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Abstract

Reciprocity is prevalent across human societies, but individuals are heterogeneous

regarding their reciprocity propensity. Although a large body of task-based brain

imaging measures has shed light on the neural underpinnings of reciprocity at group

level, the neural basis underlying the individual differences in reciprocity propensity

remains largely unclear. Here, we combined brain imaging and machine learning tech-

niques to individually predict reciprocity propensity from resting-state brain activity

measured by fractional amplitude of low-frequency fluctuation. The brain regions

contributing to the prediction were then analyzed for functional connectivity and

decoding analyses, allowing for a data-driven quantitative inference on psychophysi-

ological functions. Our results indicated that patterns of resting-state brain activity

across multiple brain systems were capable of predicting individual reciprocity pro-

pensity, with the contributing regions distributed across the salience

(e.g., ventrolateral prefrontal cortex), fronto-parietal (e.g., dorsolateral prefrontal cor-

tex), default mode (e.g., ventromedial prefrontal cortex), and sensorimotor

(e.g., supplementary motor area) networks. Those contributing brain networks are

implicated in emotion and cognitive control, mentalizing, and motor-based processes,

respectively. Collectively, these findings provide novel evidence on the neural signa-

tures underlying the individual differences in reciprocity, and lend support the asser-

tion that reciprocity emerges from interactions among regions embodied in multiple

large-scale brain networks.
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1 | INTRODUCTION

Reciprocity is often a transmission of prosocial behaviors, referring to

a kindness response toward actions perceived to be kind. It reflects aTing Li and Zhaodi Pei contributed equally to the current work.
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type of social preferences and serves as a fundamental force underly-

ing the evolution of human sociality, such as maintaining cooperation

and long-reaching social relations (Bowles & Gintis, 2013; Falk &

Fischbacher, 2006; Rand & Nowak, 2013).

In the laboratory setting, reciprocity is measured by well-

structured economic exchange games, among which the trust game

(TG) is most widely used (Berg et al., 1995). In the TG, a player (the

trustor) decides how much to share with another player (the trustee).

The shared money is then tripled in value and sent to the trustee. In

receipt of the tripled endowment, the trustee decides how much to

return back to the investor but, importantly, need not return anything.

The amount returned by the trustee is considered as a good indicator

to capture individual's reciprocity propensity (Berg et al., 1995;

Camerer, 2003). While trustees are obviously better off by betraying,

especially in the one-shot TG where there is no opportunity for social

reputation building through repeated play, they still adhere to inter-

nalized principle of reciprocity at various levels, that is, sending some

money back (Cox, 2004; Mccabe et al., 2003). Nevertheless, individ-

uals are heterogeneous regarding their reciprocity propensity, and the

heterogeneity may depend on a broad of factors, ranging from genetic

polymorphisms (Nishina et al., 2019) to testosterone concentrations

(Boksem et al., 2013) and personality traits (Ibáñez et al., 2016;

Zhao & Smillie, 2015).

Over the past decades, the neuropsychological components

underlying the reciprocity behavior have been revealed in combina-

tion with TG and neuroimaging techniques (e.g., functional magnetic

resonance imaging [fMRI]). In particular, reciprocity decisions are asso-

ciated with activations of brain regions across multiple large-scale

brain networks, including default mode network (DMN;

e.g., ventromedial prefrontal cortex [vmPFC]), salience network (SN;

e.g., ventrolateral prefrontal cortex [vlPFC]), and fronto-parietal net-

work (FPN; e.g., dorsolateral prefrontal cortex [dlPFC]) (Bellucci

et al., 2017, 2019; Declerck et al., 2013; Nihonsugi et al., 2015; van

den Bos et al., 2009). For instance, reciprocity may be evoked by

inferred good intentions of trustors, engaging mentalizing processes

and associated activations in DMN regions (Bellucci et al., 2019;

Declerck et al., 2013; Fett et al., 2014). Moreover, reciprocity involves

in dealing with the lure of self-interests that strongly drive individuals

to betray others. In this regard, betrayal proneness could be addressed

either by guilt feelings derived from norm violation (emotion proces-

sing, SN) (Bellucci et al., 2017; Phelps et al., 2014; Tangney

et al., 2007) or by suppressing selfish motives (cognitive control, FPN)

(Nihonsugi et al., 2015; Romano et al., 2017; van den Bos

et al., 2009). Taken together, reciprocity may emerge from the inter-

play of psychological processes associated with mentalizing, emotion

processing, and cognitive control.

However, despite the progress in the understanding of neural

underpinnings of reciprocity at the group level, personalized investiga-

tions of brain function for reciprocity are much less developed. Nota-

bly, neural signatures identified at the group do not necessarily reflect

individual differences, since group-level studies often treat individual

differences as sources of “noise” and discard them by averaging data

from a group of participants (Dubois & Adolphs, 2016; Kanai &

Rees, 2011). Therefore, it is important and necessary to investigate

individual differences in neural underpinnings of reciprocity with new

approaches, especially considering that individuals are widely hetero-

geneous regarding their reciprocity propensity.

