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Classification of cancers based on gene expressions produces better accuracy when compared to that of the clinical markers.
Feature selection improves the accuracy of these classification algorithms by reducing the chance of overfitting that happens
due to large number of features. We develop a new feature selection method called Biological Pathway-based Feature Selection
(BPFS) for microarray data. Unlike most of the existing methods, our method integrates signaling and gene regulatory pathways
with gene expression data to minimize the chance of overfitting of the method and to improve the test accuracy. Thus, BPFS
selects a biologically meaningful feature set that is minimally redundant. Our experiments on published breast cancer datasets
demonstrate that all of the top 20 genes found by our method are associated with cancer. Furthermore, the classification accuracy
of our signature is up to 18% better than that of vant Veers 70 gene signature, and it is up to 8% better accuracy than the best
published feature selection method, I-RELIEE
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1. Introduction

An important challenge in cancer treatment is to classify a
patient to an appropriate cancer class. This is because class
specific treatment reduces toxicity and increases the efficacy
of the therapy [1]. Traditional classification techniques are
based on different kinds of clinical markers such as the
morphological appearance of tumors, age of the patients, and
the number of lymph nodes [2]. These techniques however
have extremely low (9%) prediction accuracies [3].

Class prediction based on gene expression monitoring is
a relatively recent technology with a promise of significantly
better accuracy compared to the classical methods [1].
These algorithms often use microarray data [4] as input.
Microarrays measure gene expression and are widely used
due to their ability to capture the expression of thousands
of genes in parallel. A typical microarray database contains
gene expression profiles of a few hundred patients. For each
patient (also called observation), the microarray records
expressions of more than 20 000 genes. We define an entry
of a microarray as a feature.

Classification methods often build a classification func-
tion from a training data. The class labels of all the samples
in the training data are known in advance. Given new
sample, the classification function assigns one of the possible
classes to that sample. However, as the number of features
is large and the number of observations is small, standard
classification algorithms do not work well on microarray
data. One potential solution to this problem is to select a
small set of relevant features from all microarray features and
use only them to classify the data.

The research on microarray feature selection can be
divided into three main categories: filter, wrapper, and
embedded [5]. We elaborate on these methods in Section 2.
These methods often employ statistical scoring techniques to
select a subset of features. Selection of a feature from a large
number of potential candidates is however difficult as many
candidate features have similar expressions. This potentially
leads to inclusion of biologically redundant features. Further-
more, selection of redundant features may cause exclusion
of biologically necessary features. Thus, the resultant set of
features may have poor classification accuracy.
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FIGURE 1: Part of Pancreatic cancer pathway adapted from KEGG
showing the gene-gene interactions. — implies activation and
implies inhibition. The rectangles with solid line represent valid
genes mapped to the pathway. They are referred to by the name
of the genes. +p denotes phosphorylation. For example, PKB/Akt
activates IKK through phosphorylation. IKK in turn activates
NFkB. Thus, PKB/Akt indirectly activates NFkB. The rectangles
with dotted lines are genetic sequence that do not have Entrez Gene
ID and not mappable to pathway. We cannot yet associate them

to some pathway. We denote them as unresolved genes. They are
referred to by GenBank Accession numbers.

One way to select relevant features from microarray data
is to exploit the interactions between these features, which
is the problem considered in this paper. More specifically we
consider the following problem.

Problem Statement. Let D be the training microarray dataset
where each sample belongs to one of the T possible classes.
Let P be the gene regulatory and the signaling network.
Choose K features using D and P so that these features
maximize the classification accuracy for an unobserved
microarray sample that has the same distribution of values
as those in D.

Contributions. Unlike most of the traditional feature selec-
tion methods, we integrate gene regulatory and signaling
pathways with microarray data to select biologically relevant
features. On the pathway, one gene can interact with another
in various ways, such as by activating or inhibiting it.
In Figure 1, RacGEF activates RAC, BAD inhibits Bcl-xl,
and PKB/Akt inhibits BAD by phosphorylation. We use
the term influence to imply this interaction between two
genes. We quantify influence by considering the number
of intermediate genes between two genes on the pathway
that connects them. The influence is the highest when two
genes are directly connected. Our hypothesis in this paper
is that selecting two genes that highly influence each other
often implies inclusion of biologically redundant genes. The
rationale behind this is that manipulating one of these genes
will have significant impact on the other one. Thus, selecting
one of them produces comparable prediction accuracy. So
we choose the set of features such that each of them has the
lowest influence on other selected features.

We propose a novel algorithm called Biological Pathway-
based Feature Selection algorithm (BPES) based on the above
hypothesis that has the following characteristics.
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(1) Let the complete set of features be G and the set of
already selected features be S. BPES ranks all the features
in G — S with an SVM-based scoring method MIFS [6].
The score quantifies the capacity of a feature to improve the
already attained classification accuracy. BPES ranks features
in decreasing order of their scores.

(2) BPFS chooses a small subset C of highly ranked
features from G — S and evaluates the influence of every
feature in C on the features in S. Finally, it selects the feature
in C that has the lowest influence on the features in S and
moves it to S from G — S. BPES repeats this step for a fixed
number of iterations.

We observe that a significant fraction of the gene entries
in the microarray do not have any corresponding gene in
the pathway. We use the term unresolved genes to represent
these genes. We propose a probabilistic model to estimate the
influence of those genes on selected features.

