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Abstract

In Kenya, HIV-1 key populations including men having sex with men (MSM), people who inject drugs (PWID) and female sex workers
(FSW) are thought to significantly contribute to HIV-1 transmission in thewider, mostly heterosexual (HET) HIV-1 transmission network.
However, clear data on HIV-1 transmission dynamics within and between these groups are limited. We aimed to empirically quantify
rates of HIV-1 flow between key populations and theHET population, aswell as between different geographic regions to determineHIV-1
‘hotspots’ and their contribution to HIV-1 transmission in Kenya. We usedmaximum-likelihood phylogenetic and Bayesian inference to
analyse 4058 HIV-1 pol sequences (representing 0.3per cent of the epidemic in Kenya) sampled 1986–2019 from individuals of different
risk groups and regions in Kenya. We found 89per cent within-risk group transmission and 11per cent mixing between risk groups,
cyclic HIV-1 exchange between adjoining geographic provinces and strong evidence of HIV-1 dissemination from (i) West-to-East (i.e.
higher-to-lower HIV-1 prevalence regions), and (ii) heterosexual-to-key populations. Low HIV-1 prevalence regions and key populations
are sinks rather than major sources of HIV-1 transmission in Kenya. Targeting key populations in Kenya needs to occur concurrently
with strengthening interventions in the general epidemic.

Key words: HIV-1; key populations; molecular epidemiology; transmission.

1. Introduction
The world is off-track on the United Nations Programme on HIV
and AIDS (UNAIDS) objective to reduce the global HIV-1 inci-
dence rate, with an estimated 1.7 million new HIV-1 infections
in 2019 (Joint United Nations Programme on HIV/AIDS (UNAIDS)
2020). To fast-track reduction in global HIV-1 incidence whilst also

achieving efficiency gains, UNAIDS directs national governments

to invest strategically in HIV-1 programmes. This includes direct-

ing treatment and prevention to HIV-1 key populations (defined as

UNAIDS as gaymen and othermenwho have sexwithmen [MSM],

people who inject drugs [PWID], sex workers [FSW], transgender

people, and sex partners of key populations) (Kelly et al. 2018).
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An approach to inform decision-making is to identify populations
populations that contribute with a disproportionate number of
infections in local epidemic and to eliminate structural and social
barriers to health service delivery among key populations (Smith
et al. 2009; Anderson et al. 2014).

In North America and European settings, the HIV-1 epidemic
mainly affects HIV-1 key populations, and the availability of
large numbers of HIV-1 genetic sequences and associated patient
risk group information have allowed extensive characterisation
of HIV-1 networks (Esbjörnsson et al. 2016; Poon et al. 2016;
Ratmann et al. 2016). In contrast, in sub-Saharan Africa (account-
ing for 65per cent of all new HIV-1 infections globally), the HIV-1
epidemic mainly affects the heterosexual population (HET). How-
ever, pockets of concentrated sub-epidemics involving high-risk
groups have also been described (Joint United Nations Programme
on HIV/AIDS (UNAIDS) 2018; Abeler-Dörner et al. 2019; Nduva
et al. 2021). Additionally, there is evidence of overlapping sexual
networks and phylogenetic linkages between HIV-1 key popula-
tions and HET (Nduva et al. 2021). However, the scarcity of HIV-1
sequences from key populations has limited phylogenetic assess-
ment of HIV-1 transmsission within and between key populations
and lower-risk populations in sub-Saharan Africa.

Kenya has the fifth-largest number of people with HIV-1 in the
world, and the early HIV-1 epidemic in the country was defined
exclusively as heterosexual and involving FSW and long-distance
truck drivers (Kreiss et al. 1986; National AIDS and STI Control
Programme (NASCOP) 2020). As a consequence, governmental
HIV-1 surveillance did not focus on other marginalised key pop-
ulations such as MSM and PWID (Sanders et al. 2007; Smith et al.
2009; Makofane et al. 2020). The Kenyan Ministry of Health has
reported high HIV-1 prevalence among key populations (29.3 per
cent among FSW, 18.2 per cent among MSM and 18.2 per cent
among PWID, compared to 4.5 per cent in the general epidemic)
(Kenya National AIDS Control Council 2009; National AIDS and
STI Control Programme 2017). As a consequence, directed pro-
grammes for key populations have been initiated based on the
assumption that they contribute with a disproportionate num-
ber of infections to the larger HIV-1 transmission network in the
nationwide epidemic (National AIDS and STI Control Programme
2017; Kenya National AIDS Control Council 2019). However, phylo-
genetic studies in Coastal Kenya have suggested that most HIV-1
transmissions occur within risk groups (with only 15per cent of
the identified clusters reflecting mixing between MSM, FSW, and
HET in Coastal Kenya) (Bezemer et al. 2014; Nduva et al. 2020).
Moreover, to the best of our knowledge, no study has empirically
assessed the rates of HIV-1 flow between key populations and the
heterosexual population in Kenya. Also, spatial mapping of the
Kenyan epidemic has revealed extensive geographic heterogene-
ity with HIV-1 prevalence ranging from less than 1per cent in the
North Eastern province tomore than 20per cent around the shores
of Lake Victoria in the Western regions of the country (National
AIDS and STI Control Programme (NASCOP) 2020). Such spatial
differences in HIV-1 distribution likely influence HIV-1 diffusion
dynamics (Faria et al. 2014; Grabowski et al. 2020), but HIV-1 trans-
mission rates between different geographic areas in Kenya are still
unknown.

Phylodynamic analysis has beenwidely used to determine HIV-
1 networks, reconstruct virus historical spatial dissemination, as
well as assessing rates of virus flow between populations with
varying HIV-1 prevalence (Esbjörnsson et al. 2011, 2016; Bezemer
et al. 2014; De Oliveira et al. 2017; Sallam et al. 2017; Hassan
et al. 2018; Bbosa et al. 2019; Faria et al. 2019; Nazziwa et al.

2020; Nduva et al. 2020; Ratmann et al. 2020). However, due to
the scarcity of HIV-1 sequences from key populations, phylogeo-
graphic assessment of HIV-1 transmission rates between popula-
tions are rare in sub-Saharan Africa (Bbosa et al. 2019). Here, we
combined HIV-1 phylogenetic and epidemiological data to recon-
struct HIV-1 networks and to empirically quantify rates of HIV-1
flow between risk groups and geographic regions to identify and
determine the contribution of HIV-1 ‘hotspots’ in sustaining HIV-1
transmission in Kenya. We hypothesised that virus flow would
be predominantly from high prevalence ‘hotspots’ to the lower
prevalence populations.