Resting-state fMRI (R-fMRI) is the workhorse to examine neural

basis of individual differences. A major reason for the widespread

adoption is its minimal requirements (Birn et al., 2013; Dubois &

Adolphs, 2016). Moreover, as a task-independent approach, R-fMRI is

free from confounds associated with ongoing task demand and differ-

ent experimental designs across studies (Kable & Levy, 2015; Nash

et al., 2014; Nash & Knoch., 2016), so it is well suitable for quantify

individual differences. In contrast, task-dependent approach (e.g., task

fMRI) was usually designed to identify group effects that allow infer-

ences about the functions of the “average human brain” (Elliott

et al., 2021). Accordingly, a growing number of studies have linked

brain activation/connectivity patterns mapped by R-fMRI data to per-

sonality traits, cognitive functions and a broad range of social behav-

iors (Feng et al., 2021b; Hahn et al., 2015; Hsu et al., 2018; Li

et al., 2021; Lu et al., 2019; Rosenberg et al., 2016). In the current

study, we aimed to examine whether multivariate activation patterns

during resting-state predict interindividual variance in the reciprocity

propensity.

Resting-state brain activities have been commonly measured by

the amplitude of low frequency fluctuations (ALFF; Yu-Feng

et al., 2007) and fractional ALFF (fALFF; Zou et al., 2008). These mea-

sures reflect the intensity of spontaneous neural activity (Hoptman

et al., 2010; Zou et al., 2008) and exhibit higher test–retest reliabilities

than other R-fMRI measures, such as the functional connectivity,

graph-based network metrics, and voxel-mirrored homotopic connec-

tivity (Chen et al., 2018; Holiga et al., 2018; Somandepalli et al., 2015;

Zuo et al., 2010; Zuo & Xing, 2014). Moreover, fALFF/ALFF are well

coupling with physiological measures such as cerebral blood flow

(Baller et al., 2022; Li et al., 2012; Song et al., 2019) and neuronal glu-

cose metabolism (Aiello et al., 2015; Tomasi et al., 2013). These find-

ings suggest that fALFF/ALFF could capture information on the

brain's physiological state and represent potentially meaningful prop-

erties of the human brain. Notably, fALFF compared to ALFF over-

come the challenge of interfering physiological noise irrelevant to

brain activity, and thereby significantly improve sensitivity and speci-

ficity in detecting spontaneous brain activities (Zou et al., 2008). Last

but not the least, fALFF have been associated with personality traits

closely related to reciprocity, including empathy (Cox et al., 2012) and

extraversion (Ikeda et al., 2017; Kunisato et al., 2011), which provided

a good initial indication of the associations between fALFF and reci-

procity. Accordingly, the present work employed fALFF as a proxy for

brain activity to predict human reciprocity.

Moreover, given that recent theoretical and empirical evidence

indicating that flexible cognitive operations and behavior result from

complex interactions within and between large-scale brain networks

(Bressler & Menon, 2010; Miši�c & Sporns, 2016), we conducted two

additional analyses—modularity analysis and functional decoding—

after obtaining the regions contributing to predicting reciprocity,

which can provide more holistic insights for the contributing regions
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from the network level rather than the regional level (Feng

et al., 2021a; He & Evans, 2010; Xu et al., 2016). Specifically, modular-

ity analysis with the aid of graph-theoretic approaches was used to

investigate whether the regions contributing to predicting reciprocity

were segregated into specific brain systems (i.e., modules). Functional

decoding analyses to each module was performed based on large-

scale data sets in the Neurosynth database (Yarkoni et al., 2011) with

the purpose of decomposing distinct neuropsychological components

of reciprocity.

In light of previous empirical evidence and theoretical account

(Krueger et al., 2008), we hypothesized that patterns of spontaneous

activity in multiple brain systems implicated in mentalizing, emotion

and cognition function would contribute to predicting individual dif-

ferences in reciprocity propensity.

2 | MATERIALS AND METHODS

2.1 | Participants

Eighty-six healthy right-handed college students (73 males; 22.62

± 2.37 years old, range: 18–30 years old) without history of neuro-

logical or psychiatric disorder were recruited. The study was con-

ducted in accordance with the 1964 Helsinki Declaration and its

later amendments, and was approved by the Ethics Committee of

Beijing Normal University. Written informed consents were

obtained from all participants. Note that the experimental data

were published originally in Feng et al. (2021b), where the analyti-

cal strategies and measurements are different from those carried

out in the current studies.

2.2 | Trust game

Participants played a one-shot TG (Berg et al., 1995; Camerer &

Weigelt, 1988) with a putative anonymous partner. Before the game,

participants were given written instructions on the payoff and rules

for TG. Afterwards, participants answered several questions designed

to assess their understanding of the TG.