We tested the performance of our method on five breast
cancer data sets [7-11] to predict whether breast cancer
for those patients relapsed before five years or not. Our
experiments show that our method achieves up to 18% and
8% better accuracy than the 70-gene prognostic signature [7]
and I-RELIEF [2], respectively.

The organization of the rest of this paper is as fol-
lows. Section 2 discusses the background material. Section 3
describes the proposed algorithm. Section 4 presents experi-
mental results. Section 5, briefly, concludes the paper.

2. Background

Feature selection is an important area in data mining for
preprocessing of data. Feature selection techniques select
a subset of features to reduce relatively redundant, noisy,
and irrelevant part of the data. The reduced set of features
increases the speed of the data mining algorithms and
improves accuracy and understandability of result. Feature
selection is often used in areas such as sequence, microarray,
and mass-spectra analysis [5]. The popular feature selection
methods can be broadly categorized into the following.

Filter Methods (see [12—14]). These are widely studied
methods that work independent of the classifier. They rank
the features depending on the intrinsic properties of data.
One such method is to select sets of features whose pairwise
correlations are as low as possible.

Wrapper Methods (see [15, 16]). These methods embed the
feature selection criteria into the searching of subset of
features. They use a classification algorithm to select the
feature set and evaluate its quality using the classifier.

Embedded Methods (see [17]). These approaches select fea-
tures as a part of the classification algorithm. Similar to the
wrapper methods, they interact with the classifier, but at a
lower cost of computation.

All the above-mentioned traditional feature selection
methods ignore the interactions of the genes. Considering
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* the remaining features.
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* G and S denote the set of all features and the set of
* selected features respectively. Set G — S represents all

(1) Select the first feature from G that has highest mutual information.
(2)Repeat till there is more features to select.
(a) Calculate marginal classification power for all the features in G — S.
(b) Select top ¢ features with highest marginal classification power as candidate set C.
(¢) Calculate Total Influence Factor (TIF) for all the features in C.
(d) Select the feature with lowest TIF and include it into S.

ALGoriTHM 1: Biological Pathway-based Feature Selection Algorithm (BPFES).

each gene as an independent entity can lead to redundancy
and low classification accuracy as many genes can have
similar expression patterns.

Several recent works on microarray feature selection
have leveraged metabolic and gene interaction pathways in
their methods. Vert and Kanehisa [18] encoded the graph
and the set of expression profiles into kernel functions
and performed a generalized form of canonical correlation
analysis in the corresponding reproducible Hilbert spaces.
Rapaport et al. [19] proposed an approach based on
spectral decomposition of gene expression profiles with
respect to the eigenfunctions of the graph. Wei and Pan
[20] proposed a spatially correlated mixture model, where
they extracted gene specific prior probabilities from gene
network. Wei and Li [21] developed a Markov random
field-based method for identifying genes and subnetworks
that are related to a disease. A drawback of the last two
model-based approaches is that the number of parameters
to be estimated is proportional to the number of genes. So
optimizing the objective function is costly as the number
of genes in microarrays is more than 20000. C. Li and
H. Li [22] introduced a network constraint regularization
procedure for linear regression analysis, which formulates
the Laplacian of the graph extracted from genetic pathway
as a regularization constraint.

One limitation of all the above mentioned methods that
use biological pathway is that, all of them consider genetic
interactions between immediate neighbors on the pathway.
None of them explicitly consider interactions that are
beyond immediate neighbors. Also, most of them performed
quantitative analysis of the selected features on simulated
datasets. So it is not possible to quantify the accuracy of those
selected features on some real datasets only from the results
in these papers. Additional experiments on real microarray
datasets are required to justify those methods and their set
of features. Also, as the reconstruction of genetic pathway
is yet to be completed, we cannot always map a microarray
entry to the biological pathway. They do not consider the
implications of those missing information. In this paper, we
introduce a new microarray feature selection method that
addresses these issues.

3. Algorithm

This section describes our Biological Pathway-based Feature
Selection algorithm (BPFS) in detail. BPFS takes a labeled
two-class microarray data as input and selects a set of
features. Algorithm 1 portrays a synopsis of BPFS. We discuss
an overview of BPFS next.

We denote the set of all features by G. Let S be the set
of features selected so far. The set G — S represents all the
remaining features. BPFS iteratively moves one feature in G—
S to S using the following steps, till the required number of
features is selected (along with their rank).

Step 1 (determine the ¢ best candidates (see 2(a) to 2(b) in
Algorithm 1)). This step creates a candidate set of features
from G — S by considering their classification accuracy alone.
To do this, BPFS first sorts all the available features in
decreasing order of their marginal classification power and
chooses the top ¢ (typically t = 10 in practice) of them as the
candidate set for next step. We define the marginal classifica-
tion power of a feature as its ability to improve the classifica-
tion accuracy when we include it into S. Let us denote the set
that contains these top t features by the variable C.

Step 2 (pick the best gene using pathways (see 2(c) to 2(d) in
Algorithm 1)). In this step, we use signaling and regulatory
pathways to distinguish among the feature set C obtained in
Step 1. Given a set of already selected features S, BPFS aims
to select the next most biologically relevant feature from C.
We define a metric to compare the features in C for this
purpose. This metric estimates the total influence between a
candidate feature and the set of selected features. We denote
this total influence as the Total Influence Factor (TIF). TIF is
a measure of the potential interaction (activation, inhibition,
etc.) between a candidate gene and all the selected genes. A
high value of TIF for a gene implies that the gene is highly
influenced by some or all of the already selected set of genes.
We choose the gene in C that has the lowest TIE. We then
include it in S. We elaborate this step in Section 3.3.

