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Surface electromyography- (SEMG-) based gesture recognition is widely used in rehabilitation training, artificial prosthesis, and
human-computer interaction. The purpose of this study is to simplify the sSEMG devices by reducing channels while achieving
comparably high gesture recognition accuracy. We propose a compound channel selection scheme by combining the variable
selection algorithms based on multitask sparse representation (MTSR) and minimum Redundancy Maximum Relevance
(mRMR). Specifically, channelwise features are first extracted to compose channel-feature paired variables, for which variable
selection procedures by MTSR and mRMR are carried out, respectively. Then, we rank all the channels according to their
occurrences in each variable selection procedure and figure out a certain number of informative channels by fusing these rankings
of channels. Finally, the gesture classification performance using the selected channels is evaluated by the support vector machine

(SVM) classifier. Experiment results validate the effectiveness of this proposed method.

1. Introduction

Surface electromyography (sEMG) is commonly used in
clinical and engineering areas with the advantages of being
noninvasive and convenient in signal acquisition. For ex-
ample, sSEMG reveals the information in diagnosing neu-
romuscular disorders [1, 2]. More generally, it may play
important roles in the controlling of artificial assistance
robots, arm prostheses, rehabilitation equipment, and some
other instruments [3, 4].

Most of the related works have been carried out with
SEMG of multiple channels to guarantee satisfactory rec-
ognition performance [5]. However, the increase of channels
makes not only a high cost in engineering but also the great
complexity of the SEMG devices and data processing burden.
In addition, it could suffer from performance deterioration
due to signal crosstalk [6, 7]. To overcome these problems
due to multiple channels of sSEMG, it is rewarding to select a
reduced group of channels in a myoelectric control system.

This is just the aim of our work which is to simplify the
sEMG device by removing some redundant electrodes on the
premise of desired classification performance.

2. Related Research and Motivation

Feature extraction is a routine procedure to describe the
sEMG signals with a feature vector. Multitudinous features
of time domain, frequency domain, and time-frequency
domain have been widely applied in sSEMG-based classifi-
cation tasks. When multiple features are extracted for
channels one by one, we could get a feature set with a quite
large size (the number of features per channel times the
number of channels). Hence, feature selection can be fol-
lowed to reduce the feature redundancy and alleviate the
curse of dimensionality, where metrics including scatter plot
of features, statistical analysis, and recognition rate are
applied to evaluate the effectiveness of features [8, 9], and
feature search strategies including sequential forward
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selection (SFS), sequential backward selection (SBS), or
bidirectional searching are adopted to find out the most
informative features [10].

Like feature selection in the point of lowering the feature
size, channel selection will, in addition, remove those
channels unnecessary or irrelevant to classify different
gestures. In fact, channel selection is highly related to feature
selection since features coming from all the channels are
generally combined to create a set of channel-feature paired
variables. Hence, channel selection can be the successor
operation after feature selection, using the selected or fixed
teatures.

To select useful channels from multielectrode, Nagata
and his colleagues [11] used the recognition rate to evaluate
each measurement channel and found out the best com-
bination of channels by the Monte Carlo method. Huang
et al. [12] applied SFS search strategy for expected channels
where four kinds of time-domain features and an LDA
classifier are used in the searching iteration. Khushaba and
Al-Jumaily [13] also adopted a wrapper method, particle
swarm optimization, in channel selection where the im-
portance of subsets was measured using the error rates
acquired from a multilayer perceptron trained with back-
propagation neural network. Similar work by Oskoei et al.
[14] employed a multiobjective genetic searching algorithm
with the objective function of data separability index or
classification rate. Besides, filter methods have also been
applied to rank the channels, where the minimum Re-
dundancy Maximum Relevance (mRMR) [15] was used by
Liu et al. [16] and Gupta et al. [17], the Relief-F by Qu et al.
[18], and the Markov random field (MRF) by Qu et al. [16] as
well.

As shown in these aforementioned pieces of literature,
channel selection could be conducted by fixing the feature
subset. That means we cannot simultaneously select the best
features and channels, which can be improved in the way as
follows. Features and channels are combined to construct
feature-channel pairs, leading to a hybrid feature-channel
selection problem. By finding the least redundant and most
informative group of feature-channel pairs among all the
possible ones, the best channels should be the most repeated
ones. In these aspects, some classic or modified ranking
methods have been applied to select channel-feature vari-
ables, such as mRMR-FCO [19] and certain correlation-
based or distance-based evaluation function in the work by
Al-Angari et al. [20].