Participants acted in the role of trustees and made their deci-

sions in a strategy approach (Brandts & Charness, 2011). Specifi-

cally, participants were told that the other player (i.e., trustor) had

an endowment of 100 MUs, and needed to decide whether to trust

participants or not by passing the endowment to the participants

(i.e., trustees). Participants did not know whether the trustor had

shared the MUs, but they had to decide how many MUs to return if

trustors trusted them. The amount of money returned by trustees

measured reciprocity propensity (Berg et al., 1995; Camerer, 2003).

It should be noted that in one-shot TG experimental setting, there

is no opportunity for punishment or social reputation building.

Therefore, a generous returning should be a direct, valid signal of

reciprocity or cooperation (Brülhart & Usunier, 2012; Cox, 2004). In

particular, a previous study has collected different economic game

decisions from over 1400 individuals, and found that behavioral

reciprocity in one-shot TG is highly correlated with self-reported

cooperation values, as well as cooperative behavior measured in

other experimental paradigms (e.g., Public Goods Game)

(Peysakhovich et al., 2014). Moreover, there also existed a strong

correlation between the behavioral reciprocity in one-shot TG at

different time points (Peysakhovich et al., 2014).

2.3 | Image acquisition

Images were acquired with a Siemens TRIO 3-Tesla scanner at the

Beijing Normal University Imaging Center for Brain Research. All par-

ticipants underwent a 5-min R-fMRI scanning, during which they were

instructed to close their eyes, keep still, remain awake, and not to

think about anything systematically. The R-fMRI images consisted of

150 contiguous echo-planar imaging volumes using the following

parameters: axial slices, 33; slice thickness, 3.5 mm; gap, 0.7 mm; rep-

etition time (TR), 2000 ms; echo time (TE), 30 ms; flip angle, 90�; voxel

size, 3.5 � 3.5 � 3.5 mm3; and field of view (FOV), 244 � 244 mm2.

In addition, high-resolution structural images were acquired through a

three-dimensional sagittal T1-weighted magnetization-prepared rapid

acquisition with gradient-echo sequence, using the following parame-

ters: sagittal slices, 144; TR, 2530 ms; TE, 3.39 ms; slice thickness,

1.33 mm; voxel size, 1 � 1 � 1.33 mm3; flip angle, 7�; inversion time,

1100 ms; and FOV, 256 � 256 mm2.

2.4 | Image preprocessing

The R-fMRI data preprocessing was performed using the DPABI soft-

ware package (Yan et al., 2016), which is a user-friendly toolbox based

on SPM (SPM12, https://www.fil.ion.ucl.ac.uk/spm/). Firstly, consid-

ering signal equilibrium and participants' adaptation to scanning noise,

the first 10 time points of the images were removed. The realignment

was then performed for head motion correction. Four participants

were excluded according to the criteria of head motion exceeding

2.5 mm maximum translation, 2.5� rotation or mean frame-wise dis-

placement (FD) exceeding 0.2 mm over the process of scans (Power

et al., 2012; Yan et al., 2013). For spatial normalization, the structural

images of participants were co-registered to corresponding functional

images and were subsequently segmented. The parameters obtained

from segmentation were afterwards applied to normalize participants'

functional images into the Montreal Neurological Institute (MNI)

space (MNI template with a resolution of 3 � 3 � 3 mm3). After that,

the constant and linear trends of time courses were removed. More-

over, the Gaussian smooth filter was used to reduce the influence of

spatial noise (full-width at half maximum [FWHM] = 4 � 4 � 4).

Finally, three nuisance variables were regressed out, including white

matter signal, cerebrospinal fluid signal and 24 movement regressors

consisting of six head motion parameters, six head motion parameters

one time point before and the 12 corresponding squared items

(Friston et al., 1996).
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2.5 | Calculation of fALFF

In ALFF analysis, the time series of each voxel were firstly converted

to the frequency domain and the power spectrum was obtained. Then

the square root of the power spectrum was computed and the mean

value of square root ranging from 0.01 to 0.08 Hz for each voxel was

obtained as ALFF (Yu-Feng et al., 2007). It was indicated that the

amplitude of low-frequency fluctuation of the R-fMRI signals could

reflect the intensity of regional spontaneous brain activity (Hoptman

et al., 2010). However, the ALFF is also sensitive to the physiological

noise. Therefore, an improved method named fALFF was proposed

(Zou et al., 2008). In particular, fALFF was defined as the ratio of the

power of the low-frequency range (0.01–0.08 Hz) to that of the entire

frequency range (0–0.25 Hz). Compared with the ALFF, it was demon-

strated that the fALFF could repress nonspecific signals in the R-fMRI,

and therefore would significantly improve the sensitivity and specific-

ity in detecting regional spontaneous brain activity (Zou et al., 2008).

The procedure of data analysis of fALFF was similar to that of ALFF,

with the additional step that the sum of amplitude at low-frequency

across 0.01–0.08 Hz was divided by that across the entire frequency

range (0–0.25 Hz) (Yan, 2010).