In the following subsections we discuss the above aspects
of our algorithm in more detail. Section 3.1 defines how we



select our first feature. Section 3.2 discusses the first round
of selection procedures based on classification capability.
Section 3.3 describes the use of pathways for feature selec-
tion. Section 3.4 presents a technique to utilize the training
space efficiently in order to improve the quality of features.

3.1. Picking the First Feature: Where to Start? BPES incre-
mentally selects one feature at a time based on the features
that are already selected. The obvious question, then is, how
do we select the first feature? There are many alternative
ways to do this. One possibility is to get an initial feature
using domain knowledge. This, however, is not feasible if no
domain knowledge exists on the dataset.

We use mutual information to quantify the discriminat-
ing power of a feature. Let us represent the kth feature of
microarray using a random variable F and the class label of
the data using another random variable L. Assume that there
are n observations in the data. F and L can assume different
values over those n observations. Let f an instance of F and
I be an instance of L. The mutual information of F and L
is I(F,L) = X gepjer ViL(f>Dlog(yre (f,D/ye (f)ye (D),
where yp, is the joint probability mass function of F and
L; yr and y; are the respective marginal probability mass
function of F and L. Thus, we use I(F,L) to quantify the
relevance of the kth feature for classification. We choose the
feature with maximum mutual information as the starting
feature.

Another way to select the first feature can be to utilize
the marginal classification power. Essentially, it is way we can
apply the second step of our algorithm which § = {} and
select the top candidate as the first candidate.

Next we discuss how we select the remaining features.

3.2. Selecting the Candidate Features. In this step, BPFS sorts
all the available features in G — S in decreasing order of
their marginal classification power. We define the marginal
classification power of a feature later in this section. BPFS
then chooses the t features with the highest marginal
classification power as the candidate set that will be explored
more carefully in the subsequent steps. We elaborate on this
next.

We use an SVM based algorithm, MIFS [6], to calculate
the marginal classification power of all available features as
follows. BPFS, first, trains SVM using the features in S to
get the value of the objective function of SVM. We use
linear kernel for the SVM in our experiments. For very high
dimensional data a linear kernel performs better than or
comparable to a non-linear kernel [23]. A linear kernel is
a simple dot product of the two inputs. So the objective
function of SVM becomes

1 n
J=>a- 5 D it Yiyjxi - xj, (1)

i=1 ij=1

where a;, y; and x; denote the Lagrange multiplier, the
class label and the value of selected set of features of ith
observation respectively. Here, x;x — j are vectors and x; - x;
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is the dot product of them. Then for each feature m € G - S,
BPFS calculates the objective function J if m is added to S as

J(SU {m}) = > a; — % > aiajyiyixi(+m) - xj(+m),
i=1 i=1,j=1
(2)

Here x;(+m) denotes the value of the selected set of
features along with the aforementioned feature m for the ith
observation. Using the last two equations, we calculate the
marginal classification power of a feature m, as the change
in the objective function of SVM, when m is included in
S. We denote this value with variable AJ. To paraphrase,
marginal classification power of a feature is the capability of
a new feature to improve the classification accuracy of a set of
selected features, when the new feature is added to the already
selected set. Formally, we compute AJ(m) forallm € G- S
as AJ(m) = J(SuU {m}) — J(S). BPES sorts all the features
m € G—§in descending order of AJ(m). It considers the top
t (t = 10 in our experiments) genes as possible candidates for
the next round. Let C denote the set of these ¢ genes. In the
next steps, BPFS examines biological networks to find out the
most biologically meaningful feature in C.

3.3. Selecting the Best Candidate Gene. All the features in the
candidate set C often have high marginal classification power.
In this step, we distinguish the features in C by considering
their interactions with the features in S (the set of features
that are already selected). We hypothesize that if a feature in
C is influenced by the features in S greatly, then that feature
is redundant for S even if it has high marginal classification
power. We discuss how we measure the influence of a feature
on another one next.

Consider the entire pathway as a graph, where all the
genes are vertices and there is an edge between two vertices
if they interact with each other. In this paper, we do not
consider any specific pathway such as p53 signaling pathway,
rather a consolidation of all the available human signalling
and regulatory pathways. If we have had the knowledge about
the pathways that are affected by that specific biological
condition (such as cancer), we could select features only from
those pathways. However, the available literature does not
provide the comprehensive list of affected pathways most of
the time. Thus, we create a consolidation of all the regulatory
and signaling pathways.

There are different kinds of interactions such as activa-
tion and inhibition. If two genes do not have a common edge,
but they are still connected by a path, it means that they
interact indirectly through a chain of genes. For example,
in Figure 1, RacGEF activates RAC and RAC activates NFkB.
Thus, RacGEF indirectly activates NFkB through RAC. We,
therefore, compute the distance between them as two. A
higher number of edges on the path that connects two genes
implies feebler influence.

An abnormally expressed gene does not necessarily
imply that its neighbor will be abnormally expressed [24].
This is because the interaction between two genes is a
probabilistic event. For example, in Figure 1, if RacGEF
becomes aberrantly expressed, there is a probability that RAC
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is also expressed aberrantly. Let us denote this probability
with the variable A. Similarly, if RAC is abnormally expressed,
NFkB is abnormally expressed with a probability h. So,
if RacGEF is over expressed, NFkB can be over expressed
with a probability of h2. This leads to the conclusion that
as the number of hops increases the influence decreases
exponentially. Thus, we use an exponential function to
model this influence.

