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Immune responses of cytotoxic T lymphocytes (CTLs) are implicated in viral eradication and the pathogenesis of hepatitis C.
Weak CTL response against hepatitis C virus (HCV) may lead to a persistent infection. HCV infection impairs the function of
HCV-specific CTLs; HCV proteins are thought to actively suppress host immune responses, including CTLs. Induction of a strong
HCV-specific CTL response in HCV-infected patients can facilitate complete HCV clearance. Thus, the development of a vaccine
that can induce potent CTL response against HCV is strongly expected. We investigated HCV-specific CTL responses by enzyme-
linked immuno-spot assay and/or synthetic peptides and identified over 40 novel CTL epitopes in the HCV protein. Our findings
may contribute to the development of the HCV vaccine. In this paper, we describe the CTL responses in HCV infection and the
attempts at vaccine development based on recent scientific articles.

1. Introduction

Hepatitis C virus (HCV) was first identified in 1989 [1].
The HCV is a member of the flavivirus family and is a
type of positive-strand RNA virus. The discovery of HCV
contributed to the diagnosis of hepatitis C; further, HCV has
been implicated in many chronic non-A and non-B hepatitis
infections. This virus spreads through needles used for
vaccination or drug administration, and about 180 million
people in the world are presumed to be infected with HCV. It
has been clarified that HCV infection often persists, causing
chronic hepatitis, cirrhosis, and hepatocellular carcinoma
(HCC).

Cytotoxic T lymphocyte (CTL) plays a part in viral
eradication [2]. These cells have been also implicated in the
immunopathogenesis of viral infection [3], because HCV,
by itself, does not produce cytopathic effects in hepatocytes
directly. It has been thought that hepatitis is caused by
the destruction of HCV-infected hepatocytes by immune

cells such as natural killer (NK) cells and CTLs. Thus, the
investigation of the roles of CTL in immunopathogenesis
of HCV would contribute to the development of a new
treatment strategy for HCV-induced hepatitis.

Interferon (IFN) therapy alone or with ribavirin and
polymerase/protease inhibitor combination therapy has
shown positive outcomes in more than 80% of patients
with acute HCV infection and 50% of patients with chronic
HCV infection. However, IFN causes severe adverse effects
including flu-like symptoms, pancytopenia, hyperglycemia,
depression, lung fibrosis, and cerebral bleeding. Therefore,
there is an urgent need to establish an alternative therapy,
which can afford a high rate of sustained virological response
and performed with few adverse effects. Immunotherapy
with HCV vaccine is one of the candidates of such thera-
pies.

In this review, we have summarized the findings of recent
investigations on CTL responses against HCV and the trials
for the development of HCV vaccine.
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Figure 1: Cellular and humoral immune responses in HCV infection. Plasmacytoid dendritic cells (pDC) recognize HCV infection and
produce IFN-α, which activates natural killer (NK) cells, helper T (Th) cells, macrophages, and cytotoxic T lymphocytes (CTLs). Activated
NK cells destroy the HCV-infected hepatocytes in a nonspecific manner, whereas CTLs destroy the infected hepatocytes in an antigen-specific
manner. Myeloid dendritic cells (mDC), which recognize dead hepatocytes, secrete IL-12, promoting the activation of NK cells, Th1 cells,
and CTLs. Activated Th1 cells, in turn, promote DC maturation by interacting with the CD40/CD40 ligand. Macrophages stimulated by
type 1 helper T (Th1) cells produce TNF-α, which accelerates local inflammation. In humoral immune responses, Th2 cells activate B cells.
Plasma cells differentiated from B-cells secrete immunoglobulins to neutralize the circulating HCV. Abbreviated terms: CTL, cytotoxic T
lymphocyte; pDC, plasmacytoid dendritic cells; mDC, myeloid dendritic cells; Th1 cell, type 1 helper T cell; Th2 cell, type 2 helper T cell;
NK cell, natural killer cell; IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.