2. Methods
2.1 Study population and sequence dataset
New HIV-1 pol sequences were generated from blood
plasma obtained through studies conducted through the MSM
Health Research Consortium—a multi-site collaboration between
researchers affiliated with KEMRI-Wellcome Trust (KWTRP) in
Coastal Kenya, Nyanza Reproductive Health Society (NRHS) in
Western Kenya, Kenya AIDS Vaccine Initiative’s Institute of Clin-
ical Research (KAVI-ICR), and Sex Workers Outreach Program
(SWOP) clinics in Nairobi. These included samples from Coast
derived from participants in a prospective observational cohort
(2006–2019) (Sanders et al. 2013), samples from Nairobi from a
respondent-driven sample survey (Smith et al. 2021), and sam-
ples from Nyanza derived from the Anza Mapema cohort (2015–
2017) (Kunzweiler et al. 2018). Additional nationwide HIV-1 pol
sequences (2008–2018) were obtained from the national HIV-1
reference laboratory at the Kenya Medical Research Institute
(KEMRI)—Centre for Global Health Research.

In addition, all published Kenyan HIV-1 pol sequences (1986–
2019, corresponding to HXB2 positions 2000–3600) available in the
Los Alamos HIV-1 sequence database were retrieved 19 March
2020 (Los Alamos National Laboratory 2019). In cases where
more than one sequence per individual was available, the oldest
sequence was retained. Newly generated and publicly available
sequences were annotated with sampling date, sampling location
(province), treatment status, age, sex, and risk group (MSM [men
who reported having sex with men]; PWID [men and women who
inject drugs]; FSW [female sex workers]; and HET [presumed het-
erosexuals including men and women for whom risk assessment
was not available]). Missing information for published sequences
was retrieved from relevant studies or obtained through commu-
nication with study authors (Yang et al. 2004; Tovanabutra et al.
2010; Hamers et al. 2011; Hué et al. 2012; Sigaloff et al. 2012;
Hassan et al. 2013, 2018; Bezemer et al. 2014; Zeh et al. 2016;
Gounder et al. 2017; Onywera et al. 2017).

2.2 RNA extraction, DNA amplification, and
partial HIV-1 pol sequencing
HIV-1 RNA was extracted from blood plasma samples using the
RNeasy Lipid Tissue Mini Kit (QIAGEN) with modifications from
the manufacturer’s standard protocol (Esbjörnsson et al. 2010).
Briefly, 100µl patient blood plasma was lysed in 1000µl Qia-
zol Reagent. Reverse transcription and amplification of partial
HIV-1 pol gene were performed using the One-Step Superscript III
RT/Platinum Taq High Fidelity Enzyme Mix (ThermoFisher Scien-
tificTM) with the pol-specific primer pair JA269 and JA272 (Hedskog
et al. 2010). First-round PCR products were amplified in a nested
PCR with DreamTaq Green DNA Polymerase (ThermoFisher Sci-
entificTM) using pol-specific primers JA271 and JA270 (Hedskog
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et al. 2010). PCR products were sequenced in both directions
with the nested PCR primers using the BigDye terminator kit v1.1
(Applied Biosystems). New HIV-1 pol sequences (approximately
1020 nucleotides [nt], HXB2 [K03455] positions 2267–3287) were
determined on an ABI PRISM 3130×1 Genetic Analyzer (Applied
Biosystems).

2.3 Population estimates and sampling density
Sampling density (the proportion of genotyped HIV-1 sequences in
the estimated number of HIV-infected individuals per geographic
location and risk group) was computed based on national HIV-1
prevalence estimates (National AIDS and STI Control Programme
2017; Kenya National AIDS Control Council (NACC) 2018; Kenya
National AIDS Control Council 2019; Kenya National Bureau
of Statistics 2019); National AIDS and STI Control Programme
(NASCOP) 2019;National AIDS and STI Control Programme
(NASCOP) 2020).

2.4 Subtype analysis
All Kenyan HIV-1 pol sequences were combined and aligned with
the Los Alamos HIV-1 Group M (subtypes A-K+Recombinants)
subtype reference dataset (http://www.hiv.lanl.gov) using the
MAFFT algorithm in Geneious Prime 2019 (Larkin et al. 2007).
The HIV-1 subtype/circulating recombinant form (CRF) for each
sequence was determined by maximum-likelihood (ML) phy-
logenetic analysis in PhyML using the general time-reversible
substitution model with a gamma-distributed rate variation
and proportion of invariant sites (GTR+Γ4+ I) (Guindon et al.
2010). Branch support was determined by the approximate like-
lihood ratio test with the Shimodaira-Hasegawa-like procedure
(SH-aLRT) in PhyML, and SH-aLRT support values ≥0.90 were
considered significant (Guindon et al. 2010). The Subtype/CRF-
resolved phylogeny was visualized using FigTree v1.4.4 (https://
github.com/rambaut/figtree/releases). Unique recombinant
forms (URFs) were characterised by boot-scan analysis in SimPlot
(Lole et al. 1999; Pineda-Peña et al. 2013; Struck et al. 2014).

2.5 Cluster analysis
Sequences were grouped into subtype-specific datasets and the
most similar non-Kenyan sequences for each available Kenyan
sequence were determined by a BLAST, as previously described
(Esbjörnsson et al. 2016; Nazziwa et al. 2020; Nduva et al. 2020).
Redundant sequences or clonal sequences from the same individ-
ual were removed from the dataset. All sequences were aligned
by subtype and subtype-specific, and alignments were manually
edited to exclude codon positions associated with drug resistance.
Maximum-likelihood phylogenies were reconstructed in PhyML
(Guindon et al. 2010). For each subtype, monophyletic clades
with aLRT-SH support ≥0.9 and which were dominated (≥80per
cent) by Kenyan sequences (compared to reference sequences)
were defined as Kenyan HIV-1 (Esbjörnsson et al. 2016; Hassan
et al. 2017; Nazziwa et al. 2020; Nduva et al. 2020). Identified
clusters were classified into dyads (2 sequences), networks (3–14
sequences), or large clusters (>14 sequences) (Esbjörnsson et al.
2016).

2.6 Bayesian phylodynamic inference
HIV-1 evolutionary origins and past population dynamics were
determined using subsets of the main subtypes as well as for the
large clusters identified in the cluster analysis. Only sequences
with information on sampling dateswere included in this analysis.
The temporal signal was assessed in TempEst (v1.5.3) (Rambaut
et al. 2016). Bayesian inferences were done in BEAST 1.10.4

using the Bayesian Skygrid model with an uncorrelated lognor-
mal relaxed clock and inferred under theGTR+Γ4+ I substitution
model (Drummond et al. 2005; Baele et al. 2012; Gill et al. 2013;
Suchard et al. 2018). To enhance precision in estimating evolution-
ary parameters within and between clusters from different risk
groups, a previously described hierarchical phylogenetic model
(HPM) was specified on evolutionary parameters (Suchard et al.
2003). Each MCMC chain was run for 300 million states, sam-
pling every 30,000th iteration and discarding the first 10per cent
as burn-in. Convergence was determined in Tracer v.1.7.0 and
defined as effective sample sizes (ESS)≥200 (Suchard et al. 2018)—
and where this was not achieved, the burnin was adjusted or
the analysis re-run with a longer chain (Hall, Woolhouse, and
Rambaut 2016).