In this study, regions of interest (ROIs) were defined by using a

functional atlas of human brain (Power et al., 2011). This atlas, which

is yielded with the hypothesis that a graph represents some features

of brain organization, includes 264 ROIs spanning the cerebral cortex,

subcortical structures, and the cerebellum. ROIs were generated as

10 mm diameter spheres and each of them was on behalf of an ele-

ment of brain organization (Power et al., 2011). For each ROI, fALFF

was calculated by averaging the value of all the voxels that the ROI

comprises.

2.6 | Predictive model

In the present study, ridge regression linear model was applied to

predict participants' reciprocity propensity measured with the TG

from regional spontaneous brain activity (i.e., fALFF). The ridge

regression has been widely used for predictions in the neuroimag-

ing field (Cui & Gong, 2018; Siegel et al., 2016; Yang et al., 2016).

Specifically, linear regression model could be used to predict the

individual reciprocity propensity using the fALFF features extracted

from ROIs across the whole brain. The linear model can be formu-

lized as follows:

bY¼
X
P

i¼1

βiXiþβ0,

where bY is the prediction of individual reciprocity propensity, Xi is the

fALFF value at the ith ROI, P is the number of ROIs obtained across

the whole brain, and βi is the regression coefficient.

For higher prediction accuracy and avoidance of overfitting, regu-

larization techniques have been widely applied in model fitting

(Hoerl & Kennard, 1970). The formula is as follows:

min
β

X
N

i¼1

byi�yið Þ2þ λ
X
P

j¼1

βj
�

�

�

�

2
,

where yi is the real reciprocity propensity of the ith individual, and

N is the number of training samples. The regularization parameter λ is

able to adjust the compromise between the prediction error and the

L2 regularization. In the ridge regression, the purpose of the L2 regu-

larization is to minimize the sum of the square of the regression coef-

ficients and therefore to improve the generalizability for predicting

unseen data. Compared with traditional models such ordinary least

squares, the ridge regression can better cope with the problem of

multicollinearity and overfitting (Vinod, 1978). Consequently, the

ridge regression model was commonly used in the prediction based

on neuroimaging measures for its stable performance and avoidance

of overfitting (Cui & Gong, 2018).

2.7 | Prediction framework

The schematic diagram of the prediction framework is shown in

Figure 1. Concretely, for each subject, the fALFF values of all ROIs

were drew to form a feature vector. Subsequently, feature vectors of

all subjects were combined to get a feature matrix. Then the 10-fold

cross validation was used to test the ability of model to predict

unseen individuals, since it may provide more stable estimates of pre-

dictive accuracy (Varoquaux et al., 2017). Specifically, all subjects

were divided into 10 subsets, in which 9 subsets were served as the

training set and the left one was used as the testing set. This proce-

dure was repeated 10 times in order to make sure that each subset

was used as the testing set once.

In order to measure the accuracy of prediction, Pearson correla-

tion coefficient (r) and mean absolute error (MAE) between predicted

and actual reciprocity propensity were calculated. Considering the full

data set were divided randomly, the performance might depend on

the data division. Consequently, the process of 10-fold cross valida-

tion was repeated 100 times, and the results were averaged to obtain

a final prediction performance. Furthermore, permutation test was

used to determine whether the obtained accuracy metrics were signif-

icantly better than expected by chance. Specially, the procedure of

prediction was repeated 5000 times and in each time the behavior

scores across all participants were permuted without replacement.

The p value was finally computed by dividing the number of permuta-

tions that performed greater (or in the case of MAE, less) than the true

value by the total number of permutations (i.e., 5000).

Moreover, the leave-one-out cross validation (LOO-CV) was per-

formed to supplement our main findings. Specifically, there were

N � 1 subjects served as the training set and the remaining one sub-

ject served as the testing set, where N is the number of subjects. This

procedure was repeated N times so that each subject can be used

once as testing set and as much valid information as possible can be

obtained from limited data (Finn et al., 2015; Siegel et al., 2016). Simi-

larly, the Pearson correlation coefficient (r) and MAE was computed
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between the true and predicted values, and a 5000 times permutation

test was applied to examine the significance of the prediction

performance.

2.8 | Contributing regions in the prediction

The prediction weights of ROIs derived from the model represent

parameters of the backward models, in which latent factors were

extracted from the observed data. It has been demonstrated that the

original weights of backward models (e.g., ridge regression model in

the current study) do not necessarily indicate the contribution of the

corresponding features (Haufe et al., 2014). Accordingly, Haufe et al.

(2014) proposed an algorithm to reconstruct activation patterns from

the original weights, so that the resultant activation patterns could be

interpreted to indicate the significance of each feature to the predic-

tion model.