2. CTL Responses in HCV Infection

2.1. Innate Immune Responses in HCV Infection. HCV
infection induces cellular and humoral immune responses
(Figure 1). Similar to other viral infections, nonspecific
immune responses are induced in the early stages of HCV
infection for the eradication of HCV. Type I IFNs produced
by HCV-infected hepatocytes and plasmacytoid dendritic
cells (DCs) suppress viral replication by inducing enzymes
such as 2′–5′ oligoadenylate synthetase (OAS) and RNA-
dependent protein kinase (PKR) in hepatocytes [4]. The
plasmacytoid DC recognizes HCV infection through toll-like
receptor (TLR)-7, which interacts with single-stranded RNA
[5]. The TLR-signaling upregulates PDC-TREM molecules
on the cell surface, and PDC-TREM-dependent signal
induces further production of IFN-α [6]. Activated OAS
destroys viral RNAs, whereas PKR inhibits forming polysome
of viral mRNA [4]. Moreover, type I IFNs activate innate
immunity components such as natural killer (NK) cells [7].
The local inflammation further activates natural killer T-
cells (NKT cells) and macrophages (Kupffer cells), thereby
inducing the production of cytokines such as IFN-γ and
tumor necrosis factor (TNF)-α. Hepatitis is thought to be
initiated in this manner, and specific immune responses are
generated if innate immune responses fail to eradicate HCV.

2.2. HCV-Specific Immune Responses and Immunopathogene-
sis of HCV-Specific CTLs. The process of HCV-specific CTL

induction and the destruction of HCV-infected hepatocytes
by CTLs are shown in Figure 2. The destruction of HCV-
infected hepatocytes releases HCV fragments; these frag-
ments are taken up by myeloid DCs, consequently activating
the DCs. These DCs migrate to the draining lymph nodes
and express HCV antigens on human leukocyte antigen
(HLA) class II molecules. Then, they enhance expression of
costimulatory molecules (CD80, CD86) that interact with
and activate antigen-specific helper T (Th) cells [8]. In turn,
the activated Th cells promote the maturation of DCs by
the expression of CD40 ligand and TNF-α. Subsequently,
mature DCs stimulate specific CTLs by antigen presentation
on HLA class I molecule and enhance the expression of
costimulatory molecules [8]. Cytokines such as IL-2 and IL-
12 produced by Th1 cells and DCs further promote CTL
activation. These CTLs infiltrate the liver and recognize
HCV antigens presented on the surface of HCV-infected
hepatocytes together with HLA class I molecules. Then,
the effector CTLs release perforin, granzyme, and TNF-
α, or express Fas ligand, and initiate a direct attack on
HCV-infected hepatocytes [9, 10]. In the previous study, we
demonstrated that Fas ligand and TNF-α can also destroy
noninfected hepatocytes in the vicinity of the HCV-infected
cells [11].

When appropriate CTL responses are induced in hosts,
HCV eradication is achieved. However, HCV-specific CTL
responses are usually not strong enough to eradicate the
virus, hence contributing to persistent infection. On the
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Figure 2: Destruction of HCV-infected hepatocytes by CTLs. (1) Immature myeloid dendritic cells (iDC) take up hepatitis C virus antigens
(HCV Ag) in the liver. (2) The DCs move to a draining lymph node. (3) Matured DCs activate naı̈ve helper T (Th) cells efficiently through
stimulation with HLA class II, costimulatory molecules (CD80 and CD86), and cytokines such as IL-12. The stimulated Th cells, in turn,
activate DCs by expressing CD40 ligand and secreting TNF-α. IL-12 produced by myeloid DCs differentiates these stimulated Th cells towards
Th1 cells. Naı̈ve cytotoxic T lymphocytes (CTLs) recognize the HCV Ag presented on the DCs. IL-2 and IFN-γ secreted by activated Th1
cells induce the activation and proliferation of the HCV-specific CTLs. (4) The stimulated HCV-specific CTLs leave the lymph nodes and
move toward the liver. (5) They recognize HCV antigens together with HLA class I on the surface of HCV-infected hepatocytes, and try to
eradicate HCV by killing the infected hepatocytes. Abbreviated terms: Th1 cell, type 1 helper T cell; mDC, myeloid dendritic cells; CTL,
Cytotoxic T lymphocyte; CD, cluster of differentiation; CD40L, CD40 ligand; TCR, T-cell receptor; HLA, human leukocyte antigen; TNF,
tumor necrosis factor; IL, interleukin; IFN, interferon.

other hand, markedly potent immune responses would lead
to severe hepatitis and fulminant hepatitis as proven in a
hepatitis B virus (HBV) model [12], although this is a rare
event in HCV infection.