2.7 Bayesian phylogeographic inference
We computed a discrete phylogeographic inference using an
empirical tree distribution—where the expected number of HIV-1
migrations for every pathway were inferred on a branch-by-
branch basis as previously described (Lemey et al. 2009; Faria et al.
2014). Sampling province and risk groupwere used as independent
discrete states. The asymmetric continuous-time Markov chain
(CTMC) model was preferentially used as it relaxes the assump-
tion of constant diffusion rates through time to realistically model
phylogeographic processes (Lemey et al. 2009; Edwards et al.
2011). A robust counting approach implemented in BEAST was
used to estimate the forward and reverse HIV-1 movement events
(Markov jumps) between locations and risk group states along the
branches of time dated phylogenetic trees (Minin and Suchard
2008). Well-supported movements and Bayes factors (BF) assess-
ing statistical support were summarized using SPREAD v1.0.7,
(BF≥3 was considered significant) (Lemey et al. 2009). Maximum
clade credibility (MCC) trees annotated with key demographic and
epidemiological data were summarized in Tree-Annotator v1.10.4
(BEAST suite) and visualized in Figtree (v1.4.4).

2.8 Sensitivity analysis
In Kenya, the vast majority (35per cent) of people with HIV-1 are
in Nyanza province, followed by Rift Valley (17per cent), Nairobi
(13per cent), Western (9 per cent), Central (9 per cent), Eastern
(9 per cent), Coast (7 per cent), North Eastern (<1per cent)—and
modes of transmission estimates have shown that 64per cent of
infections result from heterosexual contact among casual or mar-
ried couples, female sex work (14per cent), men having sex with
men (15per cent) and injection drug use (4 per cent) (National
AIDS and STI Control Programme 2017; Kenya National AIDS
Control Council (NACC) 2018; National AIDS and STI Control
Programme (NASCOP) 2020).

Phylogeographic analysis is sensitive to sampling size (on one
hand, a small sample size might not be informative enough to
infer migration profiles and on the other hand, analyzing thou-
sands of sequences using the MCMC procedure is extremely
computationally intensive and MCMC parameters often fail to
converge) (Lemey et al. 2009; Faria et al. 2014; Bbosa et al. 2019).
In addition, skewed sampling may further bias inference due
to over-sampling some states compared to others. It is there-
fore essential that the sampling strategy ensures a sufficiently
representative number of samples from each discrete state to
avoid over-scoring transitions or counts in the empirical tree dis-
tribution. This necessitates down-sampling over-sampled states
to reduce bias, and excluding under-represented states from
the analysis (de Silva, Ferguson, and Fraser 2012; Volz 2012;
Hall, Woolhouse, and Rambaut 2016). In our dataset, Western,
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Central, Eastern and North-Eastern provinces were underrepre-
sented and hence excluded, and temporal focus was limited to
sequences collected after 2004. Focus was on transitions between
four locations (Nyanza, Rift Valley, Nairobi, and Coast), and
between risk groups (MSM, PWID, FSW, and HET), and several
approaches were used to limit sampling bias arising from the dis-
proportional allocation of sequences per discrete state (described
in detail below). HIV-1 sequences were first annotated with the
year of sampling (2004–2019) and a discrete trait (risk group or
location). In-house Perl scripts were used to randomize and select
a set of sequences with uniform or proportional probability whilst
also ensuring temporal sampling fidelity (Hall, Woolhouse, and
Rambaut 2016).

In detail, in the first scenario, location-annotated HIV-1
sequences were sub-sampled proportional to the HIV-1 preva-
lence per geographic province. This procedure was independently
replicated 30 times—resulting in 30 datasets each having 892
sequences of which 35per cent were from Nyanza, 17per cent
Rift Valley, 13per cent Nairobi, and 7per cent Coast. A similar
approach was taken with risk group as a discrete state—resulting
in thirty datasets each having 802 sequences of which 64per cent
were from HET, 14per cent FSW, 15per cent MSM, and 4per
cent PWID. Cluster analysis (as described above) was performed
independently for each dataset. Clusters having >14 sequences
were identified—and discrete state phylogeographic analysis with
Markov jumps inferences were then performed independently for
each of the identified clusters.

Next, we further explored whether the population dynam-
ics seen in recent years (i.e. 2010–2019) were different from
those observed in the complete dataset (i.e. 2004–2019). In the
second sensitivity analysis, HIV-1 A1 sequences collected dur-
ing 2010–2019 were sub-sampled proportionally as was done in
the first scenario—resulting in five independent datasets with
location-annotation (each having 144 sequences—35per cent
from Nyanza, 17per cent Rift Valley, 13per cent Nairobi, and 7per
cent Coast), and five independent datasets with risk group anno-
tation (each having 97 sequences—64per cent HET, 14per cent
FSW, 15per cent MSM, and 4per cent PWID). However, unlike
in the cluster-wise approach, the complete sub-sampled datasets
were used directly to estimate virus migration between states.
In the third sensitivity analysis, HIV-1 A1 sequences collected
during 2010–2019 were sub-sampled uniformly into five datasets
with equal number of sequences per discrete state. The location-
annotated dataset had 100 sequences (25 sequences from each
province), while the dataset annotated for risk group had 108
sequences (27 sequences for each risk group).

2.9 Statistical analysis
Changes in the proportion of HIV-1 subtypes and recombinants
over time were assessed using the nptrend non-parametric test for
trends (Cuzick 1985). Frequencies and percentages were used to
describe the distribution of sequences within the study popula-
tion. A logistic regression model was used to assess associations
between individual sequence characteristics (e.g. subtype/CRF,
location of sampling, risk group, and year [range] of sampling)
and phylogenetic clustering. Variables with p<0.1 in exploratory
bivariable analyses were included in the multivariable model, in
which p<0.05 was defined as statistically significant. A Kruskal-
Wallis H test and a post hoc Dunn’s test with Bonferroni correction
for multiple comparisons were conducted to determine differ-
ences in HIV-1 evolutionary rate, cluster growth rates, and time to
themost recent common ancestor (tMRCA) estimates among clus-
ters frommultiple risk groups. Statistics and summary plots were

done using Stata 15 (StataCorp LLC, College Station, Texas, USA)
and RStudio (version 1.2.5001) with the packages: yarrr, circlize and
ggplot2 (Gu et al. 2014; Wickham 2016; Phillips 2017).

2.10 Ethical considerations
All research was performed following relevant guidelines/
regulations. For the newly generated sequences, informed con-
sent for use of plasma samples was obtained from all participants
from respective studies. Since published sequences were obtained
from an open-access public domain, informed consent was not
retrospectively obtained. Instead, we sought approval through a
study protocol that was reviewed by the Kenya Medical Research
Institute (KEMRI) Scientific and Ethics Review Unit (SERU 3547).

2.11 Data availability
Newly generated nucleotide sequences were deposited in Gen-
Bank under the following accession numbers: MT084914-
MT085076, and OM109695-OM110282.