Moreover, the stability of the features was evaluated using a

bootstrap test (Kohoutová et al., 2020) based on the scores of acti-

vation patterns. In particular, a total of 10,000 bootstrap samples

was generated by sampling randomly with replacement and trained

a model for each sample to get a distribution of the activation pat-

terns for each brain region. Then the quotient (i.e., z and p) of the

mean and the standard deviation of bootstrap distributions for each

region were calculated as a measure of the feature stability. Based

on the bootstrap results, a threshold of p < .05 (i.e., jzj > 1.96) was

determined to select features for display purpose (see also Karlaftis

et al., 2019). This threshold was selected due to the reason that a

sparse pattern derived from the pattern was sufficient to predict

reciprocity propensity with comparable sensitivity to the full model

(see also Chang et al., 2015). It should be noted that, as in previous

neuroimaging-based prediction studies, the features were only

selected for display purpose (e.g., Chang et al., 2015; Chen

et al., 2021; Karlaftis et al., 2019; Wager et al., 2013; Woo

et al., 2014; Woo et al., 2017).

The revealed features (i.e., brain regions) were further validated

by establishing two new prediction models. In the first model, only

the 24 revealed brain regions (see also Results) were employed in the

prediction model. In the second model, the revealed regions were

excluded, and the remaining regions were employed in the prediction

model. The predictive performance of these models (also known as

“virtual lesion analysis”) was compared with full model to indicate the

significance of the revealed brain regions (see also Kohoutová

et al., 2020).

2.9 | Module detection

Furthermore, to investigate whether these contributing ROIs are uni-

formly interconnected or ulteriorly segregated into modules in which

the connections between ROIs are much denser, we performed a

modularity analysis with spectral optimization algorithm using the

Graph-theoretical Network Analysis Toolkit (He et al., 2009; Wang

et al., 2015). Concretely, for each participant, the resting-state func-

tional connectivity (RSFC) matrix between 24 regions listed was firstly

computed. For following analysis, matrixes across all participants were

Fisher z-transformed and averaged to generate a mean functional

connectivity matrix of 24 � 24. Moreover, the diagonal and negative

links of the mean RSFC matrix were set to zero (Power et al., 2011,

2013; Rubinov & Sporns, 2010). To exclude the confounding impact

of spurious relationships in international connectivity matrixes, a

threshold procedure was applied. Specifically, we set the initial value

F IGURE 1 Prediction
scheme. Step 1 (feature
extraction): The mean fractional
amplitude of low frequency
fluctuations (fALFF) of
264 regions of interest (ROIs) in
the Power atlas (Power
et al., 2011) was extracted as
prediction features of each

participant. Step 2 (model
construction): The relationship
between fALFF and reciprocity
propensity was examined using
ridge regression linear model,
combining with the 10-fold cross-
validation to assess the
prediction performance. Step
3 (model evaluation): The
accuracy of prediction was
measured by the correlation
coefficient (r) and mean absolute
error (MAE).
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of connectivity density to the lower qualification when the graph

begins to split into components and increased it by 0.01 to 0.5 so as

to examine the network stability (Xu et al., 2016). Here, starting with

the value of 0.31, contributing regions are completely confined to one

of modules.

2.10 | Functional decoding for identified modules

To explore which psychological topics were most relevant to each

identified module of modular analysis, a functional decoding analy-

sis was performed based on the Neurosynth database (version 0.6)

(Yarkoni et al., 2011) with codes from a set of IPython Notebooks

(https://github.com/adelavega/neurosynth-lfc) (de la Vega et al.,

2018). Neurosynth is a framework for large-scale fMRI meta-analy-

sis, consisting of 11,406 studies that cover all-sided published neu-

roimaging literature (Yarkoni et al., 2011). For each fMRI study,

peak coordinates of all activations and the frequency of all words in

the article abstract were collected in the Neurosynth database.

Based on the co-occurrence of all words in the abstracts, 60 inde-

pendent psychological topics were ultimately obtained to remedy

the redundancy and potential ambiguity using latent

Dirichlet allocation topic modeling (de la Vega et al., 2018). First,

we generated three brain masks consisting of regions in the module

central execution network (CEN), module DMN, and module

somatic sensorimotor network (SSM) (see Results), respectively. For

each brain mask, two sets of studies were then selected that either

activated at least 5% of voxels (active studies) or did not activate

any voxel (inactive studies) within the mask. Subsequently, a naive

Bayes classifier was trained to discriminate the two sets of studies

on the basis of the loading of each psychological topic onto individ-

ual studies. This resulted in 60 log odds-ratio (LOR) values for each

brain mask calculated as the log of the ratio between the probabil-

ity of each topic in active studies and the probability of that topic in

inactive studies. A LOR value greater than zero indicated that the

corresponding psychological topic was predictive of whether a

study activated regions in a given brain mask when the semantic

content of the study was known. Finally, a permutation-based

method was used to determine significance level for the observed

LOR values by reshuffling study labels (i.e., active or inactive) (1000

times). Noting that, only those top six topics that yielded significant

result (p < .01) in multiple comparisons using false discovery rate

were reported.

2.11 | Control analysis

Control analysis was implemented to further examine the signifi-

cance of predictions of our models, despite potential confounds

of head motion (mean FD), age, and gender. In the control analy-

sis, the association between actual and predicted reciprocity pro-

pensity was re-computed after adjusting these confounding

variables.