We evaluated the relation between HCV-specific CTL
responses and the clinical course of acute HCV infection and
found that HCV eradication cannot be predicted on the basis
of a strong CD8+ T-cell response [13]. However, Lauer et al.
reported that potent and broad CTL responses against HCV
peptides were observed in patients with resolved infection
but not in those with persistent infection [14]. Another
report indicated that patients with complete resolution of
HCV infection exhibited broader CTL responses with higher
functional avidity and wider cross-recognition ability than
patients with persistent HCV infection [15]. The opposite
observations can be attributed to the differences in the
monitoring methods of the CTL responses. Race and HCV
genotype might also affect the contradiction of the results.
Further investigation is needed to clarify this issue.

We analyzed the immune response of chronic HCV
patients by studying their HLA-B44-restricted CTLs that
recognized the HCV core amino acid residues 88–96; the
CTL response and viral load were found to be inversely

correlated [16]. The findings of this study suggested that
HCV-specific CTLs may inhibit HCV replication. Otherwise,
as many reports have suggested that HCV protein impairs
the CTL responses by several mechanisms (see Section 3),
HCV infection with a high titer of HCV RNA may suppress
the HCV-specific CTLs by an excess of HCV antigens. No
relation between other CTL responses recognizing other
HCV epitopes and the HCV status was found in the study.
From the data, it was supposed that the HLA-B44-restricted
CTLs recognizing HCV core amino acid residues 88–96 were
immunodominant.

Hence, there is a need to investigate HCV-specific CTL
responses and clarify some issues. First, HCV exists as
quasispecies in hosts and it has a high replicative ability and
low fidelity RNA polymerase [17]. Thus, many HCVs with
mutations in different amino acid sequences in the epitopes
may be present in the host. Other issue is that most HCV-
specific CTLs may infiltrate and compartmentalize in the
host liver where inflammation occurs, and thus, only a few
circulating HCV-specific CTLs can be detected. Although
it is very crucial to investigate liver-infiltrating CTLs, the
difficulty associated with obtaining liver specimen limits
such study.
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Figure 3: Immune suppressive mechanisms in HCV infection. HCV mutates its amino acid sequence to escape from immune surveillance,
inhibits type 1 IFN production, and suppress NK cell function, T-cell function, and DC function. In addition, HCV induces Tr cells, which
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3. Immunosuppression in HCV Infection

3.1. Escape from Immune Surveillance of Cellular Immune
Responses. It was reported that amino acid mutations have
been detected in the immunodominant regions of HCV in all
patients with acute HCV infection, and mutations by which
HCV escapes from CTL surveillance have been observed
only in patients with viral persistence [18]. Hughes et al.
investigated the variable intensity of purifying selection on
CTL epitopes, and reported that the purifying selection of
CTL epitopes on nonenvelop proteins was strong, particu-
larly when the epitope was matched [19]. Since a variety of
CTLs are induced in the early stage of HCV infection, a single
amino acid mutation within a CTL epitope does not appear
to contribute to persistent infection. It is supposed that
escape mutation is a result rather than a cause of persistent
HCV infection.

3.2. Impaired Function of CTL in HCV Infection. HCV
inhibits cellular immune responses in the host by several
ways; immune suppressive mechanisms in HCV infection are
summarized in Figure 3.

In our study, the stimulation of peripheral blood lym-
phocytes of HCV-infected patients with synthetic peptides
corresponding to CTL epitopes revealed that patients who
were infected with HCV within the past 3 years exhibited
CTL responses, while those infected with HCV more than
10 years ago did not exhibit this response. There are some
reasons why HCV persistence is so common although a
variety of HCV-specific CD8+ T-cells can be detected in the

liver and peripheral blood. The impaired function of HCV-
specific CTLs as effector cells is due to the reduced expression
of CD3 ζ chain [20], defective IFN-γ production, low per-
forin content, and decreased capacity for proliferation and
cytotoxicity [21]. Incomplete differentiation of the memory
CTLs to effector cells in patients with acute HCV infection
may be due to IL-2 deficiency during T-cell activation [22].
Programmed cell death 1 (PD-1) receptor, the ligation of
which inhibits the function of effector T-cells, is upregulated
on exhausted CD8+ cells in patients with acute and chronic
hepatitis C [23–25]. Another inhibitory receptor, namely,
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), has
also been reported to be upregulated on PD-1+ T-cells in the
liver of HCV patients. The blockade of both these molecules
is critical for the restoration of the function of HCV-specific
effector cells [26].