3. Results
3.1 Study population and sequence dataset
We analysed 4058 HIV-1 pol sequences collected 1986–2019,
of which 3303 (81.4 per cent) were previously published and
755 (18.6 per cent) newly generated for this study (Table 1,
Supplementary Figure S1, and Supplementary Table S1). Most
sequences were from HET (N=3401, 83.8 per cent), followed by
MSM (N=372, 9.2 per cent), FSW (N=227, 5.6 per cent), and PWID
(N=58, 1.4 per cent). Overall, these numbers represent an esti-
mated sampling density of 0.3 per cent of the HIV-1 epidemic in
Kenya, and specific sampling densities of 10.8 per cent for MSM,
1.7 per cent for PWID, 0.6 per cent for FSW, and 0.3 per cent for
HET (Supplementary Table S2). Sequences were available from
seven (of eight) former administrative provinces in Kenya: Nairobi
(N=1440, 35.5 per cent of the sequences in this study); Coast
(N=1061, 26.2 per cent); Nyanza (N=665, 16.4 per cent); Rift Val-
ley (N=508, 12.5 per cent); Western (N=158, 3.8 per cent); Central
(N=44, 1.1 per cent); Eastern (N=6, 0.2 per cent); and 176 (4.3 per
cent) sequences with missing data on sampling location (Table 1,
and Fig. 1). All PWID sequences were derived from the Coast
province. Sampling year and place were missing for 176 (4.3 per
cent) of the newly generated HET sequences. These sequences
were included in the assessment of subtype diversity in Kenya but
excluded from the Bayesian phylodynamic analysis (which neces-
sitates information on sampling date). In our dataset, 14 MSM
identified as transgender persons. Subsequent sub-analyses were
made to tease out clustering patterns specific for transgender
persons relative to other risk groups.

3.2 HIV-1 sub-subtype A1 and subtype D
dominated the epidemic in Kenya
Among the combined new and published Kenyan sequences
(N=4058, Supplementary Table S3), HIV-1 sub-subtype A1 was
most common (70.5 per cent) followed by subtype D (11.4 per
cent, Supplementary Figure S2). Sub-subtype A1 was also the
most common HIV-1 strain in all provinces and amongst all risk
groups (Supplementary Table S4, and Supplementary Table S5,
respectively). Temporal trend analysis in subtype distribution was
restricted to the period after 2004 that comprised 92.0 per cent of
the sequences (Supplementary Figure S2). Sub-subtype A1 infec-
tions increased from 59.7per cent to 78.3 per cent, 2004–2019
(p<0.001). No significant change was seen for subtype C (p=0.30)
or subtype D (p=0.59), whereas subtype G decreased from 1.2per
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Table 1. Demographics and distribution of newly generated and published Kenyan HIV-1 pol sequences by risk group.

Risk group

Category HET MSM FSW PWID Total

Sequences Published 2987 (87.8%) 159 (42.7%) 99 (43.6%) 58 (100.0%) 3303 (81.4%)
New 414 (12.2%) 213 (57.3%) 128 (56.4%) 0 (0.0%) 755 (18.6%)

Province Nairobi 1212 (35.6%) 137 (36.8%) 91 (40.1%) 0 (0.0%) 1440 (35.5%)
Coast 704 (20.7%) 178 (47.9%) 121 (53.3%) 58 (100.0%) 1061 (26.2%)
Nyanza 594 (17.5%) 57 (15.3%) 14 (6.2%) 0 (0.0%) 665 (16.4%)
Rift Valley 507 (14.9%) 0 (0.0%) 1 (0.4%) 0 (0.0%) 508 (12.5%)
Western 158 (4.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 158 (3.9%)
Central 44 (1.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 44 (1.1%)
Eastern 6 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (0.2%)
Missinga 176 (5.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 176 (4.3%)

Year (range) 2001–2010 2077 (64.4%) 118 (31.7%) 170 (74.9%) 58 (100.0%) 2423 (59.7%)
2011–2019 1070 (33.2%) 254 (68.3%) 36 (15.9%) 0 (0.0%) 1360 (33.5%)
1986–2000 78 (2.4%) 0 (0.0%) 21 (9.3%) 0 (0.0%) 99 (2.4%)
Missinga 176 (5.2%%) 0 (0.0%) 1 (0.0%) 2 (0.0%) 176 (4.3%)

Total 3401 (83.8%) 372 (9.2%) 227 (5.6%) 58 (1.4%) 4058 (100.0%)

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; FSW, female sex worker; HET, at-risk men and women who did not report sex
work or male same-sex behaviour.
aSequences lacking information on year and geographic area of sampling.

Figure 1. Map of Kenya highlighting geographic locations and sampling
density. Map of Kenya highlighting geographic locations (former
administrative provinces), HIV-1 burden per province (proportion of
people with HIV-1 as per province in Kenya (Kenya National AIDS
Control Council (NACC) 2018; Kenya National Bureau of Statistics 2019;
National AIDS and STI Control Programme (NASCOP) 2019, 2020), and
the sampling density (number of people with HIV-1 included in the study
based on the estimated number of people with HIV-1 in Kenya).

cent to 0.0 per cent, 2004–2019 (p=0.013). Overall, CRFs decreased
from 2.7per cent to 0.0 per cent, 2004–2019 (p=0.005), whereas
URFs decreased from 11per cent to 0.9 per cent, 2004–2019
(p=0.001). Bayesian inference also revealed that the effective pop-
ulation size estimates for HIV-1 sub-subtype A1 were consistently
higher than those for HIV-1 subtypes C and D throughout the
study period (Fig. 2).

3.3 HIV-1 geographic mixing within and between
provinces in Kenyan
Overall, 1832 (45per cent) of Kenyan sequences were found in 409
clusters including sub-subtypeA1 (N=306, 74.8 per cent), subtype

C (N=25, 6.1 per cent), and subtype D (N=78, 19.1 per cent) clus-
ters (Table 2, Supplementary Table S6, Supplementary Figures S3
and S4).

Overall, 1485 (51.9 per cent) of sub-subtype A1 sequences, 137
(48.1 per cent) subtype C, and 210 (45.6 per cent) subtype D formed
clusters. The remaining 1375 (48.1 per cent) sub-subtype A1, 148
(51.9 per cent) subtype C, and 251 (54.5 per cent) sequences were
singletons (Supplementary Table S6). Majority (N=248, 60.6 per
cent) were province-exclusive, including clusters from Nairobi
(N=107, 26.2 per cent), Coast (N=58, 14.2 per cent), Nyanza
(N=51, 12.5 per cent), Rift Valley (N=23, 5.6 per cent), Western
(N=6, 1.5 per cent), and Central (N=3, 0.7 per cent). The remain-
ing clusters (N=161, 39.4 per cent) were mixed between different
geographic provinces (Supplementary Figure S5a).

