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Abstract

Background: Severe to profound sensorineural hearing loss (SNHL) requires cochlear implantation (CI) for auditory
rehabilitation. Etiologic diagnoses can contribute to candidacy selection and decision-making regarding the timing
of successful CI. However, few studies have been performed to address the etiologic spectrum of severe SNHL in
the population where there is no consanguineous marriage and the majority of SNHL cases are sporadic in small
sized families. The authors sought to comprehensively understand the etiologies of Korean cochlear implantees by
incorporating the targeted resequencing of 204 candidate deafness genes (TRS-204) and a phenotype-driven candidate
gene approach.

Methods: Ninety-three that consented to molecular genetic testing and underwent at least one molecular genetic test
were included. Patients with a characteristic Phenotypic marker were subject to Sanger sequencing to detect variants
in corresponding candidate genes. The rest of patients without any prominent phenotype were tested on GJB2. Next,
TRS-204 was applied in GJB2-negative cases without any phenotypic marker. In addition, the sibling recurrence-risk of
SNHL among families with non-diagnostic genotypes after TRS-204 was performed to gain insight of etiologies in
non-diagnostic cases.

Results: Overall, we could find causative variants in 51 (54.8%) of the 93 cochlear implantees. Thirty (32.3%) probands
could be diagnosed by direct Sanger sequencing of candidate genes selected by their phenotypes. GJB2 sequencing
added 10 subjects to the group with a diagnostic genotype. TRS-204 could detect a causative variant from additional
11 cases (11.8%). We could not detect any pathogenic deletion or duplication on 204 target genes. The sibling
recurrence-risk of SNHL among 42 genetically undiagnosed families with 0.03 (1/38) was significantly lower than among
genetically diagnosed recessive families with 0.19 (7/37).

Conclusion: Despite that the majority of severe or more degree of SNHL occurs sporadically in Koreans, at least 54.8%
of such cases that were willing to join the genetic study in the Korean population are monogenic Mendelian disorders
with convincing causative variants. This study also indicates that a substantial portion of unsolved cases after applying
our current protocol are predicted to have non-genetic or complex etiology rather than a Mendelian genetic disorder
involving new genes beyond the 204 target genes.
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Background
Given advances in cochlear implantation (CI) and the ex-
tension of indications for the procedure, more attention has
been focused on the etiology of deafness and its potential
impact on CI outcomes [1-3]. The etiology of sensorineural
deafness manifests extreme heterogeneity. A rigorous
clinical evaluation involving audiological tests, imaging,
and laboratory tests, including molecular genetic tests, is
needed to reach precise etiologic diagnoses [4,5]. Under-
standing genetic etiology can provide valuable clues of
prognosis (i.e., whether losses will worsen), optimal inter-
vention (e.g., hearing aids, CI, sign language), and the risk
of hearing loss recurrence in future children and other
family members [6-9]. For example, in hereditary deafness
with mutations of specific genes, such as, GJB2, SLC26A4,
OTOF, COCH, and MYH9, mitochondrial mutations, CI is
expected to provide successful results [6].
Genetic hearing loss has been estimated to be respon-

sible for more than half of congenital bilateral profound
deafness cases [10,11], however no definitive means of
confirming this estimate so far. Furthermore, because of
the extreme heterogeneities of causative genes, studies
of molecular etiology have focused mainly upon deafness
genes, such as, GJB2, SLC26A4, or OTOF, which make lar-
ger contributions to deafness in local populations. Several
phenotypic markers that previously turned out to be
highly prone to genetic alterations, such as, enlarged ves-
tibular aqueduct or incomplete partition type III inner ear
anomaly, have also facilitated the clarifications of genetic
etiologies. Nevertheless, these approaches are able to ex-
plain only a subset of CI candidates, which means that a
substantial proportion remain elusive in terms of etiology.
Recently, the advent of next generation sequencing

(NGS) technologies has markedly influenced our strategy
regarding the genetic diagnosis of deafness. In particular,
the targeted resequencing (TRS) of known deafness
genes (panel sequencing) based upon NGS allows a
greater number of deafness samples to be examined with
the advantages of significant cost and turnaround time
saving [12]. Novel genes causing non-syndromic hearing
loss [13-15] and syndromic hearing loss [16,17] have
been successfully discovered by this targeted NGS ap-
proach, and several groups, including ours, have reported
on the efficacy of this approach for the high-throughput
screening of mainly multiplex autosomal dominant fam-
ilies [18-20]. However, its usefulness for the mass-
screening of sporadic or potentially autosomal recessive
congenital severe to profound hearing loss (a main indica-
tion for CI) has not been extensively studied. Hearing loss
in 32% (69/216) of Japanese cochlear implantees was re-
cently explained genetically using a molecular genetic test
protocol incorporating their Invader assay and TRS [3]
but no clue was unearthed regarding the remaining un-
solved cases.
In the present study, we refined our phenotype-driven
candidate gene approach and combined it with a targeted
NGS approach employing the large deafness panel in a
hierarchical manner to determine the genetic etiologic
spectrum of cochlear implantees. The targeted NGS data
were also reviewed to uncover, if any, the presence of copy
number variation in the targeted genes. In addition, we
could propose a clue to uncover the etiology of each case
that still remained unanswered after the targeted NGS ap-
proach by calculation of the sibling recurrence risk of
hearing loss.