Channel selection can follow a feature-channel filtering
pipeline, but differing in specific ranking scores or search
strategies. Our work is just under this kind of framework
where we resort to the multitask sparse learning [21] to-
gether with mRMR filtering to pursue the discriminative
SEMG channels across the classification for multiple
gestures.

Since the classic least square regression model in sparse
learning does not pursue the class-discriminative power of
features, certain type of discriminative regularization terms is
preferred to make up this limitation. Zhu et al. [22] put
forward a group-sparsity-based least square regression
framework integrating linear discriminant analysis and
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locality preserving projection. Similarly, to better capture the
discriminative information among subjects, a multitask fea-
ture selection method was proposed to incorporate the
intraclass and interclass Laplacian matrices [23]. But this kind
of work will generally lead to a complicated optimization
problem and most likely suffer from heavy computation cost.

Inspired by the works related to multitask sparse
learning, for channel selection, we propose a channel se-
lection method that combines the multitask sparse repre-
sentation (MTSR) and mRMR algorithms. Instead of
superimposing discriminative regularization terms in the
MTSR framework, we evaluate the SEMG channels using the
MTSR and mRMR, respectively, and then fuse their results
to figure out the ideal channels in the end. The flowchart of
this paper is shown in Figure 1.

3. Methods

3.1. Dataset and Evaluation Metrics. The SEMG dataset [24]
contains thirty healthy normal-limbed subjects, who were
kept relaxed and performed 7 distinct hand gestures in-
cluding hand open, hand close, supination, pronation, wrist
flexion, wrist extension, and rest. Eight surface electrodes
were used for sSEMG acquisition. In other words, we have
signals with eight channels.

In this work, three classic measures, that is, precision,
recall, and accuracy, are selected as indicators to evaluate the
performance of gesture classification. These metrics are
defined as follows:

. . TP (1)
recision = ———,
PreCISIOn = o Fp
TP
N=—r 2
e TPy EN @
TP + TN (3)
racy = ,
AU = TP y FP + TN + FN

where TP, FP, TN, and FN are True Positive, False Positive,
True Negative, and False Negative, respectively. An average
of classification metrics in the experiments below will be
obtained by 5-fold cross validation.

3.2. Feature Extraction. To analyze the sEMG signal, a
sliding window is adopted for the 8 channels. Totally 11
time-domain features, as listed in Table 1, are extracted
which have been proved effective for myoelectric pattern
recognition [16]. Thus, we have channel-feature paired
variables with the size of 8 times 11.

L is the signal length, and x; is the signal in an analysis
window. SD is the standard deviation. p is the order of
autoregressive model, ¢; is a white noise term, and the co-
efficients a,, are used as features.

3.3. Channel Selection Scheme. 'This study aims to reduce the
sEMG channels by finding the least and best electrode lo-
cations to discriminate different hand motions. For channel-
feature variables, we first perform a composite variable
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Multichannel : Feature
SIS gl ——> Preprocessing ——>1 o hon
mRMR channel
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FIGURE 1: Gesture recognition by reducing sSEMG channels.
TaBLE 1: Features extracted for each analysis window.
Acronym Name Number of features Formula
WL Waveform length 1 WL = Y iy — x;]
IAV Integrated absolute value 1 1AV = Y5 x|
RMS Root mean square 1 RMS = 1 ¥ x?
SSI Simple square integral 1 SSI = Zle |x;*
Kurtosis Kurtosis 1 Kurtosis = ﬁ ZiL:1 ((x; — %)*/SD*) -3
Skewness Skewness 1 Skewness = ﬁ ZiLzl ((x; = %)%/SD?)
L-1
ZC = Y ¢ (xp X11)
ZC Zero crossing (threshold T'=10) 1 L, x,%;,, <0, |x; - x;,|> T,
9 (xp Xi01) = 0, otherwise,
4AR 4th-order autoregressive model 4 x; = 241,:1 apX;_p + ¢

selection for the task of gesture motion recognition. Then, all
channels will be ranked according to their occurrences in the
selection of channel-feature variables, where MTSR and the
mRMR variable ranking method are used, respectively. By
tusing these two ranking results, we can finally get the ideal
channels but with high recognition capability for hand
gesture motions.