3.4 Within-risk group clustering dominated
among Kenyan HIV-1 clusters
Majority (N=362, 88.5 per cent) of the clusters represented
within-risk group HIV-1 transmission including HET (N=316;
72.1 per cent), MSM (N=37, 9.1 per cent), FSW (N=7, 1.7 per
cent) and PWID (N=2, 0.5 per cent). Further and amongst PWID,
only two clusters were identified (one dyad and one large clus-
ter, both PWID exclusive), with the large cluster comprising
80per cent of all PWID sequences in the dataset (N=41). The
remaining clusters (N=47, 11.5 per cent) involved mixed link-
ages between different risk groups including MSM/HET (N=15,
3.7 per cent of all clusters), FSW/HET (N=15, 3.7 per cent),
MSM/FSW/HET (N=9, 2.2 per cent), MSM/FSW (N=6, 1.5 per
cent), MSM/PWID/FSW/HET (N=1, 0.2 per cent), and PWID/HET
(N=1, 0.2 per cent) mixed clusters (Table 2, Supplementary Figure
S5b). A sub-analysis of clustering patterns involving transgender
people showed that nine of 14 (64.3 per cent) clustered with MSM,
four clustered with HET (28.6 per cent), and one did not cluster
with any other sequences in the dataset (7.1 per cent). Compared
to HET, MSM and PWID sequences were more likely to cluster
(adjusted odds ratio [aOR] 4.4, 95per cent confidence interval [CI]
3.2–6.0, p < 0.001; and aOR 3.4, CI 1.8–6.5, p < 0.001, respectively,
Table 3).
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Figure 2. Population dynamics of HIV-1 sub-subtype A1, subtype D and subtype C lineages in Kenya. Bayesian Skygrid plots showing effective
population size of the (A) HIV-1 sub-subtype A1, (B) HIV-1 subtype C and (C) HIV-1 subtype D lineages in the Kenyan dataset. Median estimates of the
effective population size overtime are shown as a continuous line in each plot (coloured Red for sub-subtype A1, Brown for subtype C, and Blue for
subtype D). The shaded area represents the 95per cent higher posterior density intervals of the inferred effective population size for each lineage.

Table 2. Kenyan HIV-1 clusters (N=409) grouped into different
subtypes and HIV-1 transmission routes.

Dyadsa Networksb Large clustersc Total (N,%)

Subtype
A (A1) 182 (59%) 105 (34%) 19 (6%) 306 (75%)
C 16 (64%) 8 (32%) 1 (4%) 25 (6%)
D 51 (65%) 27 (35%) 0 (0%) 78 (19%)

Risk category
HET 204 (65%) 101 (32%) 11 (3%) 316 (77%)
Mixedd 24 (51%) 16 (34%) 7 (15%) 47 (11%)
MSM 13 (35%) 23 (62%) 1 (3%) 37 (9%)
FSW 7 (100.0%) 0 (0%) 0 (0%) 7 (2%)
PWID 1 (50%) 0 (0%) 1 (50%) 2 (<1%)
Total 249 (61%) 140 (34%) 20 (5%) 409

Abbreviations: HET, heterosexual transmission; Mixed; MSM, men who have
sex with men; FSW, female sex work; PWID, people who inject drugs. *Risk
groups in mixed clusters (N, proportion of mixed clusters): MSM/HET
(15, 32%), FSW/HET (15, 32%), MSM/FSW/HET (9, 19%), MSM/FSW (6, 13%),
MSM/PWID/FSW/HET (1, 2%), and PWID/HET (1, 2%).
aDyads: clusters of 2 sequences bNetworks: clusters of 3–14 sequences cLarge
clusters: clusters of >14 sequences. dClusters with sequences from multiple
risk groups.

3.5 The effective population size has stabilised
over time amongst all risk groups
The correlation between divergence from root and time of sam-
pling was low in our dataset (i.e. R2 =0.139, 0.136, and 0.121 for
the sub-subtype A1, subtype C, and subtype D datasets, respec-
tively, Supplementary Figure S6). Thus normal priors were speci-
fied for the time of the most recent common ancestor (tMRCA) of
sub-subtype A1, subtype C and subtype D, based on previous esti-
mations (Faria et al. 2014, 2019). The inference of HIV-1 dynamics
in the Kenyan epidemic was based on a Bayesian phylodynamic
analysis of the large Kenyan HIV-1 clusters (19 sub-subtype A1
and one subtype C cluster (Supplementary Table S7). All sub-
subtype A1 HET clusters exhibited similar dynamics (Supplemen-
tary Figure S7) and were merged in one plot to assess overall

dynamics among HET (Fig. 3A). The number of effective infections
(proportional to the transmission rate over the prevalence) for
HET increased over time from 1987 to the mid-2000s, after which
infections stabilised. The number of Kenyan PWID contributing
to new HIV-1 infections over time increased gradually from 1987
to 2010, the latest sampling date for PWID (Fig. 3C), whereas the
MSM-exclusive cluster showed stable dynamics with no periods of
exponential growth between 1991 and 2019, the latest sampling
date for MSM (Fig. 3D). The only large subtype C cluster that was
foundwas a HET cluster—this cluster showed similar dynamics as
the sub-subtype A1 HET clusters, with increasing effective popu-
lation size from 1983 to the early 2000s followed by a stabilisation
(Fig. 3B).

3.6 Evolutionary parameters were similar among
clusters of different risk groups
Subtype C had the earliest tMRCA (1977, 95per cent higher poste-
rior density [HPD] interval: 1968–1985) of all clusters. The median
tMRCA estimates of sub-subtype A1 clusters indicated multiple
introductions into Kenya over 42 years (1978–2019), with most
clusters introduced between the late 1980s and early 1990s. The
earliest tMRCA for a Kenyan HET cluster was estimated to 1978
(95per cent HPD interval: 1971–1990); MSM to 1991 (HPD inter-
val: 1974–2004); and PWID to 1987 (HPD interval: 1985–1990).
The median HIV-1 evolutionary rates ranged from 1.01×10−3 to
1.3 × 10−3 substitutions site−1 year−1 (s/s/y) for subtype A1 in HET
clusters and 1.28×10−3 to 1.34×10−3 s/s/y for mixed-risk group
clusters. The median HIV-1 evolutionary rate for the only large
MSM cluster was 9.80×10−4 s/s/y, and 1.06×10−3 s/s/y for the only
large PWID cluster. Pairwise comparison of median evolution-
ary rates (with Bonferroni correction for multiple comparisons)
showed no difference in evolutionary rates between HET and
MSM (p=0.169), HET and PWID (p=1.00), and MSM and PWID
(p=0.297). No statistical differences were found between tMRCA
estimates or cluster growths between clusters of different risk
groups, respectively (p=0.822, and p=0.321, Table 4, Fig. 4).
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Table 3. Factors associated with clustering among HIV-1 sequences from Kenya.

Bivariate analysisa Multivariate analysis
Characteristics OR (95% CI) p-value aOR (95% CI) p-value

Risk category HET Reference
MSM 3.8 (3–4.8) <0.001 4.4 (3.2–6.0) <0.001
PWID 4.7 (2.5–8.8) <0.001 3.4 (1.8–6.5) <0.001
FSW 0.6 (0.5–0.9) 0.003 1.2 (0.8–1.7) 0.391

Subtype A1 Reference
C 0.9 (0.7–1.1) 0.215
D 0.8 (0.6–0.9) 0.011 0.68 (0.6–0.9) <0.001

Year (range) 1986–2000 Reference Reference
2001–2010 3.7 (2.2–6.2) <0.001 3.9 (2.1–7.0) <0.001
2011–2019 5.1 (3.0–8.7) <0.001 5.3 (2.9–9.9) <0.001

Province Central Reference
Coast 1.3 (0.7–2.4) 0.383
Eastern 0.3 (0–3) 0.314
Nairobi 1.6 (0.9–2.9) 0.141
Nyanza 1.4 (0.7–2.6) 0.297
Rift Valley 0.8 (0.4–1.6) 0.576
Western 1 (0.5–1.9) 0.936
Missinga 1 (0.5–1.9) 0.945

Sequence category New Reference
Published 1.2 (1.1–1.5) 0.007 0.6 (0.5–0.8) <0.001

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; FSW, female sex worker; HET, at-risk men and women who did not report sex
work or male same-sex behaviour.
aOnly variables with a p <0.1 in the bivariate analysis were included in the multivariate model (thus subtype C and province were excluded from the multivariate
analysis).