Methods
Study participants
We initially recruited 236 unrelated subjects who had
undergone cochlear implantation between May 2010 and
August 2012 at two tertiary referral hospitals (Seoul
National University Bundang Hospital and Seoul National
University Hospital). The following exclusion criteria were
applied; a history of non-genetic risk factors for hearing
loss, such as, stay in a neonatal intensive care unit stay
of >48 hours, prematurity, hypoxia, hyperbilirubinemia, an
in utero infection (e.g., symptomatic and confirmed asymp-
tomatic cytomegalovirus (CMV), herpes, rubella, toxoplas-
mosis), a postnatal infection (e.g., meningitis), exposure to
ototoxic medications, head trauma, and recurrent otitis
media, they were excluded. Since a substantial portion of
our CI candidates were referred from hospitals all around
in this country, symptomatic CMV patients with hearing
loss have already been diagnosed before visit to our clinics.
However, asymptomatic CMV cases would have been
missed, since we were not able to access blood or saliva
samples of the patients taken within 3–4 weeks after birth.
Asymptomatic CMV infection was diagnosed only in a
subset of cases with preserved dried blood spot or dried
umbilical cords taken at birth. Under these criteria, 26
of 236 subjects were excluded. In addition, 107 subjects
refused to join the molecular genetic study due to
reluctance to disclose that hearing loss is genetic or to
make additional visit to our genetic hearing loss clinics
especially when patients live far away from our hospital.
Resultantly, among the 236 subjects, 93 subjects who
consented to the molecular genetic test and went
through at least one molecular genetic test were finally
included. There was no difference in the proportion of
multiplex hearing loss families between the recruited
93 families and the other 107 families. The majority of
families were singleton cases in both groups.

Ethics statement
This study was approved by the Institutional Review
Boards (IRBs) of Seoul National University Bundang
Hospital (IRB-B-1007-105-402) and Seoul National
University Hospital (IRBY-H-0905-041-281). Written
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informed consent was obtained from all participants. For
children, written informed consent was provided by par-
ents or guardians.

DNA preparation and phenotype-driven candidate gene
approach
Genomic DNA was extracted from peripheral blood as
previously described [21]. We previously established a
new diagnostic pipeline combining PCR-based Sanger
sequencing of phenotype driven candidate genes and
targeted resequencing for testing familial hearing loss
cases [20]. The approach was again implemented to make
a molecular genetic diagnosis on cochlear implantees in
this study (Figure 1). Subjects with either a characteristic
radiologic marker or with a characteristic audiologic
marker such as auditory neuropathy spectrum disorder or
ski slope type high frequency hearing loss were directly
subject to further Sanger sequencing of corresponding
candidate genes (Figure 2) [22-31]. In cases with a long
electrocardiographic QT interval (EKG), KCNQ1/KCNE1
sequencing was performed. When there was no noticeable
phenotypic marker, the GJB2 gene was sequenced, as pre-
viously described [21]. In case of only one detectable mu-
tant allele of GJB2, we performed breakpoint PCR to
detect the reported large genomic deletions in the DFNB1
locus [32,33].

Targeted resequencing of 204 deafness genes
Next, we applied targeted resequencing of known 204
deafness-related genes (TRS-204) for those without
a potential pathogenic variant in candidate genes or
the GJB2 mutation. For targeted deep sequencing,
Figure 1 Flow diagram of our hierarchical molecular genetic test in c
genetic testing in patients with severe to profound hearing loss.
customized baits were designed to capture all exons of
204 genes known to be associated with hearing loss or
to be expressed in the inner ear in humans and/or mice
(Additional file 1: Table S1). Genomic DNA was sequenced
using Genome Analyzer II. Reads were aligned to the hu-
man genome reference sequence (hg19) using BWA-v0.7.5
with the ‘MEM’ algorithm. SAMTOOLS v0.1.18, GATK
v2.4-7 and Picard v1.93 were used for processing SAM/
BAM files, local realignment, and duplicate marking. Base
recalibration was performed using GATK (known SNPs
and indels from dbSNP137, Mills and 1000G gold standard
indels b37 sites, and 1000G phase1 indels b37 sites). To
identify mutations from the targeted genes, variants were
called by Unified Genotyper in GATK and were also re-
calibrated by GATK based on dbSNP137, Mills indels,
HapMap and Omni. The Perl script offered by ANNOVAR
was used to annotate the variants. We firstly selected
exonic and splicing variants including non-synonymous
variants and small indels. Variants with allele frequency
over 1% were discarded based on NHLBI-ESP 6500, 1000
Genome Project, and our in-house database consisting of
exomes of 81 Korean individuals. We then included the
variants that are not reported in dbSNP137. Low quality of
reads (<20) and genotyping (<30) were then ruled out. We
have finally prioritized the variants based on the inherit-
ance pattern of deafness. Finally, we excluded the variants
that we can detect from our 276 Korean normal hearing
control chromosomes. A trans configuration of two
detected variants was confirmed by checking parental sam-
ples in sporadic or autosomal recessive cases. Novel splice-
site variants were considered pathogenic when they were
not detected in the normal hearing control chromosomes
ochlear implantees. This flow diagram represents a protocol for