3 | RESULTS

3.1 | Prediction analysis with cross validation

The method of 10-fold cross-validation was applied to examine

whether the correlation between fALFF and participants' reciprocity

propensity could generalize to novel individuals. The result shows that

fALFF features were able to predict new individuals' reciprocity pro-

pensity (r = 0.26, p = .0044; MAE = 22.80, p = .0018, permutation

test). The prediction remained after adjusting for head motion, age,

and gender (r = 0.26, p = .0046; Figure 2a,b; MAE = 22.53,

p = .0012; Figure 2c,d, permutation test). Similar results were identi-

fied with the LOO-CV (unadjusted for covariates: r = 0.28, p = .0016;

MAE = 22.40, p = .0004, permutation test; adjusted for covariates:

r = 0.28, p = .0014; MAE = 22.04, p = .0004, permutation test).

3.2 | Contributing regions in the prediction

Both the original weights (all r > 0.85) of the prediction model and

reconstructed activation patterns (all r > 0.89) were highly correlated

among folds, suggesting that the contributing regions of the predic-

tion model were stable across cross-validation folds.

As illustrated in Table 1, the bootstrap test identified 24 ROIs that

stably contribute to the prediction model. Notably, a new model was

trained by employing the revealed regions only, which resulted in a

much better predictive performance with the full model (r = 0.61,

p < .0002, permutation test). In contrast, another model excluding the

identified regions performed worse than the full model (r = �0.29,

p = .98, permutation test). Therefore, the complementary findings

supported the significance of the identified brain regions.

3.3 | Network analysis for contributing regions

To further examine the network structures of contributing regions in

prediction, modularity analysis was performed on the RSFC matrix

across series of thresholds. As shown in Figure 3a, the module struc-

ture under connectivity density levels from 0.31 to 0.50 with a step of

0.01 was plotted and three distinct, as well as stable, modules were

obtained across all thresholds tested. Figure 3b–d illustrated the

results under the connectivity of 0.40, when all the ROIs were divided

into the most common modules (N = 3). In Figure 3c, ROIs located in

the plane according to connectivity patterns. The three modules

obtained were distinguished from each other clearly. Figure 3d repre-

sented the functional connectivity matrix. It was shown that three

densely connecting modules could be captured against with the back-

ground, demonstrating the stronger connections within modules in

comparison to connections between modules.

Figure 3b showed spatial location of three modules on the brain

surface in which the colors of ROIs represented different modules.

First, the module 1 colored blue mainly consisted of vlPFC, anterior

prefrontal cortex (antPFC), orbitofrontal cortex (OFC), dlPFC,
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posterior parietal cortex (PPC), inferior temporal gyrus (ITG), and puta-

men. These regions mostly located in the areas of SN and FPN in the

atlas, which could be merged here as the CEN for tabular and graphi-

cal visualizations. Second, the module 2 colored yellow mainly

included vmPFC, posterior cingulate cortex (PCC), and cerebellum,

which mostly located in the areas of DMN. The module 3 coded red

basically comprised supplementary motor area (SMA), middle occipital

gyrus (MOG), precentral gyrus, postcentral gyrus, cuneus, and fusi-

form, which mostly spread in SSM.

Figure 4 illustrated the functional profiling of regions contributing

to predicting reciprocity propensity. Module CEN was mostly associ-

ated with decision-making, working memory, switching, inhibition,

arithmetic, and fear. Module DMN was mostly related to awareness,

memory, semantic, reading, disorders, and motor. Module SSM was

mostly linked to motor, visual-motor, body, spatial, action, and face/

emotion.

4 | DISCUSSION

Reciprocity encourages social interaction in a cooperative fashion

among individuals across human societies; however, people usually

exhibit widely heterogeneous reciprocity propensity. At the neural

level, the neurobiological markers of this heterogeneity remain largely

F IGURE 2 Results of 10-folds cross validation (CV). (a) The relationship between predicted reciprocity scores and actual reciprocity scores
based on fractional amplitude of low frequency fluctuation (fALFF) features. (b) Permutation distribution of the prediction accuracy with the blue
dashed line indicating the value obtained from real reciprocity scores. (c) Consistency between prediction scores and actual reciprocity scores.
(d) Permutation distribution of the mean absolute error (MAE) with blue dashed line indicating the value obtained from real reciprocity scores.
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unknown. Here, combining the neuroimaging and machine learning

techniques, we investigated whether individual differences in reci-

procity propensity could be predicted by resting-state brain activity

(i.e., fALFF) across brain regions. We found that individual reciprocity

propensity could be predicted by multivariate patterns of resting-state

brain activity of multiple regions across distributed brain systems,

including vlPFC, antPFC, OFC, dlPFC, PPC, ITG, putamen, vmPFC,

PCC, SMA, MOG, precentral gyrus, postcentral gyrus, cuneus, fusi-

form, and cerebellum. Modular analysis revealed that these regions

were organized into three stable modules, corresponding to the CEN

(it should be noted that the CEN is divided into SN and FPN), DMN,

and SSM, which were respectively implicated in emotion processing

and cognitive control, mentalizing, and motor-based processes.