3.3.1. MTSR-Based Variable Selection. Given a feature
matrix X € R, where d and 7 are the numbers of features
and samples, respectively, we also have a class indicator
matrix Y € R™" with the class number c. Since multiple
response variables are included in the class indicator matrix
Y, for each response variable, we can find a regression
coefficient vector individually. By regularizing a least square
regression model with an €, ,-norm, the multiclass feature
selection problem can be formulated as a sparse least square
regression model as follows [21]:

1
min > ly — WTX||§: + MWy (4)

where W € R% is a coefficient matrix for regression and
the parameter A is adopted to adjust the sparsity of W. By
enforcing the group sparsity on the coefficient matrix with
a €, ,-norm, some rows in W will be zero. The first term in
equation (4) controls the data fitting error, and the reg-
ularization parameter A balances the relative importance of

both terms. The larger A results in more zero rows in the
coefficient matrix. It can be assumed that the optimal
solution would assign large weights to the important
features and zero or small weights to the less important
features.

3.3.2. mRMR Variable Ranking. The above MTSR method
mainly focuses on the relationship between labels and fea-
tures but ignores the relationship between features to some
extent. Hence, we resort to mRMR algorithm to select
features from a different perspective.

The mRMR criteria [15] aim to choose features that are
mutually dissimilar to each other and marginally similar to
the classification labels, ranking candidate component fea-
tures based on compromise between relevance and redun-
dancy. In this paper, we use mutual information to measure
both redundancy and relevance.

Mutual information is defined as follows:

vy p(xy)
I(X;Y) = “ px, y)IOgip @p () dxdy, (5)

where X and Y denote two feature vectors and p(x, y) is the
joint probabilistic density, while p(x) and p(y) are the
marginal probabilistic densities. The goal is to find a subset S
with m features, and the maximum relevance and the
minimum redundancy are defined by equations (6) and (7):



4
max D (S, ¢),
1 (6)
D=— Z I(x;¢),
|S| x;€S
min R(S),
1
R:—2 Z I(xi;x]-), (7)
|S| x,-,xjeS

where x; is the i-th feature, c is the class variable, and S is the
feature subset. The maximum relevance and the minimum
redundancy are integrated by equation (8) or (9).

max @ (D, R),
(8)
®=D-R,
max ® (D, R),
9)
o=2
R

The incremental search method is used to find the ap-
proximate optimal feature. Supposing that we already have
the feature set S,,,_;, the next step is to find the m-th feature
from the feature set X — S, maximizing ®(-). The in-
cremental algorithm optimizes the formula [15]

—ﬁ Z I(xj;xl-). (10)

X;€5,, 1

max, cxs, | I(xj; c)

3.4. To Fuse the Channel Rankings. As stated above, we
successively select the effective channel-feature pairs by
MTSR and mRMR ranking method. Thus, we can get two
groups of rankings for all channels according to their oc-
currences in the screened channel-feature variables. These
two channel ranking methods work with different principles,
but their corresponding results share common informative
components even if they differ to a certain extent. We
combine the two channel ranking results in the hope of
avoiding decision faults to the utmost extent.

4. Results

4.1. Channel Selection. Considering that 11 features are
extracted for 8 channels each, we have 88 channel-feature
paired variables in total for each analysis window. We apply
the multiclass sparse representation model for the training
data. According to equation (4), the parameter A controls the
sparsity of the coefficient matrix W, namely, the number of
the screened channel-feature variables. The gesture recog-
nition performance would be affected by features and
classifiers we employed.

Let A varies from 0.01 to 0.1, and channel-feature var-
iables corresponding to nonzero rows of the coefficient
matrix W are kept and fed to a support vector machine
(SVM) classifier with radial basis function [25]. We hope to
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achieve a high recognition rate (accuracy is used in Section
4.1 and 4.3) while using only a few feature variables.

We make a comparison to show how to decide a proper
value for A. When A varies from 0.01 to 0.1, the screened
channel-feature number varies greatly but the recognition
rate does not decrease too much. The changing of recog-
nition rate and channel-feature number along with A is
shown in Figure 2. We can also see that a good balance
between the recognition rate and channel-feature dimension
can be achieved when A equals 0.03. Accordingly, we will
keep 36 channel-feature variables in the following channel
selection procedure.