Figure 2 Characteristic radiologic and audiologic markers.
A.(a) In cases with enlarged vestibular aqueducts (arrow head) with
or without an incomplete partition defect (arrow) SLC26A4 (with or
without FOXI1 and KCNJ10) was tested. (b) In cases with bulbous
dilatation at the distal end of the IAC and basal turn of the cochlea
incompletely separated from the IAC (arrow) were tested for
POU3F4. (c) Patients suspected of CHARGE syndrome were tested for
CHD7. The most common associated inner ear anomaly is
semicircular canal dysplasia (arrow). (d) Sequencing of the FGF3
gene was performed in patients with complete labyrinthine aplasia
or cochlear hypoplasia (arrow). B.(a) Patients suspected of auditory
neuropathy spectrum disorder were tested for the OTOF gene. The
‘otoacoustic emissions’ test is typically normal, whereas ‘auditory
brainstem response’ is typically abnormal. No response was detected
to 90 dB of click stimulus in the auditory brainstem response (upper
panel). Signal-to-noise ratios of greater than 6 dB was shown in a
specific frequency band in distortion product otoacoustic emissions
(lower panel). (b) Audiograms showing ski slope type high frequency
hearing loss with low frequency residual hearing initially and gradual
deterioration with age. C. In cases of bilateral sensorineural hearing
loss and a long EKG QT interval, KCNQ1/KCNE1 was sequenced.
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and at the same time when they were predicted to cause
significant changes that create or eliminate a splice-
donor or splice acceptor site by ESEfinder (http://rulai.
cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home)
and BDGP (http://www.fruitfly.org/seq_tools/splice.html).
We defined ‘highly probable cases’ as the ones with bi-

allelic probable or possible pathogenic mutations in auto-
somal recessive or sporadic cases, or as cases with one
probable or possible pathogenic mutation in autosomal
dominant cases. We referred the autosomal recessive or
sporadic cases with two mutations with one probably or
possibly pathogenic mutation and an unknown variant in
trans as ‘possibly explained cases’. Our detection rate was
calculated to include both completely explained and pos-
sibly explained cases. Cases with only one definitely patho-
genic mutation after TRS-204 was not considered as
explained.
We have also performed CONTRA (COpy Number

Targeted Resequencing Analysis) v2.0.4 and cn.MOPS
(Copy Number estimation by a Mixture Of PoissonS)
v1.8.0 using their default options, in order to detect pos-
sible copy number variation, such as, large deletions or
duplications in targeted genes.

Calculation of the sibling recurrence-risk for hearing loss
To gain insight of etiology and to estimate the risk of
hearing loss recurrence, especially for families with an un-
known etiology after TRS-204 (undiagnosed group), we
calculated the sibling recurrence-risk for hearing loss. We
used probands with a definitive autosomal recessive geno-
type as a control group (the control group). For this calcu-
lation, we additionally included one family (SNUH23), in
which molecular genetic diagnosis was made during this
study by only whole exome sequencing (not by TRS-204)
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due to family request. The sibling recurrence-risk was cal-
culated using the segregation ratio of hearing loss among
siblings of probands. We used Weinberg’s proband
method to correct for possible ascertainment bias by ex-
cluding probands from the calculation as previously de-
scribed [23,34]. In detail, an unbiased estimate of the
segregation ratio (P) is calculated from the remaining
members of the sibship:

P ¼
X

r−1ð Þ
X

s−1ð Þ

where r and s indicate the number of affected offspring
and the total number of offspring in each family, re-
spectively. Monozygotic twin pairs were treated as a
single observation in the analysis as described above.

Results
Detection rate of phenotype driven candidate gene
approach
At least one molecular genetic test was performed on each
of the 93 probands who consented to genetic testing. Fifty
four of the probands were male (58.0%) and 39 (41.9%)
were female and overall mean age for CI was 8.9 years
(10 months −72 years). Of the 93 probands, 42 who mani-
fested either a characteristic inner ear abnormality or any
remarkable auditory phenotype underwent direct Sanger
sequencing of corresponding candidate genes. Molecular
genetic diagnosis was successfully made in 30 (71.4%) of
42 subjects using this approach (Table 1 and Additional
file 1: Table S2). All probands who underwent direct se-
quencing of SLC26A4 (n = 13) and POU3F4 (n = 5) for
their enlarged vestibular aqueduct and incomplete parti-
tion type III, respectively turned out to carry pathogenic
variants in the corresponding genes. Those who went
through direct sequencing of CHD7, OTOF, and KCNQ1
Table 1 Phenotype-driven candidate gene approach and its d
implantees

Gene Phenotype

Radiologic marker

SLC26A4 AR, Enlarged vestibular aqueducts with

CHD7 AD, Charge syndrome (Mostly de novo)