To quantify influence we define a metric, termed Influ-
ence Factor (IF), between two genes g; and g; as IF(g;, gj) =
1/24€¢)-1, provided i # j. Here d(g;,g;) is the length of the
shortest path that connects g; and g; on the pathway. To
calculate total influence on a candidate gene asserted by a
selected set of genes we calculate IF between the candidate
gene and every gene in the selected set and sum it up. We call
it the total influence factor (TIF) of a candidate gene g with
respect to already set of selected genes. Formally,

1
TIF(g,S) = ZW )

se§

d(g,s) is zero if there is no path between g and s.

For example, in Figure 1 consider PKB/Akt as a candidate
gene and assume that S consists of two genes NFkB
and CASP9. CASP9 is one hop away from PKB/Akt. So
IF(PKB/Akt, CASP9) = 1. The shortest path from PKB/Akt
to NFkB is of two hops through IKK. So IF(PKB/Akt, NFkB)
= 0.5. Thus, TIF(PKB/Akt, {CASP9, NFkB}) = 1.5.

BPFS calculates TIF for all the genes in C and selects
the one that generates the lowest value of TIE A low TIF
value implies lower aggregate influence on the set of selected
features S. To paraphrase, the gene with lowest TIF is least
interacting with the genes in S. So, we select the gene that is
biologically most independent from S.

The gene databases, like KEGG, are still evolving. Thus,
many of the genes cannot be mapped from microarray data
to these databases. In Section 4 we describe a probabilistic
technique to handle this problem.

3.4. Exploration of Training Space. We have described the key
components of our feature selection algorithm (BPFS) in the
previous subsections. As a dataset consists of comparatively
smaller number of observations and a large feature set, BPFS
is prone to overfitting. To avoid this problem, we propose a
method that utilizes the training space efficiently.

Let Dr be the training data. We create K data subsets
(K = 50 in our experiments) Dr,,Dr,,...,Dr, each contain-
ing 80% of the D randomly sampled from it. We, then, run
BPFES on each of them and get K sets of features. We store
these K feature sets in a K X N matrix M, where the ith row
contains first N features obtained from Dr,. Thus, m;; is the
jth feature obtained from Dr,. We use this matrix to rank all
the features in the following fashion.

(1) We assign a linearly decreasing weight across a row to
emphasize the importance of the features that come
first. More specifically, we assign a weight of N — k to
a feature that appears in the kth column of a row.

(2) We sum the weights of the features over all the rows to
determine the overall weight of the features in M. For
example, assume that a feature appears in three rows
of M, at (5,3), (17,14), and (29,10), where the first
number in each pair indicates the row and second
number indicates the column. Also, assume that we
want to choose a total of 150 features. Then, the total
weight of this feature is (150 —3) + (150 — 14) + (150 —
10) = 423.

We pick the N features with the highest weight from our
feature set. Weighing the features based on their positions
helps us to prioritize the features that occur frequently
and/or appear with high rank. We discuss the impact of the
value of N in Section 4.

4. Data Set and Experiments

In this section we evaluate BPFS experimentally. We use
multiple real microarray datasets instead of synthetically
generated data, as synthetic data may not accurately model
different aspects of a real microarray data [25]. We observe
that we can map only a small portion (25%) of the
microarray entries to KEGG regulatory pathway. Some of
them do not take part in any single interaction. So the only
information we have about them is their measured expres-
sion value on the microarray dataset. Due to this missing
data problem it is difficult to quantify the implication of
biological pathway in our algorithm. To handle this problem
we have conducted our experiments on two different kind
of information. In one case, we use the KEGG pathways
as it is and used a randomized technique to handle the
interactions with unresolved genes. In the other case, we
map all the microarray genes to KEGG pathway and assume
that genes within a single pathway are fully connected and
there is no common gene between two pathways. Still, we
need to be careful while interpreting the results with fully
connected pathway as it is only a simplistic view of the actual
pathway. We cover the experiments with real pathways in the
paper from Sections 4.2—4.6. In Section 4.7 we discuss the
experiments with fully connected pathways.

In Section 4.1 we describe the experimental setup. In
Section 4.2 we describe the randomization technique. We
show the biological validity of our feature set, by tab-
ulating the supporting publications against every feature
(Section 4.3). We compare our signature against van’t Veer’s
[7] on four data sets (Section 4.4). We compare the testing
accuracy of our method to that of I-RELIEF, a leading
microarray feature selection method (Section 4.5). We con-
ducted cross-validation experiments where we extracted
features from one dataset and tested its accuracy on
another dataset in Section 4.6. Finally, we executed BPFS
and I-RELIEF on an idealistic fully connected pathway in
Section 4.7.

4.1. Experimental Setup

Microarray Data. In our experiments we used five breast
cancer microarray datasets from the literature. We name



these datasets as BCR [10], JNCI [8], Lancet [9], CCR [12]
and Nature [7], respectively, according to the name of the
journals they were published. BCR, CCR, and Lancet use
Affymetrix GeneChip Human Genome U133 Array Set HG-
U133A consisting of 24, 481 entries. Nature has its own
microarray platform with 24, 481 entries. JNCI has the same
platform as that of Nature, but it consists of a much smaller
feature set of 1, 145 entries. We removed the observations
whose class labels were not defined. For the rest of the data
points we created two classes depending on whether relapse
of the disease happened in five years or not, counting from
the time of the primary disease. The datasets Nature, JNCI,
BCR, CCR, and Lancet contain 97, 291, 159, 190, and 276
observations, respectively.