Together, in addition to demonstrating that resting-state features pro-

vide reliable neuromarkers of human reciprocity propensity, these

findings advance our understanding of reciprocity and prosocial

behaviors in terms of large-scale brain networks.

First, the module CEN comprised of vlPFC, antPFC, OFC, dlPFC,

PPC, ITG, and putamen mainly located in SN and FPN, which was

associated with emotion processing and cognition control revealed by

our functional decoding analyses. In the social dilemma between maxi-

mizing and sacrificing personal benefits, impulses of betrayal

(e.g., violating reciprocity norm) are pervasive. However, this dilemma

could be resolved with the emotional processing and cognitive control

implemented in the SN and FPN respectively. On one hand, emotion

plays a critical role in the establishment of response-dependent values

and norm compliance (FeldmanHall et al., 2018; Heffner et al., 2021;

Phelps et al., 2014). Accordingly, the experience or anticipation of

moral emotion derived from norm violation, such as guilt feelings, may

be a potent motivator for upholding reciprocity (Chang et al., 2011;

FeldmanHall et al., 2018; Krueger et al., 2020). For instance, greater

guilt sensitivity was associated with increased recruitment of SN

regions (e.g., vlPFC; Wagner et al., 2011), while diminished guilt aver-

sion corresponded to lessened reciprocal behavior (Gong et al., 2019).

TABLE 1 Contributing ROIs in the
prediction. ROIs are sorted by modules,
and the activation patterns were
thresholded using a 10,000-sample
bootstrap procedure at p < .05
uncorrected

Module ROI label Hemisphere

MNI space

Activation patternX Y Z

CEN VLPFC/OFC R 43 49 �2 �0.20

CEN antPFC L �39 51 17 �0.16

CEN VLPFC/IFGorb R 36 22 3 �0.14

CEN DLPFC/MFG L �42 38 21 �0.13

CEN PPC/IPL R 44 �53 47 �0.14

CEN PPC/IPL R 49 �42 45 �0.11

CEN VLPFC/IFGorb R 34 16 �8 �0.07

CEN VMPFC/OFC L �21 41 �20 �0.09

CEN ITG R 58 �53 �14 �0.15

CEN Putamen R 31 �14 2 �0.10

DMN PCC L �3 �49 13 0.18

DMN PCC R 8 �48 31 �0.17

DMN VMPFC/IFGorb R �46 31 �13 0.10

DMN Cerebellum L �18 �76 �24 �0.12

DMN Cerebellum R 17 �80 �34 �0.08

DMN Cerebellum R 35 �67 �34 �0.14

DMN Cerebellum R 22 �58 �23 �0.11

SSM SMA L �13 �17 75 �0.12

SSM MOG R 29 �77 25 �0.11

SSM Precentral/M1 R 29 �17 71 0.12

SSM Precentral/M1 L �23 �30 72 �0.14

SSM Postcentral/S1 R 50 �20 42 0.09

SSM Cuneus L �16 �77 34 �0.13

SSM Fusiform R 46 �47 �17 �0.12

Abbreviations: antPFC, anterior prefrontal cortex; CEN, central execution network; dlPFC, dorsolateral

prefrontal cortex; DMN, default-mode network; IFGorb, inferior frontal pars orbitalis; IPL, inferior parietal

lobe; ITG, inferior temporal gyrus; MFG, medial prefrontal cortex; MNI, Montreal Neurological Institute;

MOG, middle occipital gyrus; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PPC, posterior

parietal cortex; SMA, supplementary motor area; SSM, sensorimotor network; vlPFC, ventrolateral

prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
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On the other hand, given the importance of cognitive control for

cooperation maintenance, reciprocity could be facilitated by suppres-

sing selfish motives (Fett et al., 2014; van den Bos et al., 2011). In

accordance, evidence from previous task fMRI studies has indicated

that important FPN regions (e.g., dlPFC) were recruited in reciprocity

(van den Bos et al., 2009). Moreover, enhancement of dlPFC excitabil-

ity resulted in increased reciprocity (Nihonsugi et al., 2015), whereas

transient disruptions of the dlPFC led individuals to send less money

back, even if they know it is harmful to their future social reputation

(Knoch et al., 2009). To sum up, our results suggest that SN and FPN

(or collectively called module CEN) play important roles in reciprocity

through emotional processing and cognitive control, facilitating indi-

viduals to make reciprocal decisions in favor of long-term social

relationships.

Second, the module DMN consisted of PCC, vmPFC, and cerebel-

lum, which overlapped with canonical DMN and was mainly

associated with mentalizing revealed by our functional decoding ana-

lyses. Mentalizing is essential for reciprocity by modeling others' men-

tal states (Beer & Ochsner, 2006). Accordingly, reciprocity decisions

were associated with enhanced activity in the regions of DMN

(e.g., PCC, vmPFC) in both TG and the prisoner's dilemma game (King-

Casas et al., 2005; Krueger et al., 2007; Rilling et al., 2004; Rilling

et al., 2008). In addition, functional connectivity of DMN was associ-

ated with individual differences in reciprocal behavior (Schreiner

et al., 2014) and understanding the concept of reciprocity (Bisecco

et al., 2019). Consequently, it is convincible that mentalizing processes

mediated by the DMN allows individuals to predict the experiences,

beliefs, and intentions of the other, and to promote reciprocal behav-

iors in the context of social interaction.