POU3F4 XR, Incomplete partition type III

FGF3 AR, Complete labyrinthine aplasia or coc

Audiologic marker

OTOF, Pejvakin AR, Auditory neuropathy spectrum diso

TMPRSS3 AR, Ski slope type high frequency hearin

Other characteristic marker

KCNQ1 & KCNE1 AR, Long QT syndrome

Total

AD, autosomal dominant; AR, autosomal recessive; XR, X-linked recessive.
showed a detection rate of 77.7%, 20% and 100%, respect-
ively. Therefore, the most rewarding phenotypic markers
leading to molecular diagnosis were enlarged vestibular
aqueduct (with/without incomplete partition type II) and
incomplete partition type III, and long Q-T syndrome
followed by lateral semicircular canal dysplasia as a part
of the constellation of anomalies suggesting a CHARGE
syndrome, and ski slope type high frequency hearing
loss (Table 1). When we include only these five highly
penetrant phenotypic markers for this approach, the
detection rate of the causative mutation would rise up
to 83.3% (30/36).
GJB2 sequencing was performed as a screening test for

51 probands without any noticeable phenotypic marker.
Ten subjects turned out to carry at least one mutant allele
of GJB2, the prevalence of DFNB1 being 10.7% among the
93 cochlear implantees. Among these ten subjects, nine
subjects carried two mutant alleles and one subject carried
one mutant allele of p.R143W (Table 2).
Therefore, GJB2 screening and the candidate gene ap-

proach based upon phenotype solved 43.0% (40/93) of
the cases in terms of genetic etiology, leaving 53 pro-
bands (56.3%) unanswered in this population. These 53
probands included 12 in whom the candidate gene ap-
proach failed and 41 GJB2 (−) probands without any
phenotypic marker (Figure 1). These unsolved probands
were subjected to the next step of our protocol, that is,
targeted exome sequencing of known deafness related
genes.

Detection rate of TRS-204
Due to their reluctance to TRS-204, eight of 53 pro-
bands dropped out after their initial screening where
they did not get any confirmatory answer. Thus, 45 pro-
bands were available for the final analysis of targeted
resequencing results. The detection rate of a causative
etection rate of a causative mutation in cochlear

Detection rate (n/N (%))

or without Mondini deformity 13/13 (100%)

7/9 (77.7%)

5/5 (100%)

hlear hypoplasia 0/2 (0%)

rder 1/5 (20%)

g loss 3/7 (42.8%)

1/1(100%)

30/42 (71.4%)



Table 2 Details of DFNB1 patients in our cohort with cochlear implantation

Patient Gene Inheritance Mutation type Gene
bank No.

Chr Exon Nucleotide Protein dbSNP137/
reference

SHJ2 GJB2 Compound
hetero

frameshift deletion
frameshift deletion

NM_004004
NM_004004

13
13

2
2

c.176_191del
c.235delC

p.Gly59Alafs×18
p.Leu79Cysfs×3

[35]
rs80338943

SHJ12 GJB2 Compound
hetero

nonsynonymous SNV
nonsynonymous SNV

NM_004004
NM_004004

13
13

2
2

c.109G > A
c.C427T

p.V37I p.R143W rs72474224
rs80338948

SHJ18 GJB2 Homozygote nonsynonymous SNV NM_004004 13 2 c.C427T p.R143W rs80338948

SHJ31 GJB2 Compound
hetero

frameshift deletion NM_004004 13 2 c.176_191del p.Gly59Alafs×18 [35]

frameshift deletion NM_004004 13 2 c.235delC p.Leu79Cysfs×3 rs80338943

SHJ36 GJB2 Homozygote frameshift deletion NM_004004 13 2 c.35delG p.Gly12Valfs×2 rs80338939

SHJ68 GJB2 Homozygote frameshift deletion NM_004004 13 2 c.235delC p.Leu79Cysfs×3 rs80338943

SNUH60-136 GJB2 Single
heterozygote

nonsynonymous SNV NM_004004 13 2 c.C427T p.R143W rs80338948

SNUH70-160 GJB2 Compound
hetero

frameshift deletion
nonsynonymous SNV

NM_004004
NM_004004

13
13

2
2

c.235delC
c.C427T

p.Leu79Cysfs×3
p.R143W

rs80338943
rs80338948

SNUH79-180 GJB2 Homozygote frameshift deletion NM_004004 13 2 c.235delC p.Leu79Cysfs×3 rs80338943