Pathway Data. We used the gene regulatory and signaling
pathways of Homo Sapience in KEGG. We merged all the
relevant pathway files to build a consolidated view of the
entire pathway. The final pathway consists of 8 270 genes and
7 628 interactions. Clearly, some genes do not take part in
any interaction.

Training and Testing Data. We randomly divided a microar-
ray dataset (e.g., BCR dataset) in 4 : 1 ratio to create training
and testing subset. We maintained the distribution of two
classes in the undivided dataset unchanged in the training
and testing subset. We collected features from the training
dataset and tested the classification accuracy using those
features on the test dataset. Now we elaborate on how we
utilized the training space to select features. We created a
number of subsets K (typically 50 in our experiments) using
bootstrapping from training dataset. Each subset contains
80% samples of the training data. We selected features from
each of those subspaces using Section 3.1 to Section 3.3.
Then we combined the K obtained set of features using the
method of Section 3.4.

Implementation and System Details. We implemented our
feature selection algorithm (BPFS) using Matlab. For SVM,
we used “Matlab SVM Toolbox”, a fast SVM implementation
in C based on sequential minimal optimization algorithm
[26]. For pathway analysis code we used Java. We ran our
implementation on a cluster of ten Intel Xeon 2.8 GHz nodes
on Ubuntu Linux.

Availability of code. The implementation of the proposed
method can be downloaded from http://bioinformatics.cise
.cise.ufl.edu/microp.html.

4.2. Pathways with Unresolved Genes. To calculate the influ-
ence factor (IF) we need to calculate the number of hops
between two genes on the pathway. This requires a mapping
of those microarray entries to pathway genes. However,
as some of the microarray entries are not complete genes
and biological pathway construction is not yet finished
[59], we can not map all microarray entries. We denote
all the unmapped genes as unresolved genes. For example,
Affymetrix microarray HG-U133A contains 24,481 entries.
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We are able to map only 6 500 entries to KEGG (Kyoto Ency-
clopedia of Genes and Genomes). For example, in Figure 1
we draw four rectangles with dotted lines that correspond
to four microarray entries in Affymetrix platform. As they
do not have Entrez Gene identification number, we can not
associate them with any pathway. Hence, these are unresolved
genes.

Our preliminary experiments suggest that unresolved
genes represent a large fraction of the genes in set C (more
than 60% on average). To estimate the TIF of the unresolved
genes, we develop a probabilistic model. Let C be the set
of candidate genes and S be the set of selected genes in an
iteration of BPFS. While calculating TIF for a g € C we
consider two cases:

Case 1 (the candidate gene is resolved). Assume that g is
resolved. Let Q < S be the set that contains all the unresolved
features in S. Let R = S — Q be the set of resolved features in
S. Let p be the expected influence of a gene g € Q on gene g
if all genes were mapped and the pathway construction was
complete. We discuss how we estimate the value of p later
in this section. Then the expected number of genes from Q
having influence on g is TIF(g, Q) = p - |Q[, where |Q] is the
number of genes in Q. So the Total Influence Factor becomes

TIF(g,S) = TIF(g, Q) + TIF(g, R)

— plQI+ X 21,

SER

(4)

Case 2 (the candidate gene is unresolved). When g is
unresolved we consider it as a special case of Case 1. As the
connectivity between g and all genes in § is unknown, we
estimate TIF as

TIF(g,S) = plSI. (5)

In summary, to handle the unresolved genes we augment
the probabilistic model to biological pathway-based selection
and replaced (3) by (4). Among the genes in candidate set
C we select the gene with smallest TIF using (4). Now, we
describe how we derive the value of p in (4) and (5).

To derive the value of p, we propose the following
approach. It is reasonable to assume that there are many
missing interactions in the currently available pathway
databases, since missing interactions are continually being
discovered. Let us denote the present incomplete pathway
graph by P; and the hypothetical complete pathway by Pc.
Assume that P¢ contains z times more interactions than that
of P;. From P; we estimate p as a function of z and the
expected number of the genes in P; as follows. We, first,
build a graph P as described in Section 3.3 from the KEGG
database. We, then, randomly delete edges of P; and create
the subgraphs Pig, P2, ..., Pioo of P; corresponding to 10%,
20%, ..., 100% of edges of that of P;. For each of these sub-
graphs we calculate the average number of vertices reachable
from a vertex.

Formally, let V' denote the set of vertices in P, where
s € {10,20,...,100}. We denote the number of reachable
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TaBLE 1: List of publications supporting the first twenty features obtained from BCR data set about their responsibility for cancer.

