative
Weibull function, l was the lapse rate, y was the threshold indicating at which level
of evidence strength an accuracy of B80% is achieved, and b was the slope of the
cumulative Weibull function. The free parameters y, b and l were estimated by
minimizing the negative log-likelihood of the data (using Matlab’s fminsearchbnd).
Perceptual sensitivity was then defined as 1/y.

Modelling the modulation of serial choice bias. We modelled the pupil- and
RT-linked modulation of serial choice bias by extending an established regression
approach33. The basic regression model extended the psychometric function model
from equation (8) by means of a history-dependent bias term dhist(ht), which was a
linear combination of previous stimuli and choices

P rt ¼ 1jest ; htð Þ ¼ gþ 1� g� lð Þ g d htð Þþ aestð Þ ð10Þ

With

d htð Þ ¼ d0 þ dhist htð Þ ¼ d0 þ
XK

k¼1

okhkt ð11Þ

where the bias term d(ht) was the sum of the overall bias d0 (see equation (8)) and
the history bias dhist htð Þ ¼

PK
k¼1 okhkt , where ok were the weights assigned to

each previous stimulus or choice. We here modelled

ht ¼ rt� 1; rt� 2; rt� 3; rt� 4; rt� 5; rt� 6; rt� 7; zt� 1; zt� 2; zt� 3; zt� 4; zt� 5; zt� 6; zt� 7ð Þ
ð12Þ

as a concatenation of the last seven responses and stimuli (see ref. 33 for details).
This procedure allowed us to quantify the effect of past trials on current choice
processes (Fig. 5c). We convolved every set of seven past trials with three
exponentially decaying basis functions33. Positive history weights ok indicated a
tendency to repeat the previous choice, or to make a choice that matched the
previous stimulus. Negative weights described a tendency to alternate the
corresponding history feature.

To model the effect of pupil-linked uncertainty on history biases, we extended
this model by adding a multiplicative interaction term

PK
k¼1 o

0
khkt pkt , which

described the interaction of pupil responses with the choice and stimulus identities

at the last seven lags:

P rt ¼ 1jest ; ht ; ptð Þ ¼ gþ 1� g� lð Þ g d ht ; ptð Þþ aestð Þ ð13Þ

d ht ; ptð Þ ¼ d0 þ dhist ht ; ptð Þ ¼ d0 þ
XK

k¼1

okhkt þo0khkt pkt þo00k pkt ð14Þ

where o0k were the history � pupil interaction weights, o00k were the pupil weights
and pkt ¼ ðpt� 1; pt� 2; pt� 3; pt� 4; pt� 5; pt� 6; pt� 7Þ was a concatenation of the last
seven pupil responses. The term o00k pkt acted as a nuisance covariate. To
simultaneously model the effects of pupil responses and log-transformed RT, our
model also included RT and history � RT terms, generated using the same
procedure.

All parameters were fit using an expectation maximization algorithm. To assess
whether individual observers were significantly influenced by their experimental
history, we ran 1,000 iterations of permuting all trials, fitting the full model, and
subsequently comparing the likelihood of the intact model to this null distribution
(where permutation nullifies true history effects)33. Confidence intervals for
individual regression weights were obtained from a bootstrapping procedure.

Serial bias and outcome-dependent choice strategies. The history weights for
past stimuli and responses allowed us to characterize different decision strategies33

(Fig. 5d). Positive weights associated with the previous choice, or the previous
stimulus category, indicate a tendency to repeat this previous choice, or to make a
choice corresponding to the previous stimulus, respectively. Negative weights
correspond to a tendency to alternate previous choice or stimulus. In the left and
right triangle of this strategy space, the magnitude of the response weight is larger
than the magnitude of the stimulus weight. Consequently, strategies are dominated
by the previous choice and can be simply defined as choice alternation (left) or
choice repetition (right).

In the upper and in the lower triangle, the magnitude of the stimulus weight is
larger than the magnitude of the response weight, so strategies are dominated by
the identity of the previous stimulus (which is only known to the observer as a
function of their previous response and feedback). In the upper and lower triangle,
strategies are thus defined by the sign of the stimulus weight. In the upper triangle
stimulus weights are positive, indicating a tendency to repeat the previous stimulus.
On a correct trial, previous choice and stimulus are equal and therefore, repeating
the previous stimulus is equal to repeating the previous choice (a win-stay
strategy). On errors, the previous choice is opposite to the previous stimulus and
repeating the previous stimulus is equal to alternating the previous choice (lose-
switch strategy). Conversely, in the lower triangle stimulus weights are negative,
reflecting a tendency to alternate the previous stimulus. This implies a tendency to
alternate the previous choice if the previous choice was correct (win-switch
strategy) and a tendency to repeat the previous choice in case of a previous error
(lose-stay strategy).

The weights for previous choices and stimuli can easily be combined to obtain
weights reflecting a tendency to repeat previous correct or incorrect choices
(Supplementary Fig. 6). Specifically, correct weights are defined by choice þ
stimulus, and error weights by choice—stimulus33. The same holds for modulation
weights. This transformation is identical to fitting a model with regressors for
previous successes and failures39,73.

Statistical tests. We used non-parametric permutation testing to test for the
group-level significance of individually fitted parameter values (Figs 3 and 5e,g).
We randomly switched labels of individual observations either between two paired
sets of values, between one set of values and zero, or between two unpaired groups.
After repeating this procedure 10,000 times, and computing the difference between
the two group means on each permutation, the P value was the fraction of per-
mutations that exceeded the observed difference between the means. All P values
reported were computed using two-sided tests.

In Fig. 4, we split the data into tertiles of pupil response or RT, and computed
next trial serial choice bias, signed choice bias, overall choice bias, perceptual
sensitivity, lapse rate, RT and post-error slowing in each bin. We used a repeated-
measures ANOVA to test for the main effect of bin on each dependent variable. We
further used Bayes Factors (Bf), obtained from a Bayesian one-factor ANOVA74, to
support conclusions about null effects observed. Bf10 quantifies the evidence in
favour of the null or the alternative hypothesis, where Bf10 o 1/3 or43 is taken to
indicate substantial evidence for H0 or H1, respectively. Bf10¼ 1 indicates
inconclusive evidence. We similarly computed Bf10 for correlations, based on the
Pearson correlation coefficient75.

The P-value for the difference between the two correlation coefficients (choice
weight by pupil modulation weight vs choice weight by RT modulation weight),
shown in Fig. 5f, was obtained through permutation testing. To generate a null
distribution of no difference, we randomly switched (or not, dependent on a
simulated coin flip) each observer’s RT and pupil modulation weights, after which
we computed the between-subject correlation between choice weights and pupil
modulation weights as well as between choice and RT modulation weights.
Repeating this procedure 10,000 times generated a distribution of the difference in
correlation, under the null hypothesis of no difference.
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Data availability. All raw and processed data, as well as the code to reproduce all
analyses and figures, are available at http://dx.doi.org/10.6084/m9.figshare.4300043.
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