Accumulated data have suggested that HCV itself actively
suppresses host immune responses. Although spontaneous
liver disease did not occur in mice expressing liver-targeted
HCV NS5A transgene, both innate and adaptive immune
responses were impaired [27]. HCV core protein inhibits
IL-2 and IL-2 receptor α gene transcription [28], T-cell
activation and proliferation, and IFN-γ production by T cells
[29, 30]. HCV NS4A/B protein blocks the expression of HLA
class I molecules [31].

Impaired function of DCs, which play the crucial role
of antigen-presenting cells in inducing immunity, may be
responsible for the impaired immune responses. It has been
reported that the HCV core, E1, and NS3 proteins inhibit
DC maturation [32, 33]. HCV is thought to infect DCs
through the binding of HCV E2 protein and thereby suppress
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Figure 4: The procedure of enzyme-linked immuno-spot (ELISpot) assay. To detect CTL responses against HCV, we performed IFN-γ-
based ELISpot assay. CD8+ cells and monocytes were separated from peripheral blood samples by magnetic beads (MACS system; Miltenyi
Biotec, Bergisch Gladbach, Germany) and used as effector cells and antigen-presenting cells, respectively. These cells with synthetic HCV
peptides were incubated for 18 h at 37◦C in 5% CO2 atmosphere. Using an ELISpot reader (KS ELISPOT compact; Carl Zeiss, Oberkochen,
Germany), the number of spot-forming cells (SFCs) per well was counted.

DC function [34, 35]. In addition, long-term ethanol
consumption impairs CTL responses to HCV protein and
subsequently alters DC function [36].

Regulatory T- (Tr) cells are also involved in HCV
persistence. It has been shown that Tr cells (CD4+ CD25+

T cells) directly suppress T-cell function in chronic hepatitis
C patients [37]. Forkhead box P3 (FOXP3)-positive Tr cells
and IL-10 producing HCV-specific Tr cells infiltrate the
liver of chronic HCV patients, and IL-10 mediates immune
suppression in these patients [38, 39]. HCV core-specific Tr
cells can be induced from the peripheral blood of patients
with chronic hepatitis C [40].

4. Immunotherapy for Hepatitis C

4.1. IFN Therapy and Immune Response. Currently, chronic
HCV infection can be resolved only with IFN-α-based
therapy. IFN-α has been reported to have biologic effects
on the immune system [41]. IFN-α upregulates HLA class
I molecules on the cell surface. This cytokine appears to
favor the proliferation of type 1 Th cells and activate CTLs.
Ribavirin, which is used in combination with IFN-α, exerts
an antiviral effect that drives the Th2 response towards a
Th1 response [42]. During the primary immune response,
IFN-α promotes both clonal expansion and survival of
antigen-specific CTLs in vivo [43]. We also demonstrated
that IFN-α prevents activation-induced cell death of CTLs
[44]. A low dose of IFN-α augments cellular immune
response, whereas a high dose suppresses CTL response
[45]. Recently, it has been reported that although IFN-
α upregulates MHC class I expression on hepatocytes, it
reduces their sensitivity to CTL cytotoxicity, which may be
due to the enhancement of granzyme-B inhibitor-proteinase
inhibitor 9 (PI-9) expression [46]. Although it has been

reported that intrahepatic and peripheral HCV-specific CTL
activity was detected more often in patients with a sustained
response to IFN therapy than in patients who relapsed or did
not respond to the treatment [47], further study is needed to
clarify the effect of IFN therapy on host immune responses
in vivo.

4.2. Identification of Novel Epitopes Recognized by HCV-
Specific CTLs. As described above, we first identified an
HLA B44-restricted CTL epitope [48, 49]. Then, we tried to
identify more novel CTL epitopes in the HCV polyprotein,
and performed IFN-γ-based enzyme-linked immuno-spot
(ELISpot) assay [50, 51]. The procedure of this assay is
presented in Figure 4. We synthesized 297 20-mer peptides
overlapping by 10 residues and spanning the entire HCV
sequence based on the amino acid sequence of HCV [13].
After separation with magnetic beads, we used CD8+ T-cells
as effector cells and monocytes as antigen-presenting cells.
After the CD8+ T-cells were incubated with the monocytes
and the synthetic HCV peptides for 18 hours, IFN-γ-
producing cells were counted. This procedure enabled to
minimize the IFN-γ production for nonspecific response.
Then, we identified more than 20 CTL epitopes in the HCV
protein by using the synthetic peptides (Table 1). Further-
more, our group has identified several epitopes of HCV-
specific CTLs using synthetic peptides and recombinant
vaccinia viruses [52].