Gene Supporting Publications Gene Supporting Publications
KCNK2 Acute Lymphoblastic Leukemia: [27] ZNF222 Breast cancer: [28]
Human lung epithelial tumor: [29], Non-
P2RY2 melanoma skin cancer: [30], Thyroid can- SLC2A6 Human Leukemia: [32]
cer: [31]
CD163 Breast Cancer: [33], Human colorectal HOXC13 Acute myeloid leukemia: [35, 36]
cancer [34]
PCSK6 Breast Cancer: [37], Ovarian cancer: [38] AQP9 Leukemia: [39]
Peptide YY (PYY) is a naturally occur- KLRC4 is a member of the NKG2 group
PYY ring gut hormone with mostly inhibitory KLRC4 that are expressed primarily in natural
actions on multiple tissue targets [40] killer (NK) cells [41].
CYP2A13 Lung adenocarcinoma: [42] GRM2 Metastatic Colorectal Carcinoma: [43]
PHOX2B Neuroblastoma: [44] ASCL1 Prostate cancer: [45], Lung cancer: [46]
Polycystin-1 induced apoptosis and cell
cycle arrest in GO/G1 phase in cancer cells Gastrointestinal stromal tumor, leiomy-
PKD1 [47]. PKD1 inhibits cancer cells migration ANGPT4 oma and schwannoma [50], renal epithe-
and invasion via Wnt signaling pathway in lial and clear cell carcinoma [51]
vitro [48]. Gastric cancer: [49]
Gastric cancer: [53, 54], Ovarian cancer:
PSMB1 Breast Cancer: [52] RUNX1 [55], Classical tumor suppressor gene:
[56]
CDi1C Prostate cancer: [57] ZNF557 Myeloid Leukemia: [58]
vertices from g (g € V) by R(g). Then, the average reach- 200
ability of P; is 180

ZgEVR(g)
Re ==y

where |V/| is number of vertices in V. We calculate
Rp,,...,Rp,,, the average reachability for all the subgraphs.

We, then, construct the function f(s) that evaluates to
f(s) = Rp,. To construct f(s), we use a converging power
series. We derive the value of parameters using Rp,,, ...,
Rp,,,. To calculate the average reachability of the hypothetical
pathway Pc we use value of s greater than 100 in f(s). In
Figure 2 we plot Rp,, ..., Rp,, along with the constructed
function f(s) against the s, the fraction of the current
pathway.

We observe that f(s) interpolates the values Rp,,, . . ., Rp,,
accurately and it converges at around s = 500 with the value
of 180. Thus, we can conclude that the average reachability
of P¢ is around 180. The probability that an unresolved gene
has an interaction with a randomly chosen gene in § in P¢
is given by p = Rp. /| V| where |V] is number of nodes in
the pathway. As the total number of human genes is close to
20,500 [60], we get 0.0088 as the value of p.

, (6)

4.3. Biological Validation of Selected Features. We collected
the list of publications that support the relevance of the first
twenty features selected from BCR on cancer. Table 1 lists the
publications and cancer types for each of the genes.

To get the features, we created the training dataset as
described in Section 4.1. We, then, trained BPFS on the
training data and obtained a ranked set of features. We

120 |

100

Rp,: number of reachable genes
o »
S S

'S
o
T

S
(=}
T

(=}

100 200 300 400 500

s: percentage of the current pathway

—— f(s): constructed function
O Real data

FIGURE 2: We plot the real data points Rp,y, ..., Rp,, along with
the constructed function f(s) against s, the fraction of the current
pathway. We extrapolate f(s) up to s = 500. f(s) converges around
180.

repeated this process ten times on BCR. We selected first
twenty features from each rankings and merged them using
the method described in Section 3.4 to get the final twenty
features. We found relevant publication for all the twenty
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FiGure 3: Comparison of test accuracy of our signature and van’t Veer’s 70-gene prognostic signature on real pathway. For all the datasets,

our signature performs significantly better than their signature.

genes. We observed that four of them are directly responsible
for breast cancer. Another seven genes are associated to breast
cancer from the point of histology (two prostrate, four gastric
and one colorectal). The rest of them are related to other
kinds of cancer such as ovarian cancer and lung cancer.

In some cases a gene is involved for more than one kind of
cancer. For example, ASCLLI is associated with both prostrate
cancer and lung cancer. We concluded that BPFS chooses the
set of genes that are responsible for breast cancer and other
kind of cancers. Hence, BPFS selects a biologically meaningful
feature set that reduces the number of redundant features and
improves generalization accuracy by selecting more relevant
feature set.

In general, the above approach of combining features
obtained from ten different runs may lead to selecting
features from the entire dataset. We did it only for this
experiment to filter out the biologically significant features
from a dataset. For the remaining experiments we kept
separate training and testing datasets.

4.4. Comparison with vant Veer’s Gene Signature. In this
section we compare our gene signatures to the breast cancer
prognostic signature found by van’t Veer et al. [7]. van’t Veer
et al. generated the 70 gene signature using a correlation
based classifier on 98 primary breast cancer patients. van’t
Veer’s 70 gene experiment [7] demonstrated that genetic
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signature can have a much higher accuracy in predicting
disease relapse free survival against clinical markers (50%
versus 10%).

In our experiment, we demonstrate that our method
finds a better gene signature than these 70-gene signature
for a particular dataset. We created training and testing
data from the four datasets JNCI, Lancet, BCR and CCR as
described in Section 4.1. From those four training dataset
we created four set of features using our method. We
calculated the accuracy of the four set of features using the
corresponding four test datasets. Also, we computed the
test accuracy using this 70-gene signature on the same four
test dataset just mentioned. Finally we plotted the testing
accuracies obtained from both set of features in Figure 3.

Figure 3 illustrates the results for up to 150 genes for both
the signature on BCR, CCR and Lancet. We observe that for
all four data sets our accuracy is better than that of 70-gene
signature. BPFS attains 18% better accuracy for JNCI dataset.
From this we conclude that BPFS finds a better gene signature
for all the datasets.

4.5. Comparison with I-RELIEF. We compare the accuracy of
our method to that of I-RELIEF [2]. I-RELIEF is a nonlinear
feature selection algorithm. It produced significant accuracy
over van’t Veer’s 70 gene prognostic signature and standard
clinical markers [61].