SNUBH91-166 GJB2 Compound
hetero

frameshift deletion
nonsynonymous SNV

NM_004004
NM_004004

13
13

2
2

c.235delC
c.C427T

p.Leu79Cysfs×3
p.R143W

rs80338943
rs80338948
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mutation by TRS-204 for GJB2- negative cases without
any characteristic phenotypic marker was 24.4% (11/ 45
subjects). Of these 11 with a positive genetic diagnosis,
SB47-91 and SH3-7 were also subjected to TRS-80 and
whole exome sequencing (WES) in addition to TRS-204,
respectively. The TRS-80 and WES results of two (SB47-
91 and SH3-7) were recently published separately
[20,35,36], and the TRS-204 results of the eleven are
presented (Table 3 and Figure 3). The most frequent
causative gene revealed by this technology was CDH23
(n = 3), followed by MYO15A (n = 2), MYO7A (n = 2)
and other four deafness genes (PCDH15 (n = 1), USH2A
(n = 1), MYO3A (n = 1) and ACTG1 (n = 1)) (Table 3). Of
these the 11 cases, 9 were ‘highly probable cases’ carry-
ing mutations in one of the 204 deafness genes and two
cases were classified as possibly explained (Table 3). A
trans configuration of the variants in these two possibly
explained cases were confirmed by checking parental
samples, and the four missense variants in these two
cases were not detected in 276 normal hearing control
chromosomes. Rigorous ophthalmological examinations
have not revealed any abnormality from SHJ4, SHJ23,
SNUH59-133, SH62-147, SNUH72-164, and SNUH10-
28, making these cases carrying mutations of USH1genes
to be non-syndromic. Lack of ophthalmologic abnormal
finding from SHJ37 carrying USH2A variants does not
rule out a possibility of USH2 since retinitis pigmentosa
can develop later. There were also three probands (SHJ3,
SHJ16, and SNUH53-118) with only one definitely patho-
genic mutant allele in one of three recessive deafness genes,
OTOA, MYO15A, and MYO7A, respectively (Table 3).
However, we were not able to detect any potentially patho-
genic allele in the coding region in a trans configuration
with the mutation in these three probands, making these
cases unanswered in terms of molecular genetic etiology.
To exclude a possibility of low coverage of unsolved

cases by TRS-204, we compared the coverage of solved
cases after TRS-204 with that of unsolved cases. Average
mean depths were 226.39 and 197.96 for solved and un-
solved cases, respectively (Additional file 1: Table S3 and
Figure 4). A two tailed Student’s t-test assuming unequal
variances was used to determine whether there existed a
significant difference. The critical value of 2.09 was
greater than the absolute value of the test statistic (0.94),
which means there was no statistically significant differ-
ence in the coverage between the solved and unsolved
groups by TRS-204.
Regarding copy number variation (CNV), we have

not detected any deletion or duplication on the TRS-
204 genes targeted, based on the results from CON-
TRA and cn.MOPS. We, in particular, focused upon
the regions covering OTOA, MYO15A, and MYO7A
from three probands with only one detectable mutant
allele in one of these recessive genes to exclude any
CNV possibly in a trans configuration with the mutant
alleles. However, we have confirmed that there was no
detectable CNV.
Overall Efficacy of our hierarchical molecular genetic test
protocol for cochlear implantees
Overall, monogenic Mendelian etiology was documented
in 51 (54.8%) of the 93 Korean cochlear implantees who
decided to participate in this study (Figure 1). Mutations
in SLC26A4 and GJB2 accounted for 24.7% (23/93) of
the 93 cochlear implantees, and the incorporation of



Table 3 Details of final candidates from eleven deaf subjects molecular genetically diagnosed and three subjects with only one mutant allele of recessive
genes after targeted exome sequencing of 204 deafness genes

A) Highly probable cases (n=9)

Patient Gene Inheritance DP GQ Type Chr Genbank No. Exon Nucleotide Protein GERP++ PolyPhen2 Reference Control

SHJ4 CDH23 Homo (AR) 218 99 nonsynonymous
SNV

Chr10 NM_022124 Exon8 c.C719T* p.P240L* 5.19 Probably
damaging

rs1219083
(flagged)*

SHJ23 MYO7A Compound
hetero (AR)

82 99 Stopgain SNV Chr11 NM_000260 Exon 3 c.C52T p.Q18X 3.91 NA This study

178 99 Stopgain SNV Chr11 NM_000260 Exon 18 c.C2115A p.C705X 3.03 NA This study

SNUH59-
133 (SHJ33)

CDH23 Compound
hetero (AR)

238 99 nonsynonymous
SNV

Chr10 NM_022124 Exon 8 c.C719T* p.P240L* 5.19 Probably
damaging

rs1219083
(flagged)§

29 99 nonsynonymous
SNV

Chr10 NM_022124 Exon 37 c.C4853A p.T1618K 5.9 Probably
damaging

This study 0/276

SH62-147
(SHJ41)

CDH23 Compound
hetero (AR)

178 99 nonsynonymous
SNV

Chr10 NM_022124 exon42 c.G5747A p.R1916H 4.28 Probably
damaging

This study 0/276

237 99 nonsynonymous
SNV

Chr10 NM_022124 exon46 c.G6604A§ p.D2202N§ 5.06 Probably
damaging

rs121908349
(flagged)

SNUH72-
164 (SHJ52)

PCDH15 Compound
hetero (AR)

238 99 nonsynonymous
SNV

Chr10 NM_001142769 exon36 c.5035G > C p.V1679L 3.48 Damaging*** This study 0/276

250 99 Frameshift
deletion

Chr10 NM_001142763 exon23 c.2927delA p.Gln976Argfs*18 N/A NA This study

SNUH91-
202 (SHJ70)

MYO15A Compound
hetero (AR)

76 99 Stopgain SNV Chr17 NM_016239 exon2 c.G535T p.E179X 5.48 NA This study

147 99 nonsynonymous
SNV

Chr17 NM_016239 exon10 c.G4252A p.G1418R 5.31 Probably
damaging

This study 0/276

SNUBH71-
123

MYO15A Compound
hetero (AR)