The HLA-24 allele of HLA class I is more common
among the Japanese population. Thus, CTL induction by
synthetic peptides based on HLA-A24 binding motifs has
been investigated mainly in Japan [53]. HCV NS5A 2132–
2142 peptide corresponding to the HLA-A24 binding motif
has been reported to be able to induce both cellular and
humoral immune responses in most HCV-positive patients
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Table 1: CTL epitopes identified by using different procedures.

(a) CTL epitopes identified by peptides overlapping by 10 residues and spanning the entire HCV sequence of genotype 1b

HLA class I alleles Region Amino acid residues Sequence HLA restriction

Pt1 A∗0207,2601 B∗3501,4601 CW∗0102,0303 NS3 1527–1546 WYELTPAETTVRLRAYLNTP B∗3501? A∗2601?

NS5B 2591–2605 KMALYDVVSTLPQAV A∗0207?

Pt2 A∗2402,3303 B∗4403,5401 CW∗0803,1403 E1 332–351 LVVSQLLRIPQAVVDMVAGA B∗5401?

NS3 1638–1656 THPITKFVMACMSADLEVV B∗5401?

NS5B 2591–2605 KMALYDVVSTLPQAV n.d.

Pt3 A∗2602,3101 B∗5101,5102 Cw1402,1502 NS3 1373–1380 IPFYGKAI B∗5101? B∗5102?

Pt4 A∗2402 B∗0702,5201 Cw∗0702,1202 E2 611–618 YPYRLWHY n.d.

Pt5 A∗1101,3101 B∗6701,5101 Cw∗0702,1401 NS5A 2290–2298 RPDYNPPLL B∗6701? B∗5101?

Pt6 A∗2402,2601 B∗4002 Cw∗0304 NS2 957–964 RDWAHAGL B37

NS5A 2122–2130 FTELDGVRL n.d.

Pt7 A∗2402,3303 B∗0702,3501 Cw∗0303,0702 Core 91–110 LGWAGWLLSPRGSRPSWGPT A∗3303? B∗3501?

Pt8 A∗2402 B∗4801,5201 Cw∗0803,1202 NS3 1643–1656 KFVMACMSADLEVV n.d.

Pt9 A∗2402 B∗5201 Cw∗1202 NS4 1760–1768 FWAKHMWNF A∗2402

NS5B 2556–2564 TIMAKNEVF n.d.

NS5B 2803–2811 LTRDPTTPL n.d.

Pt10 A∗0201,0301 B∗4402,4601 Cw∗0102,0501 NS4 1958–1977 KRLHQWINEDCSTPCSGSWL n.d.

Pt11 A∗1101,2601 B∗1501,5201 Cw∗0401,1202 NS4 1858–1867 GVAGALVAFK A∗1101?

Pt12 A∗2402 B∗3501,4002 Cw∗0303,0304 NS3 1618–1626 LHGPTPLLY A∗2402?

(b) CTL epitopes identified by HCV-derived synthetic peptides with binding motif of HLA-A24 [51]

HLA class I alleles Region Amino acid residues Sequence HLA restriction

Pt13 A∗2402,1101 B∗3902,5201 Cw∗0702,1202 NS3 1375–1385 FYGKAIPIEAI n.d.

Pt14 A∗2402,2601 B∗4006,5401 Cw∗0801,0803 E1 284–293 VFLVSQLFTF n.d.

E2 790–798 LYGVWPLLL Cw∗0801

NS4 1759–1768 AFWAKHMWNF n.d.

NS5A 1990–1999 DFKTWLQSKL n.d.

NS5A 2280–2288 KFPPALPIW A∗2402

Pt15 A∗2402,2601 B∗3501,4002 Cw∗0303,0304 NS2 910–919 PYFVRAQGLI Cw∗0303, 0304

NS2 947–956 TYVYDHLTPL B∗4002

NS3 1243–1252 AYAAQGYKVL Cw∗0303, 0304

Pt16 A∗0206,2402 B∗5201,5901 Cw∗0102,1202 NS3 1443–1451 GFTGDFDSV A∗0206

Pt17 A∗2402,3101 B∗4801,5101 Cw∗0304,0801 E2 790–798 LYGVWPLLL Cw∗0801

Pt18 A∗2601,3101 B∗3501,5101 Cw∗0303,1402 NS5B 2456–2466 VYSTTSRSASL n.d.