We, first, created training and testing dataset from the
given data as discussed in Section 4.1. We obtained the
ordered feature set by training the BPFS on the training
data. We tested the quality of those features using the SVM
classifier. We used identical set up and data sets for I-
RELIEE. We used 2.0 as the kernel width for I-RELIEF as
recommended [2]. We repeated the experiments ten times on
each data set and present the average accuracy for different
features. Figure 4 plots the standard deviation of the accuracy
of our method over this 10 times of running. For all of them
except the Nature dataset, the standard deviation is less than
1 (i.e., 10% accuracy). So we can conclude that our method
is quite stable while we execute it over several subsets of data
created from a single dataset.

Figure 5 compares our algorithm to I-RELIEE. We
observe that for two data sets (BCR and JNCI), BPFS
outperforms I-RELIEF for all the features selected. BPFS
shows highest improvement (8%) over I-RELIEF for JNCI
dataset, at around 50 features. JNCI has higher fraction
of resolved genes (45% versus 25%). Thus, BPFS has a
higher chance to select more resolved genes. This implies
less dependability on the probabilistic model, the selection of
genes is more accurate. From this observation, we expect that
BPFS would produce better result when the missing links of
the pathway would be discovered. For Nature dataset, BPFS
produces better accuracy than I-RELIEF up to 130 features.
BPFS has similar accuracy with that of [-RELIEF for CCR and
Lancet data.

Our algorithm is based on linear kernel which is in
general more appropriate when the number of features is
much higher than number of samples. On the other hand I-
RELIEF employs a non-linear kernel [23]. It is possible that

Test accuracy

0 50 100 150

Number of features

—— Nature —— CCR
—— JNCI —6— Lancet
—&- BCR

FIGURE 4: The standard deviation of the accuracy of our method for
different number of features. The x-axis denotes different number
of features.

the distribution of Lancet data works better with the type
of kernel that I-RELIEF uses. We can potentially improve
the classification accuracy of BPFS by using a non-linear
kernel.

We observe that for all the datasets our method reaches
its highest accuracy at around 50-70 features. We conclude
that these 50-70 features consist the most important set of
genes that are associated with the breast cancer.

4.6. Cross Validation Experiments. We conduct several cross
validation experiments where we generate a set of features
on one data set and validate its quality by testing it on some
other data set. For this cross validation, we limit ourselves
to the same microarray platform that we use to generate
the feature set. For example, we test BCR dataset’s features
on Lancet as the microarray platforms on which they were
generated are same. The main reason for doing so is that
the set of genes used in two different microarrays can be
different. Even for the same gene they use different part of the
genomic sequence. Thus, inter-platform validation may not
be representative of the actual generalization. Table 2 displays
the result of our cross validation experiments.

We use two different version of our algorithm, one with
the pathway information and another without the pathway
information on observe the contribution of inclusion of
the pathway information into our algorithm. In Table 2 we
denote the version of our method with pathway by putting 1
at superscript of the result. Similarly we denote the version
without pathway by putting 2 at the superscript of the
datasets.

Also, to establish the relevance of our signature on a
standard benchmark, we compare our signatures with van’t
Veer’s 70-gene signature in the context of cross validation.
For example, in Table 2 BCR dataset is cross validated with
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TaBLE 2: Accuracy of our algorithm obtained from Cross Validation experiments on real pathway. Feature set obtained from one data set is
tested against another data set. We always chose target data from the same class of microarray in order to avert cross platform problems. The
cross validation results implies that the feature set generated by BPFS provides satisfactory performance in cross data sets without significant
loss of accuracy. We also compare our method with a trimmed version where we skip step 3.3. The complete version of the algorithm (with
pathway) is indicated by 1 at the superscript while the trimmed version (without pathway) is denoted by the superscript 2.

Dataset used Dataset used to

Number of Features

for testing extract the features 5 10 20 40 60 80 100 120 140
BCR! 0.65 0.65 0.72 0.72 0.73 0.75 0.74 0.74 0.73

CCR! 0.63 0.61 0.61 0.63 0.66 0.68 0.66 0.71 0.69

CCR? 0.64 0.62 0.65 0.63 0.64 0.65 0.66 0.65 0.68

BCR Lancet! 0.57 0.59 0.58 0.63 0.61 0.61 0.65 0.65 0.67
Lancet® 0.55 0.55 0.63 0.62 0.58 0.64 0.66 0.69 0.7

70-Gene-Sig" 0.62 0.59 0.59 0.66 0.67 0.68 0.70 0.73 0.71

CCR! 0.70 0.70 0.72 0.73 0.77 0.77 0.76 0.77 0.78

BCR! 0.60 0.63 0.67 0.65 0.65 0.66 0.68 0.66 0.66

BCR? 0.53 0.65 0.65 0.66 0.61 0.67 0.69 0.68 0.65

Lancet! 0.57 0.58 0.62 0.60 0.66 0.69 0.68 0.70 0.71

CCR Lancet’ 0.58 0.58 0.61 0.65 0.68 0.73 0.78 0.75 0.75
70-Gene-Sig' 0.53 0.52 0.51 0.55 0.65 0.66 0.66 0.66 0.64

Lancet! 0.58 0.58 0.61 0.61 0.62 0.62 0.62 0.64 0.63

BCR! 0.54 0.57 0.54 0.56 0.55 0.56 0.59 0.60 0.63

BCR? 0.55 0.59 0.57 0.55 0.56 0.55 0.54 0.57 0.53

Lancet CCR! 0.55 0.56 0.54 0.55 0.59 0.56 0.59 0.58 0.59
CCR? 0.61 0.62 0.64 0.56 0.61 0.60 0.60 0.60 0.59