101 99 Splice donor
variant

Chr17 NM_016239 exon10 c.4320 + 1G > A 5.84 NA This study

70 99 nonsynonymous
SNV

Chr17 NM_016239 exon46 c.T8396A p.L2799H 5.58 Probably
damaging

This study 0/276

SNUBH47-
91**

MYO3A Compound
hetero (AR)

100 99 nonsynonymous Chr10 NM_017433 exon7 c.C580A p.P194T 4.30 Probably
damaging

[20]

77 99 Frameshift
insetion

Chr10 NM_017433 exon16 c.1582_1583 insT p.Y530Lfs*9 N/A N/A [20]

SNUH3-7** ACTG1 Singe hetero
(AD)

30 99 nonsynonymous Chr17 NM_001199954 exon5 c.T914C p.M305T 4.05 Probably
damaging

[36]
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Table 3 Details of final candidates from eleven deaf subjects molecular genetically diagnosed and three subjects with only one mutant allele of recessive
genes after targeted exome sequencing of 204 deafness genes (Continued)

B) Possibly explained cases (n=2)

SNUH10-28 MYO7A
Compound
hetero (AR)

7 95
nonsynonymous
SNV

Chr11 NM_000260 exon23 c.C2724G p.D908E -8.53 Benign This study 0/276

10 85
nonsynonymous
SNV

Chr11 NM_000260 exon29 c.C3701G p.T1234S 5.38
Possibly
damaging

This study 0/276

SHJ37 USH2A
Compound
hetero (AR)

238 99
nonsynonymous
SNV

Chr1 NM_206933 exon64 c.T14017C p.Y4673H 5.09
Probably
damaging

This study 0/276

237 99
nonsynonymous
SNV

Chr1 NM_206933 exon2 c.C419A p.P140H 2.26 Benign This study 0/276

C) Cases with only one probably pathogenic recessive allele (n=3)

SHJ3 OTOA AR 250 99 Frameshift Chr16
NM_170664,
NM_001161683,
NM_144672

exon7,
exon12,
exon16

c.792delC,
c.1527delC,
c.1764delC

p.Gln589Argfs*55 NA NA This study

SHJ16 MYO15A AR 72 99 Splice site Chr17 NM_016239 exon4 c.3756+1G>A NA 4.19 NA [37]

SNUH53-118 MYO7A AR 185 99 Stopgain Chr11 NM_000260 exon19 c.C2254T p.Q752X 5.03 NA This study

*rs1219083(flagged);§rs121908349(flagged).
**SNUBH47-91 and SNUH3-7 was also subjected to TRS-80 and WES in addition to TRS-204, respectively, and the result of TRS-80 and WES was recently published separately [20,36].
***DAMAGING by SIFT, PolyPhen2 result: Unknown WARNING: BLAST search results for PCDH15 truncated due to total number of HSPs >2000.
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Figure 3 Audiogram of probands who were genetically diagnosed by TRS-204.
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Figure 4 Boxplot for average mean depth. Black dot represents
average mean depth for solved and unsolved cases.
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TRS-204 into our protocol increased the detection rate
by 11.8% (11/93) in this population.

The sibling recurrence-risk of hearing loss among the
siblings of probands
Total 42 families including 34 families with an unknown
etiology after TRS-204 were designated the undiagnosed
group. Of the 52 families (including one family (SNUH18)
with a genetic diagnosis obtained by direct application of
whole exome sequencing during this study period) with a
definitive genetic diagnosis, 8 families that carried an auto-
somal dominant mutation from CHD7 or ACTG1 were
excluded, leaving a total number of 44 control families
only with recessive inheritance. Therefore, a total of 38
siblings from 42 undiagnosed families and 37 siblings from
the 44 control families were reevaluated. Pedigrees of
multiplex families were provided (Figure 5).
The sibling recurrent-risk of deafness among siblings

of the undiagnosed group (0.03 (1/38)) was significantly
lower than that (0.19 (7/37)) of the control group, which
showed an autosomal recessive inheritance pattern (p =
0.028, Fisher’s exact test (two tailed)) (Table 4). The risk
of hearing loss recurrence in the control group with a
definitive genetic diagnosis ranged from 0.09 to 0.34 for
Figure 5 Pedigrees of multiplex families that were employed for calc
were not described here. A black arrow indicates the affected sibling that c
a 95% confidence interval. This range was compatible
with autosomal recessive inheritance because 0.25 fell
within the mid range of this interval. In contrast, the
95% confidence interval of the risk of hearing loss recur-
rence among siblings of the undiagnosed group ranged
from 0 to 0.13. This excluded 0.25, the ratio indicative of
monogenic autosomal recessive inheritance or digenic
inheritance, thereby making it unlikely that hearing loss
in the undiagnosed group exhibited such inheritance
patterns (Table 4).