(c) CTL epitopes identified by peptides overlapping by 10 residues and spanning the entire HCV sequence [13]

HLA class I alleles Region Amino acid residues Sequence HLA restriction

Pt19 A∗2602,3101 B∗5101,5102 C∗1402,1502 NS3 1373–1380 IPFYGKAI n.d.

Pt20 A∗0402 B∗0702,5201 C∗0702,1202 E2 611–618 YPYRLWHY n.d.

Pt21 A∗1101,3101 B∗6701,5101 C∗0702,1402 NS5A 2290–2298 RPDYNPPLL n.d.

Pt22 A∗2402 B∗5201 C∗1202 NS4 1759–1768 AFWAKHMWNF n.d.

NS5B 2556–2564 TIMAKNEVF n.d.

NS5B 2803–2811 LTRDPTTPL n.d.

Pt23 A∗0201,0301 B∗4402,4601 C∗0102,0501 NS4 1958–1977 KRLHQWINEDCSTPCSGSWL n.d.

Pt24 A∗2402,4801 B∗5201 C∗0803,1202 NS3 1637–1656 LTHPITKFVMACMSADLEVV n.d.
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(d) CTL epitopes identified by peptides overlapping by 10 residues and spanning the entire HCV core sequence

Region Amino acid residues Sequence HLA restriction Reference

core 88–96 NEG(L,M,C)GWAGW B∗4403 [49]

core 28–36 GQIVGGVYL B60 [50]

(e) CTL epitopes identified by HCV-derived synthetic peptides with binding motif of HLA-B∗4403

Region Amino acid residues Sequence HLA restriction Reference

NS5a 2095–2103 AEVTQHGSY B∗4403 [16]

(f) CTL epitopes identified by comprehensive CTL induction from PBMC of HCV patients

Region Amino acid residues Sequence HLA restriction Reference

NS3 1373–1380 IPFYGKAI B∗5603 [52]

with HLA-A24 [54]. Three novel vaccine candidate peptides
capable of CTL induction and antibody production have
also been identified [55]. In the study, the HCV core 30–
39 peptide was shown to induce peptide-specific CTLs from
peripheral blood mononuclear cells (PBMCs) of patients
with HLA-A11, -A31, or -A33.

Yerly et al. [56] developed a novel “epitome” approach
and analyzed its in vitro performance. This approach
compresses the common immune targets of HCV-specific
cellular immune response into a short immunogen sequence
and may be applied to induce cellular immune responses
against highly variable antigens.

The most important concern in peptide vaccine devel-
opment is the selection of peptides from among the CTL
epitopes because some peptides may rather induce tolerance
of effector cells [57] or Tr cells, which will result in immune
suppression. Hence, it is necessary to develop tailor-made
therapy using appropriate peptides according to the HLA
haplotypes of the patients.

4.3. Trials for the Development of HCV Vaccine. Many
attempts for inducing immune responses against HCV by
vaccination have been performed using animal models.
Splenocytes isolated from mice pretreated with Fms-like
tyrosine kinase receptor 3 ligand exhibited NS5-specific
cellular immune responses after vaccination with DCs con-
taining magnetic beads coated with HCV NS5, lipopolysac-
charide, and anti-CD40 antibody [58, 59]. It has been
reported that the adoptive transfer of HCV NS3 protein-
pulsed mature DCs could effectively promote potent HCV-
specific protective immune responses in a mouse model [60].
From the data, DC-based therapy appears to be one of the
candidates for immune therapy against HCV infection.

Since HCV envelope glycoproteins are heavily glycosy-
lated, such modification would affect immune responses
in hosts. The engineering of N-glycosylation of HCV E2
protein enhances HCV-specific cellular immune responses
[61], whereas the deletion of N-glycosylation sites of HCV
E1 protein augmented HCV-specific cellular and humoral
immune responses [62].