70-Gene-Sig' 0.56 0.55 0.53 0.57 0.58 0.60 0.57 0.61 0.61

Nature! 0.68 0.65 0.65 0.65 0.72 0.70 0.72 0.70 0.66

Nature JNCT! 0.71 0.71 0.65 0.61 0.59 0.64 0.60 0.57 0.61
INCE 0.67 0.70 0.63 0.60 0.66 0.74 0.73 0.74 0.72

three feature sets obtained from Lancet, CCR and 70-gene
signature. We observe that on an average our signatures
perform better than the 70-gene one. For CCR data, both
Lancet and BCR features generate better accuracy. For Lancet
data the accuracies obtained using CCR and BCR features are
similar to that of 70-gene signature. For BCR data, up to 80
features of our signatures outperform the 70-gene signature.
Beyond that the 70-gene signature has a better accuracy. To
sum up, we get better accuracy while testing with the features
on a different platform compared to van’t Veer’s prognostic
signature.

Regarding the comparison of the two versions of our
algorithm (with and without the pathway information) it’s
difficult to reach a conclusive decision. For example, while we
extract the feature set from CCR dataset and cross validate
it BCR dataset the algorithm without pathway information
is doing better than the other for upto 20 features, but for
the larger number of features the algorithm with pathway
information provides a better accuracy.

When we compare the accuracy with features from a
different dataset to that of its own feature set, we observe
that on the average, the drop of the accuracies are not more

than 6%. For some extreme cases the drop can be higher.
Specifically when we cross validate with features extracted
from Lancet, the accuracy is lower.

4.7. Experiments on Fully Connected Pathways. In this section
we describe the experiments with idealistic fully connected
pathway. Here, the approach we took was to evaluate our
experiments on an idealistic pathway, where we map all
the genes including the unresolved genes into the KEGG
pathway. The unmapped genes become singleton pathway
with only a single member gene. For other pathways that
are already listed in the KEGG database we assume that all
the genes within a pathway are fully connected and there
is no connection between two pathway. If we consider each
pathway as the smallest indivisible module of interactions,
then all the genes within a pathway coexpress in a similar
fashion. We compare the accuracy of BPFS with this pathway
with that of I-RELIEF. In Figure 6 we see that for BCR, JNCI
and CCR environment, BPFS has a better accuracy. For BCR
there is an improvement of 5% around when BPFS uses
around 40 features. For JNCI, the improvement is over 10%
with around 70 features. For CCR there is a 3% improvement
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Figure 5: Comparison of test accuracy of our method (BPFS) to that of I-RELIEF on real pathway. In three datasets JNCI, BCR and Nature
our method performs better than I-RELIEE. In Lancet and BCR both the methods have similar accuracy.
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for 30 features. For Nature dataset, [-RELIEF has slightly
(around 1.5%) better accuracy up to 100 features. For Lancet
dataset I-RELIEF performs better than BPFS. So, we observe
that for three dataset BPFS has better accuracy, for one
dataset the accuracy is almost comparable.

4.8. Contribution of Pathway Information. In this section,
we describe the experiments that we conduct to understand
the contribution of pathway information in our algorithm
in terms of classification accuracy. In one version we use
the complete version of the algorithm as it is, in the other
version we select the features only based on the marginal
classification power and skip the next step.

However, we observe that the contribution of biological
network is not very decisive. For some dataset and some set of
features the complete version of the method generates better
accuracy, sometimes the trimmed version produces more
accurate result. For instance, in Figure 7, for BCR dataset
the complete method has upto 6% higher accuracy, where
for Nature dataset the method with pathway generates better
result for 50-100 number of features. The reason behind
this fluctuation of accuracy might be that reconstruction of
gene regulatory and signaling network is still in progress.
Among almost 22 000 Affymetrix transcripts, we could map
only 3300 genes that take part into at least one KEGG
pathway. Even for those genes, the pathway construction
is not complete. We hope that our algorithm can generate
better accuracy in the near future when we can have a more
comprehensive pathway structure.

5. Conclusions

In this paper we considered feature selection problem for
a classifier on cancer microarray data. Instead of using
the expression level of a gene as the sole feature selection
criteria we also considered its relation with other genes on
the biological pathway. Our objectives were to develop an
algorithm for finding a set of biologically relevant features
and to reduce the number of redundant genes. The key
contributions of the paper are the following.

(i) We proposed a new feature selection method that
leverages biological pathway information along with
classification capabilities to reduce the redundancy in
gene selection based on biological pathway.

(ii) We proposed a probabilistic solution to handle the
problem of unresolved genes that are currently not
mappable from microarray to biological pathway.

(iii) We presented a new framework of utilizing the
training subspace that improve the quality of feature
set.

Our algorithm improve quality of features by a biological
way by excluding the features that have total influence factor,
and includes genes that are apart in the biological network
and still have high marginal classification power. Thus, we
believe that instead of selecting a close set of genes as features
our method identify biologically important key features for
a significant number of pathways. We demonstrated the

Advances in Bioinformatics

biological significance of our feature set by tabulating the
relevant publications. We also established the quality of
our feature set by cross validating them on other data sets
and comparing them against van’t Veer’s 70-gene prognostic
signature. Our experiments showed that it is better than best
published available method I-RELIEE.
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