Discussion
More than 400 genetic syndromes are associated with
hearing loss. More than 140 genetic loci associated with
nonsyndromic hearing loss have been mapped and more
than 60 genes identified (http://hereditaryhearingloss.org/).
An etiologic diagnosis of deafness can be useful for deter-
mining prognosis (i.e., whether the loss will worsen), opti-
mal intervention (e.g., hearing aids, CI, sign language), and
recurrence risks of hearing loss for future children and
other family members [9]. In particular, from the prognos-
tic perspective, we can expect successful results of CI in
hereditary deafness with mutation of specific genes, such
as, GJB2, SLC26A4, mitochondrial mutations, OTOF, Usher
syndrome type I, DFNA9 (COCH), and DFNA17 (MYH9)
[6]. Therefore, genetic testing has become a crucial compo-
nent of the diagnostic work-up for cochlear implant candi-
dates from etiologic and prognostic perspectives. The main
deafness genes and their mutation spectra depend upon
ethnicity [38]. However, few comprehensive studies have
been conducted using molecular genetic testing and epi-
demiology for a larger cohort of cochlear implantees who
mainly but comprised sporadic deafness cases, not consan-
guineous multiplex cases. In this regard, this study merits
special attention. By incorporating the largest deafness
panel in the literature for sporadic cochlear implantees to
our protocol, we clearly documented the molecular eti-
ology and the genotypes of about half of such cases, be-
yond just estimating the proportion of genetic hearing loss.
Brownstein et al. (2011) used a panel targeting 246
ulation of the sibling recurrence risk in this study. Simplex families
ontributes to the recurrence risk.

http://hereditaryhearingloss.org/


Table 4 Recurrence risk (segregation ratio) of hearing
loss among siblings

Molecular genetic status Segregation ratio 95% CI*

Undiagnosed (N = 42) 1/38 (0.03)** 0-0.12

Control (N =44) 7/37 (0.19)** 0.09-0.34

CI, confidence interval, **p = 0.028 by Fisher’s exact test (two tailed).
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deafness genes, however, their cohort mainly comprised
multiplex families [19].
In the NGS era, the candidate gene approach retains

its value as a first line test for the molecular genetic
diagnosis of deafness in Korean population [20]. This ap-
proach is easily applied and cost effective when there is
sufficient knowledge about the expressed phenotype and
biological functional impact of the genetic alteration
present. In this study, we expanded the use of this ap-
proach to include seven phenotypic markers. Based
upon the result obtained, we refined the candidate gene
approach to focus more upon phenotypes because they
provide better clues regarding effective molecular gen-
etic diagnosis. In our Korean population, five phenotypic
markers were especially rewarding, and the detection
rate of this approach driven by these five phenotypic
markers reached 83.3%. Furthermore, enlarged vestibular
aqueduct, incomplete partition type III, lateral canal dys-
plasia as a manifestation of CHARGE syndrome was a
very highly penetrant feature of mutations in SLC26A4,
POU3F4, and CHD7, respectively in this population.
TMPRSS3 also merits attention due to its relatively high
prevalence (3 cases) when focusing upon the CI implan-
tees initially manifesting post lingual ski slope type hear-
ing loss. Note that mutations of this gene were rarely
detected in congenital profound deafness in this popula-
tion [18,39]. Finally, sequencing of OTOF in the auditory
neuropathy spectrum disorder (ANSD) led to molecular
genetic diagnosis only in one of five CI cases with
ANSD, calling the usefulness of this approach for ANSD
into question at least for CI candidates/implantees in
this population.
The prevalences of the mutation in implanted subjects

seem to be dependent on ethnicities. For DFNB1, which
has been considered the most important known cause of
non-syndromic autosomal recessive deafness in Caucasians,
a high occurrence of GJB2 mutations among cochlear
implantees was reported in Romania, Portugal, and Slovakia
[1,40,41], in which it reach over one-third of all investigated
probands. On the other hand, much lower (<15 %) contri-
butions of DFNB1 mutations have been reported in Turkey
[42], USA (Baltimore) [43] and Korea [44]. The prevalence
of DFNB1, 10.7%, among total 93 cochlear implantees in
the present study concurs with that found in a previous Ko-
rean study [44]. In our current study, the detection rate of
SLC26A4 mutations was noted to be 14% which is higher
than that of GJB2. This figure is very similar with those re-
ported in previous Korean studies, again supporting a sig-
nificant contribution of alteration of SLC26A4 to hearing
loss in this population [44,45].
Regarding the molecular genetic diagnosis of GJB2 nega-

tive cases without any characteristic phenotypic marker,
TRS-204 can provide a convincing answer in one fourth
of such cases. Our TRS-204 data revealed that CDH23,
MYO15A, and MYO7A constituted the majority of causa-
tive genes, whereas other genes, that is, PCDH15, USH2A,
MYO3A, and ACTG1 were each detected in only one pa-
tient. Furthermore, this pattern is similar to that reported
in Japanese populations [46]. Checking the audiograms of
the probands who were genetically diagnosed by TRS-204,
there was no remarkable finding in terms of the degree
and configuration of residual hearing that we can possibly
relate to the mutation of a certain gene (Figure 3). The
usefulness of TRS-204 can be further emphasized in this
regard in Koreans. Correspondingly, about 54.8% of
Korean cochlear implantees who willingly participated in
the molecular genetic test were clearly explained by the
monogenic Mendelian disorder definitely involving one of
two hundred deafness-related genes, when our hierarch-
ical approach combining phenotype-driven candidate gene
sequencing and TRS-204 was applied. This proportion is
just slightly higher than a previous estimate (51%) for a
single gene disorder in profound childhood deafness [47].
This similarity is remarkable considering the variations in
marriage rates and patterns of deafness and sibship sizes
between populations. In previous studies, families with
consanguineous marriages and large sibships were prefer-
entially recruited [47]. Although the majority of our deaf
probands were singleton (sporadic) cases, monogenic
Mendelian disorder was documented in more than half of
our cases. Therefore, when singleton cases of profound
hearing loss are encountered in the Korean population, it
can be presumed that deafness is due to a monogenic
Mendelian genetic disorder at least in half of cases.
Discovery of a specific genetic etiology in a significant