Gene therapy has been tried to elicit strong immune
responses in vivo. It has been reported that vector-based

minigene encompassing 4 domains of HCV NS3, NS4, and
NS5B proteins effectively induced CTL induction in HLA-
A2 transgenic mice [63]. Using replication-incompetent
adenoviruses expressing HCV core and NS3 proteins, HCV-
specific CTLs could be induced from PBMCs of HCV-
infected patients [64]. Administration of recombinant yeast
cells producing HCV NS3-core fusion protein, namely,
GI-5005, induced potent antigen-specific proliferative and
CTL responses in mice [65]. As described above, gene
therapy would be a candidate for HCV vaccine. How-
ever, a careful survey for adverse effects induced by
the therapy must be performed before clinical applica-
tion.

Adjuvants may help the induction of HCV-specific CTLs,
and it is important to investigate what adjuvant we should
use for HCV vaccination. Protein immunization using CpG
and montanide ISA 720 have been reported to enhance HCV-
specific Th-1 type immune responses [66]. Cytokines such
as granulocyte-monocyte colony stimulating factor and IL-
23 have been also used for argument of immune responses
induced by HCV core vaccination [67]. In a mouse model,
HBV precore protein enhanced HCV-specific CTL responses
induced by the genetic immunization of DNA encoding
truncated HCV core proteins [68]. In another model, HBs
antigen enhanced the induction of HCV-specific CTLs by
DNA vaccine harboring HCV CTL epitopes [69].

Not only animal experiments, but also several human
trials have been proceeding. Yutani has reported a phase
I study of HCV vaccine in Japanese patients who were
either nonresponders to IFN therapy (n = 23) or had
refused treatment (n = 3). A peptide derived from the
HCV core region amino acid residues 35–44 is capable
of inducing cellular immune responses in many patients
with different HLA class I-A alleles [70]. This peptide
was used to develop a series of 6 vaccine injections that
enhanced the peptide-specific peripheral CTL activity in
15 out of 25 patients and 12 vaccine injections that
augmented peptide-specific IgG production [71]. Improve-
ment in serum alanine aminotransferase (ALT) level (>30%
decrease) was also observed in 7 out of 24 patients in the
study. The results revealed that the selection of candidate
peptides is crucial for developing a successful HCV vac-
cine.
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In another clinical trial of a synthetic peptide vaccine,
IC41 containing the 7 relevant HCV-specific Th cell and CTL
epitopes and the adjuvant poly-l-arginine were used. It has
been reported that IC41 can induce HCV-specific responses
in both Th1 cells and CTLs in patients not responding
to or relapsing from IFN therapy [72, 73]. Although this
vaccination was tolerated and induced serious adverse events,
HCV RNA reduction was rarely observed in the study [73].
In the phase II trial of pegylated interferon plus ribavirin
therapy in combination with this vaccine, an enhanced HCV-
specific T-cell response was observed in 73% of patients, and
the responses could be detected more frequently in patients
with sustained virologic response than in those showing
relapse [74].

A recent Phase I placebo-controlled study has revealed
that a prototype vaccine, which consists of HCV core
protein and the adjuvant ISCOMATRIX, induces cytokine
production by T-cells, but CTL responses were detected in a
few healthy individuals [75]. A tableted therapeutic bivalent
vaccine, which consists of heat-inactivated HCV antigens
derived from HBV- and HCV-infected donors, has been
applied in the treatment of chronic hepatitis C patients. Oral
administration of this vaccine showed no adverse effects, and
the elevated liver enzyme levels observed before the study
were reduced in all patients at the end of the study.

A therapeutic DNA vaccine developed using the mix-
ture of plasmid expressing HCV structural antigens and a
recombinant HCV core protein, namely, CIGB-230, has also
been used to treat chronic hepatitis C patients who did not
respond to previous IFN therapy in a Phase I study [76].
This vaccination induced specific T-cell responses in 73% of
the participants. Interestingly, 40% of the vaccinated patients
showed reduction in liver fibrosis.

5. Conclusions and Future Directions

Since HCV was first identified, many investigations have
been performed to resolve and prevent HCV infection. It has
been demonstrated that HCV-specific CTLs are implicated in
not only viral eradication but also the immunopathogenesis
of hepatitis C. Development of IFN-based therapy in com-
bination with ribavirin and protease/polymerase inhibitor
has improved the sustained viral response rate of patients.
However, there are still many nonresponders who suffer from
chronic hepatitis C, cirrhosis, and hepatocellular carcinoma.
Moreover, the HCV infection mechanism in many patients
is still unknown. For these patients, a novel immune
therapy and vaccination should be urgently established. For
this purpose, we have to continue further investigation of
immune responses in HCV infection.
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