Figure 3. HIV-1 risk group-specific estimates in the effective population size through time in Kenya. Bayesian Skygrid plots showing historical
population dynamics of (A) the main HIV-1 sub-subtype A1 HET clusters, (B) the only large subtype C HET cluster, (C) the only large HIV-1 sub-subtype
A1 PWID cluster and (D) the only large HIV-1 sub-subtype A1 MSM cluster in Kenya. Median estimates of the number of individuals contributing to
new infections over time are shown as a continuous line coloured as per the dominant risk group per cluster (bluish-green: MSM; sky blue: PWID; and
yellow: HET). The area shaded grey represents the 95per cent higher posterior density intervals of the inferred effective population size. Information
on geographic representation per cluster is provided in the figure legends.

3.7 Evidence of West-to-East HIV-1 migration,
and transmission from HET to key populations
Phylogeographic analysis was based on HIV-1 sub-subtype A1—
the strain with the highest number of sequences in our study,

and the most dominant strain circulating strain in Kenya. In

all sensitivity analyses, Western, Central and Eastern provinces

were excluded as they had the smallest number of sequences

in the study, and sequences from transgender people and
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Figure 4. Date of origin, evolutionary rate, and growth rate among sub-subtype A1 and subtype C clusters of different risk groups. Time to the most
recent common ancestor (A), evolutionary rate (B), and growth rate (C) estimates among seventeen sub-subtype A1 and one subtype C clusters.
Median estimates and 95per cent higher posterior density interval are shown for the different categories per cluster, coloured by the dominant risk
group per cluster. Results are not shown for two clusters (A1.5.HET and A1.18.HET) whose parameters did not converge.

MSM were analysed together as one risk group. The Markov
jumps estimates from the cluster-wise phylogeographic infer-
ence indicated that the majority (62.6 per cent) of HIV-1 jumps
occurred within Kenyan borders whilst the remaining involved
HIV-1 export (24.1 per cent) from Kenya to other countries, and
HIV-1 import (13.2 per cent) to Kenya (Table 5). The proportion
of West-to-East jumps over time was significantly higher than
that of East-to-West jumps (p=0.001, Figs 5A and 4B). West-to-
East migration accounted for the majority (76.1 per cent) of all
within-country jumps—including jumps from Nyanza to Nairobi
(10.3 per cent), Rift Valley to Nairobi (9.8 per cent), Nyanza to
Rift Valley (9.2 per cent), Nyanza to Coast (6.3 per cent), Rift Val-
ley to Coast (6.3 per cent), and Nairobi to Coast (5.7 per cent).

East-to-West migration accounted for only 23.9 per cent within-
country jumps and comprised jumps from Rift Valley to Nyanza
(7.5 per cent), Nairobi to Nyanza (4.6 per cent), and Nairobi to Rift
Valley (2.9 per cent, Fig. 5B). Pairs of geographic provinces located
next to each other were involved in an extensive cyclic HIV-
1 exchange—including transmission from Nyanza to Rift Valley
(9.2 per cent forward jumps versus 7.5 per cent reverse jumps) and
Rift Valley to Nairobi (9.8 per cent vs 2.9 per cent). Although Coast
province received a significant proportion of translocated HIV-1
lineages (18.3 per cent of all HIV-1 jumps), nowithin-countryHIV-1
jumps were observed as originating from Coast province. Uni-
form and proportional sub-sampling of the sequences collected
2010–2019 indicated more West-to-East virus flow than vice-versa
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Table 4. Estimated dates of origin and evolutionary parameters of
the large Kenyan HIV-1 clusters.

Cluster tMRCAa
Evolutionary
rate (E−3)

Growth rate
(per year)

A1.1.MIX 1989 [1984, 1994] 1.32 [1.00, 1.66] 0.16 [0.11, 0.21]
A1.2.HET 1986 [1977, 1993] 1.05 [0.73, 1.39] 0.18 [0.12, 0.25]
A1.3.HET 1982 [1971, 1990] 1.05 [0.72, 1.39] 0.24 [0.13, 0.36]
A1.4.MIX 1989 [1983, 1996] 1.31 [0.97, 1.67] 0.28 [0.17, 0.41]
A1.6.PWID 1987 [1985, 1990] 1.06 [0.67, 1.52] 0.15 [0.07, 0.26]
A1.7.MIX 1988 [1977, 1997] 1.28 [0.93, 1.64] 0.21 [0.12, 0.30]
A1.8.MIX 1978 [1963, 1993] 1.32 [0.97, 1.69] 0.15 [0.09, 0.23]
A1.9.HET 1998 [1992, 2004] 1.09 [0.69, 1.71] 0.31 [0.15, 0.55]
A1.10.MIX 1993 [1984, 2000] 1.34 [0.99, 1.70] 0.07 [0.02, 0.12]
A1.11.HET 1998 [1993, 2001] 1.31 [0.91, 1.71] 0.07 [0.04, 0.12]
A1.12.HET 1991 [1983, 1999] 1.08 [0.73, 1.50] 0.19 [0.10, 0.33]
A1.13.HET 1987 [1977, 1995] 1.05 [0.72, 1.40] 0.22 [0.12, 0.36]
A1.14.HET 1991 [1981, 2001] 1.03 [0.69, 1.39] 0.21 [0.09, 0.37]
A1.15.MSM 1991 [1974, 2004] 0.98 [0.65, 1.29] 0.19 [0.09, 0.31]
A1.16.HET 1991 [1983, 1998] 1.06 [0.73, 1.47] 0.19 [0.09, 0.33]
A1.17.HET 1992 [1982, 2000] 1.07 [0.71, 1.54] 0.29 [0.15, 0.49]
A1.19.HET 1983 [1971, 1991] 1.01 [0.67, 1.35] 0.25 [0.17, 0.47]
C.1.HET 1977 [1968, 1985] 1.48 [1.09, 1.95] 0.07 [0.01, 0.14]

Abbreviations: HET, Heterosexual transmission; Mixed; MSM, men who have
sex with men; FSW, female sex work; MTMC, perinatal transmission; PWID,
people who inject drugs. Results are not shown for two clusters (A1.5.HET and
A1.18.HET) whose parameters did not converge.
aHPD: Higher posterior density interval. TMRCA: time to the most recent
common ancestor. Data are median and 95% higher posterior density
intervals.

(p < 0.001 for all comparisons, Table 6, Supplementary Figures S8a
and S8b).