portion of presumed autosomal recessive or even sporadic
hearing loss cases by targeted sequencing was recently
reported by others [3,48]. Shearer et al. (2013) identified
specific genetic etiologies in 11 of 32 sporadic hearing loss
cases (34%) and 22 of 49 presumed recessive hearing loss
cases (56%) by deep sequencing of 60 deafness genes, but
this cohort included variable degrees of hearing loss.
Additionally, in a Japanese study, 37.5% (81/216) of deaf-
ness cases were molecular genetically diagnosed by the
targeted exon resequencing of 112 deafness genes [3], but
the cohort also included variable degrees of hearing loss,
which could account for differences between their detec-
tion rate and that observed in the present study. It is also
possible that there was greater recruitment bias toward a
higher prevalence of CHARGE syndrome (n = 7) and
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incomplete partition type III (n = 5) with highly penetrant
marker of CHD7 and POU3F4mutations, in our CI cohort
than in the Japanese cohort, as many deaf subjects with
such severe inner anomaly in Korea tend to visit our ter-
tiary referral center.
In our study, only 93 subjects participated in the mo-

lecular genetic test among initially eligible 236 patients.
The low participation rate can be attributed to the policy
of reimbursement by some private insurance companies
against genetically documented cases in Korea and also to
the Korean culture where there is reluctance of parents to
disclose that hearing loss of their children is genetic.
Additionally, those who live in a far located province were
also reluctant to make an extra visit to participate in the
test. As for the large drop out, we do not think that there
was a significant recruitment bias either toward or against
genetic cases for the following reasons. Firstly, there was
no difference in the proportion of multiplex hearing loss
families between the participants and non-participants.
The majority of families were singleton cases for both
groups. Secondly, the frequency of mutations in GJB2 and
SLC26A4 in this study did not differ from what was previ-
ously reported in the Korean population, suggesting the
drop out in this study was not significantly biased.
We also sought to determine the etiologies of subjects

without a candidate causative variant detected by TRS-
204, and to determine whether these cases were non-
genetic or non-Mendelian. It is also possible causative
genes resided beyond the 204 target deafness genes or that
true causative genes were not sufficiently covered by TRS-
204. In addition, CNVs might play a role in these cases.
Initially, we compared the depth of coverage of target
genes between cases with and without candidate variants,
but found similar target gene coverages in these two
groups (Figure 4). Therefore, we were able to minimize
the possibility that poor coverage of target genes was re-
sponsible for a failure to detect candidate variants. In
addition, we checked our TRS-204 data to see if there was
any deletion or duplication of targeted genes. However, we
did not detect any convincing CNV that could account for
deafness in our cohort. Finally, we calculated the recurrent
risk of deafness among siblings from families without any
candidate variant after TRS-204. The most striking obser-
vation in this study was a significantly lower risk of hear-
ing loss recurrence (0.03 (1/38)) in the undiagnosed group
than in the control group segregating autosomal recessive
deafness. The 95% confidence interval of the recurrence
rate of hearing loss from our undiagnosed group did not
include 0.25, the ratio indicative of autosomal recessive in-
heritance. Our findings indicate monogenic Mendelian
disorder caused by mutations in genes beyond the 204 tar-
get genes did not account for the etiology of a substantial
portion of the undiagnosed group after TRS-204 in the
Korean population.
In this regard, our findings also call the usefulness
of whole exome sequencing into question in this un-
diagnosed group after TRS-204 testing in Koreans. Re-
cently, whole exome sequencing has substantially
aided the detection of a series of new causative deaf-
ness genes [49-55]. However, it was more successful in
consanguineous families with multiple affected mem-
bers. Moreover, most of the families included had a
significant linkage interval, which indicated a Mendel-
ian monogenic disorder and thereby enabled whole
exome sequencing of genes only within limited intervals.
In contrast, our cochlear implantees not diagnosed by
TRS-204 in the Korean population were mostly singleton
cases without any linkage intervals. Undiagnosed oligo-
genic/multigenic disorder, complex trait, or a non-genetic
etiology, such as, non-symptomatic CMV infection [56]
might have contributed to the pathogeneses of our un-
diagnosed cases.
Conclusion
When our hierarchical genetic test protocol was applied,
Mendelian monogenic disorder can explain about half of
CI implantees who willingly participated in genetic tests
in the Korean population where the majority of cases
were sporadic. In addition, a substantial proportion of
undiagnosed sporadic cases can be viewed to have other
than a monogenic autosomal recessive/digenic etiology.
This finding should be considered during further genetic
test protocol planning for the undiagnosed cases and
when counseling these families.
Additional file
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statistics of targeted exome sequencing for 45 samples [57-60].
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