Finally, the module SSM consisted of SMA, MOG, precentral

gyrus, postcentral gyrus, cuneus, and fusiform, which was primarily

embedded in the SSM and associated with motor-based processes.

F IGURE 3 Results of modularity analysis. (a) The modularity analysis determined three stable modules from regions of interest (ROIs) shown
in the same color (CEN, blue; DMN, yellow; SSM, red) under connectivity density levels ranging from 0.31 to 0.50 by increments of 0.01. (b) The
fALFF-based prediction model determined 24 contributing regions (i.e., ROIs). The colors indicate different brain network modules. (c) The spring-
like layout of the three network modules for a connectivity density of 0.40 displays the Euclidean distance between each pair of nodes. The
thickness of lines indicates the connection strength of the edges. (d). Functional connectivity matrix for a connectivity density of 0.40 (ROIs are
sorted by modules) showing a stronger strength of edges within than those between modules. CEN, central execution network; DMN, default-
mode network. L, left; R, right; ROIs, regions of interest; SSM, sensorimotor network.
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Although few previous studies have directly reported a relationship

between human reciprocity and SSM, the engagement of SSM is actu-

ally not surprising (Iacoboni & Dapretto, 2006; Pineda, 2008), since

reciprocity occurs in human social interactions that require the execu-

tion of action and perception of actions of others. Evidence from neu-

roimaging study has demonstrated that active engagement in a social

interaction, compared with observation of social stimuli, activates a

more extensive network of areas associated with motor perception

and action, which in turn promotes motor responses coherent with

the social stimuli (Schilbach et al., 2013). In addition, early intervention

targeting the ability of sensorimotor processes could positively sup-

port social development (Cerullo et al., 2021); rather, individuals exhi-

biting poor motor performances have difficulty in acquiring essential

social skills (e.g., reciprocity and communication), and this effect could

be mediated by the function, structural integrity, and connectivity of

motor brain regions and networks (Biotteau et al., 2019; Kilroy

et al., 2019). For example, autism spectrum disorders showed altered

connectivity between SSM and cerebellum compared to healthy con-

trols; moreover, disrupted functional connectivity within the SSM

could account for autism symptoms, including atypical sensory pro-

cessing, repetitive behaviors, and social impairments (Oldehinkel

et al., 2019). These findings are consistent with the hypothesis of

action-perception matching or action simulation, holding that the SSM

contributes to the understanding of others' intentions or emotions by

partially reproducing experienced actions or emotional expressions in

one's own (Davis et al., 2017; Oliver et al., 2018). In short, the motor-

based processes play a critical role in promoting socially adaptive

responses during social interactions, and the current findings

complement this idea by highlighting the associations between SSM

and reciprocity.

Several limitations related to the current study should be noted.

First, we found that the resting-state brain activity (i.e., fALFF) could

predict individual variations of reciprocity propensity measured by

one-shot TG in a single group. Future studies are required to validate

the reproducibility of our prediction model on a new, independent

sample, and to explore whether the fALFF-reciprocity associations are

stable, and independent of the experimental setting of one-shot TG

and multi-round TG. Second, although our prediction model worked

well in predicting reciprocity propensity, we noted that the deviations

between the predicted values and real observations were relatively

large for some data points. One possible reason is that the current

prediction model only employed the fALFF as prediction features. A

more robust and accurate prediction model in future studies might be

constructed by combining more modalities of features (e.g., functional

connectivity, regional homogeneity [ReHo], and ALFF) or considering

connectivity and graph-based network measures. Moreover, it is also

interesting for future studies to systematically compare the predictive

performance of different modalities of features in reciprocity propen-

sity. Third, only a small group of females was included in the current

study, and future studies are needed to recruit comparable male and

female participants to avoid the risk of gender-biased results. Finally,

this study focused on the relationships between resting-state brain

activity and individual reciprocity propensity in healthy participants.

Nevertheless, social skills deficits are hallmark symptoms of mental

disorders. It is interesting for future studies to explore whether the

fALFF could be used to identify the neural marker of mental disorders

characterized by social dysfunction (e.g., autism).

Despite of these limitations, our study provided the evidence that

fALFF features of multiple brain regions enabled prediction of reci-

procity propensity at individual level. Our study further identified

brain systems underlying the individual differences in reciprocity,

including SN, FPN, DMN, and SSM. The modules are implicated in

emotion processing and cognitive control, mentalizing, and motor-

based processes. These findings shed light on the neurocognitive

mechanisms underlying human reciprocity, and advance our under-

standing of reciprocity from the perspective of network integration.
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