The cluster-wise phylogeographic inference showed that
82.9 per cent of virus jumps between risk groups were from HET
(involving HET-to-FSW [34.0 per cent], HET-to-MSM [31.9 per cent],
and HET-to-PWID [17.0 per cent]). Only 12.8 per cent virus jumps
were from key populations (involving MSM-to-HET [6.4 per cent]
and PWID-to-HET [6.4 per cent], Fig. 5D). The remaining were
MSM-to-FSW virus jumps (4.3 per cent, Table 5). Also, the pro-
portion of virus jumps from HET to key populations over time
was significantly higher compared with virus jumps from key
populations to HET (p<0.001, Fig. 5C). The earliest estimated
Markov jump event from HET-to-FSW occurred in 1981, fol-
lowed by HET-to-MSM (1986), and HET-to-PWID (1990, Fig. 5D).
Virus jumps among HET were common as early as during the
1980s while virus jumps among MSM (i.e. MSM-to-MSM) and
among PWID (i.e. PWID-to-PWID) increased during the 1990s
and 2000s, respectively (Fig. 5D). Uniform and proportional
sub-sampling of the sequences collected 2010–2019 indicated
more HIV-1 jumps from HET to key populations than vice-versa
(p<0.001 for all comparisons, Table 6, Supplementary Figures
S8c and S8d).

4. Discussion
We show that HIV-1 transmission in Kenya was largely compart-
mentalized by risk groups. This result is based on the identifica-
tion of 409 statistically supported phylogenetic clusters—where
a majority (88.5 per cent) represents within-risk group cluster-
ing. Furthermore, we found that 11.5 per cent of the clusters
represented HIV-1mixing between risk groups—including approx-
imately 7.6 per cent HIV-1mixing betweenMSMandHET in Kenya.
These findings are consistent with previous phylogenetic data in
Coastal Kenya demonstrating minimal HIV-1 mixing between key
populations and the heterosexual population (Bezemer et al. 2014;

Table 5. Number of expected (Markov) jumps (BF ≥3) inferred for
HIV-1 migration between geographic locations and between risk
groups based on the cluster-wise sub-sampling approach.

The direction of migration events
(from-to) Number of HIV-1 jumps (N, %)

Geographic 174 (100.0%)
Within-country 109 (62.6%)
Nyanza-Nairobi 18 (10.3%)
Rift Valley-Nairobi 17 (9.8%)
Nyanza-Rift Valley 16 (9.2%)
Rift Valley-Nyanza 13 (7.5%)
Nyanza-Coast 11 (6.3%)
Rift Valley-Coast 11 (6.3%)
Nairobi-Coast 10 (5.7%)
Nairobi-Nyanza 8 (4.6%)
Nairobi-Rift Valley 5 (2.9%)

Export from Kenya 42 (24.1%)
Nyanza-Ref 20 (11.5%)
Rift Valley-Ref 13 (7.5%)
Nairobi-Ref 6 (3.4%)
Coast-Ref 3 (1.7%)

Import into Kenya 23 (13.2%)
Ref-Coast 9 (5.2%)
Ref-Nyanza 5 (2.9%)
Ref-Rift Valley 5 (2.9%)
Ref-Nairobi 4 (2.3%)

Risk group 47 (100.0%)
HET-FSW 16 (34.0%)
HET-MSM 15 (31.9%)
HET-PWID 8 (17.0%)
PWID-HET 3 (6.4%)
MSM-HET 3 (6.4%)
MSM-FSW 2 (4.3%)

Abbreviations: Ref, reference HIV-1 pol sequences from the global epidemic
that clustered closely with Kenyan sequences; HET, heterosexual
transmission; Mixed; MSM, men who have sex with men; FSW, female sex
work; MTMC, perinatal transmission; PWID, people who inject drugs.

Nduva et al. 2020). We have previously estimated frequent (85per
cent) within-risk group clustering, and minimal (15per cent) HIV-
1 mixing between MSM and the HET in Coastal Kenya (Nduva
et al. 2020). Likewise, Bezemer and colleagues—albeit with a small
sample size and sequences only from Nairobi and Coast province
only found one HIV-1 MSM/HET link, indicating infrequent HIV-1
mixing between MSM and HET (Bezemer et al. 2014). The phylo-
geographic inference indicated a higher proportion of HIV-1 jumps
from HET to MSM, FSW and PWID. However, the detected virus
jumps represent rare events as overall transmission between risk
groups is itself rare in the Kenyan epidemic (as shown in the clus-
ter analysis). Also, majority of HIV-1 jumps from HET to other risk
groups occurred in themore distant past—and likely represent the
historical flow of HIV-1 from HET to other risk groups. Overall,
our findings indicate that contrary to concerns by the Ministry of
Health in Kenya (National AIDS and STI Control Programme 2017),
HIV-1 key populations may not disproportionately transmit HIV-
1 to heterosexuals in the general epidemic. It is well established
that the vast majority of HIV-1 transmission in Kenya could be
attributed to risky heterosexual behaviours (Kenya National AIDS
Control Council 2009; Gouws and Cuchi 2012).

Overall, our study highlights important dynamics in HIV-1
spread in the context of a mixed HIV-1 epidemic and support the
hypothesis of frequent within-risk group transmission and lim-
ited between-risk group transmission (Bezemer et al. 2014; Nduva
et al. 2020). This hypothesis is further strengthened by findings
from a review of 35 studies assessing HIV-1 mixing between HIV-1
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Figure 5. Proportion and dates of HIV-1 transitions between geographic provinces and risk groups. Dates of HIV-1 transitions between geographic
provinces and risk groups summarised from trait-annotated maximum clade credibility trees. Plots represent (A) proportion of West-to-East vs
East-to-West geographic migration over time, (B) dates of HIV-1 dissemination between different geographic locations (where group median and
interquartile range are coloured by the direction of transmission—coloured sky blue: West-to-East, and vermillion: East-to-West), (C) proportion of
HIV-1 transmission from heterosexuals to key populations and vice-versa over time, and (D) dates of HIV-1 transmission within and between different
risk groups (where group median and interquartile range are coloured by ‘source’ risk group—coloured green: MSM; sky blue: PWID; vermillion: FSW;
yellow: HET). Only transitions with a posterior probability higher than 0.90 are plotted. Dots in the pirate plots represent HIV-1 migration events.

populations in sub-Saharan Africa highlighting the predominance
ofwithin-risk group transmission chains inmost countries (Nduva
et al. 2021). To reduce population-level HIV-1 incidence in sub-
Saharan Africa, HIV-1 control programs may require both broad-
reaching interventions aimed at the general epidemic, as well
as strengthening micro-strategies that address disparities among
population categories (including scale-up of ART, HIV-1 testing
and other prevention programs directed towards key populations
such as MSM, PWID and FSW who are most-at-risk of infection)
(Cremin et al. 2017; Kelly et al. 2018; Koss et al. 2021; Smith et al.
2021).

In this study, HIV-1 transmission in Kenya involved pre-
dominantly West-to-East dissemination, notably from high HIV-
1 prevalence regions (including the former Nyanza province in
Western Kenya) to comparatively lower HIV-1 prevalence regions
(including former Coastal province). Irrespective of transmission
risk, the largest number of people with HIV-1, and approximately
40per cent of all newly diagnosed HIV-1 infections have been
suggested to occur in Western Kenya (National AIDS and STI Con-
trol Programme (NASCOP) 2020). It is therefore plausible that the
observed HIV-1 dissemination pattern reflects considerable HIV-1
transmission from high-to-low HIV-1 prevalence regions, a find-
ing that likely applies to other sub-Saharan African countries
with substantial within-country variation in the prevalence of
HIV-1. However, our findings contrast data from Uganda showing
significant virus flow from low-to-high HIV-1 prevalence popu-
lations along the Lake Victoria (Bbosa et al. 2019; Grabowski
et al. 2020; Ratmann et al. 2020). In the current study, we

did not have data on fishing folk and we did not assess trans-
mission between fishing folk and inland communities. Yet, it is
possible that some undisclosed fishing-folk were grouped with
HET (unless where the risk group was known) and classified as
belonging to the Nyanza province. The gradient in HIV-1 preva-
lence in Kenya decreases Eastwards, and we observe an overall
higher proportion of HIV-1 migration from provinces in the West
(Nyanza and Rift valley) towards provinces in the East (such as the
Coast province). Mathematical modelling and empirical evidence
have shown that directed approaches may reduce HIV-1 incidence
across sub-Saharan Africa (Gerberry et al. 2014; Mcgillen et al.
2016; Grabowski et al. 2017; Vandormael et al. 2019). Optimiz-
ing existing prevention strategies in geographic HIV-1 hotspots
(Dwyer-Lindgren et al. 2019) in sub-Saharan Africa (such as West-
ern Kenya) may therefore result in declining population-level
HIV-1 incidence (Bailey et al. 2007; Anderson et al. 2014).

Our study represents one of the largest national-level analy-
ses of HIV-1 pol diversity that has been done in Africa. However,
we were still limited by a low sampling density and data on
how the study participants in the published studies were iden-
tified for sequencing. Low sampling likely resulted in missing
links in identified Kenyan clusters and low probability of detect-
ing some rare subtypes circulating in Kenya (Novitsky et al. 2014).
Moreover, PWID and their partners, as well as the clients of
sex workers, were less likely to get into treatment studies and
were therefore underrepresented in this study. It is therefore
likely that the rates of HIV-1 transmissions from FSW, MSM and
PWID to the HET population were underestimated owing to those
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Table 6. The number of HIV-1 jumps (2010–2019) based on propor-
tional and uniform sub-sampling.

Jumps direction
(from-to) Number of Jumps (N)

Jumps between locations
Proportional sub-
sampling

Uniform sub-
sampling

West to East 319 (88%) 213 (78%)
Nyanza-Rift Valley 129 (36%) 50 (18%)
Nyanza-Nairobi 113 (31%) 73 (27%)
Nyanza-Coast 50 (14%) 54 (20%)
Nairobi-Coast 8 (2%) 19 (7%)
Rift Valley-Nairobi 14 (4%) 8 (3%)
Rift Valley-Coast 5 (1%) 9 (3%)

East to west 43 (12%) 61 (22%)
Rift Valley-Nyanza 11 (3%) 6 (2%)
Nairobi-Rift Valley 9 (2%) 21 (8%)
Nairobi-Nyanza 9 (2%) 25 (9%)
Coast-Nyanza 7 (2%) 3 (1%)
Coast-Nairobi 4 (1%) 3 (1%)
Coast-Rift Valley 3 (1%) 3 (1%)

Jumps between risk
groups

HET to key popula-
tions

126 (94%) 126 (72%)

HET-FSW 64 (48%) 75 (43%)
HET-MSM 58 (43%) 46 (26%)
HET-PWID 4 (3%) 5 (3%)

Key populations to
HET

3 (2%) 20 (11%)

FSW-HET 1 (1%) 15 (9%)
PWID-HET 1 (1%) 3 (2%)
MSM-HET 1 (1%) 2 (1%)

Key populations to
others

5 (4%) 29 (17%)

FSW-MSM 2 (1%) 14 (8%)
FSW-PWID 1 (1%) 4 (2%)
MSM-FSW 2 (1%) 9 (5%)
MSM-PWID 0 (0%) 1 (1%)
PWID-FSW 0 (0%) 1 (1%)
PWID-MSM 0 (0%) 0 (0%)

Abbreviations: HET, heterosexual; MSM, men who have sex with men; FSW,
female sex workers; PWID, people who inject drugs.

missing links. Despite the lower sampling density of HET com-
pared to MSM, PWID, and FSW sequences in the full dataset,
our sensitivity analyses controlling for sampling bias indicated
more virus jumps from HET to key populations. Yet, majority
of these jumps may not reflect current transmission dynamics
between risk groups as they might occurred in the distant past.
Also, excluding some geographic locations from our sensitivity
analysis due to few numbers of sequences from these provinces
in our dataset may have resulted in missing transmission chains
and could bias phylogeographic estimates of the geographic HIV-
1 spread in Kenya (Novitsky et al. 2014; Hassan et al. 2017).
Nonetheless, the excluded provinces have HIV-1 prevalence rates
lower than the national average and based on findings from this
analysis, it is unlikely that they would be major sources of HIV-
1 in Kenya. Lastly, we assessed HIV-1 flow between populations,
not between individuals, and these population-level inferences
may not be extrapolated to individual transmissions. Also, virus
jumps between risk populations in the phylogeographic analyses
may not be equatedwith transmission events because the discrete
phylogeographic modelling used in this analysis only accounts for
between-risk group jump, and not within-risk group jumps. Other

similar studies from developed settings with concentrated epi-
demics and dense sampling among infected individuals (as well as
readily available patient demographic data) have provided infor-
mation useful in HIV-1 prevention (Fisher et al. 2010; Kouyos et al.
2010; Volz et al. 2013; Poon et al. 2016; Ratmann et al. 2016; Sallam
et al. 2017; Ragonnet-Cronin et al. 2018; Vasylyeva et al. 2018). To
minimise phylogenetic uncertainties arising from low sample cov-
erage, future studies in sub-Saharan Africa should aim to achieve
higher sampling densities and aim to include sequences collected
in years that are more recent to determine more active Kenyan
clusters.

In conclusion, we have estimated the rates of transmission
between the general heterosexual population and HIV-1 key popu-
lations, and between geographic regions with varying HIV-1 preva-
lence in Kenya. We showed that high HIV-1 prevalence regions
may be important sources of HIV-1 to lower-prevalence regions,
and that the Kenyan HIV-1 epidemic is largely compartmental-
ized by risk groups and that the contribution of key popula-
tions to the wider heterosexual transmission network may be
significantly lower than vice versa. In the mixed Kenyan HIV-1
epidemic, targeting HIV-1 key populations needs to occur con-
currently with strengthening broad interventions in the general
population. These findings could pave the way towards strength-
ening HIV-1 control in Kenya and other countries in sub-Saharan
Africa.
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Supplementary data is available at Virus Evolution online.
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