And for mRMR-based channel-feature selection, we also
keep the top 36 variables which will be fused with the results
of MTSR.

Table 2 lists the selected 36 channel-feature variables
(features for each channel) by MTSR and mRMR, respec-
tively. It is obvious that there is a certain difference between
the screened results by these two methods. For instance,
autoregressive features AR1 and AR2 play important roles in
MTSR modal, being used by most channels. However, for
mRMR, the two features only appear in channel ®.
Therefore, we select channels based on channel utilization
rather than analyzing the features. We count the number of
times that any two channels occupy a common feature,
namely, the number of features shared by a channel pair. The
more frequently a channel is utilized, the more important
the channel will be. The corresponding statistical results for
MTSR and mRMR are shown in Tables 3 and 4 .

From Tables 3 and 4, we sort channels by the number of
times which are wused. For MTSR, the order is
@>0=0>0>0>0=>® ad O=>0>0G>0>@
=®>® for mRMR. By decision-makinglevel fusion for
channel selection, three channels ®, ®, and ® are adopted for
the subsequent gesture recognition.

4.2. Feature Selection. Also based on the screened channel-
feature variables by MTSR and mRMR, we list all the
channels occupying a given feature (shown in Table 5). If a
feature is shared by over half channels (>4), it will be selected
for the gesture recognition task. Specifically, we have WL,
AR1, and AR2 from MTSR-based results, and WL, IAV, SSI,
and Kurtosis by mRMR. These six features, WL, IAV, SSI,
Kurtosis, AR1, and AR2, will be fed into classifier in the
following experiments.

4.3. Classification Performance Based on Channel and Feature
Selection. According to Section 4.1, three channels (®, ®,
and ®) are jointly selected by fusing MTSR and mRMR. We
first compare the gesture classification performance using
these three channels with those by MTSR or mRMR indi-
vidually. For MTSR-based results, the top three channels are
®@, ®, and ®, and the three channels @, ®, and ® are for
mRMR. Their corresponding gesture recognition accuracies
are shown in Figure 3. By combining MTSR and mRMR,
channels ®, ®, and ® are used and the average recognition
rate is 98.68%, which is higher than that using channels @,
®), and or M, ®, and (the average classification
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F1Gure 2: Changes of recognition rate and channel-feature number when A varies from 0.01 to 0.1.

TaBLE 2: The selected 36 channel-feature variables by MTSR and mRMR. AR1~AR4 are four coefficients in the fourth-order autoregressive
model, respectively.

Channel Features by MTSR Features by mRMR

©) RMS, AR1, AR2, and AR4 WL, IAV, Kurtosis, SSI, and AR3

® WL, Skewness, AR1, AR2, and AR3 WL, IAV, Kurtosis, and Skewness

® WL, IAV, ARI1, AR2, and AR3 WL, IAV, Kurtosis, and SSI

©) WL, IAV, AR1, and AR4 WL, IAV, and Kurtosis

® RMS, Kurtosis, AR1, AR2, AR3, and AR4 WL, IAV, Kurtosis, SSI, and AR3

® WL and Skewness WL, IAV, SSI, and AR3

@ IAV, Skewness, AR1, and AR2 WL, IAV, Kurtosis, and AR3

WL, SSI, Kurtosis, Skewness, AR1, and AR2 WL, IAV, SSI, Kurtosis, Skewness, AR1, and AR2

TaBLE 3: The number of times that two given channels occupy a common feature by MTSR (e.g., channel @ and channel @ share 2 features:
AR1 and AR2). The best channels are in italics.

Channel @ Channel @ Channel ® Channel ®  Channel ® Channel ® Channel @ Channel

Channel @ — 2 2 2 4 0 2 2
Channel @ 2 — 4 2 3 2 3 4
Channel ® 2 4 — 3 3 1 3 3
Channel ® 2 2 3 — 2 1 2 2
Channel ® 4 3 3 2 — 0 2 3
Channel ® 0 2 1 1 0 — 1 2
Channel @ 2 3 3 2 2 1 3
Channel 2 4 3 2 3 2 3 —
Sum 14 20 19 14 17 7 16 19

TaBLE 4: The number of times that two given channels occupy a common feature by mRMR (e.g., channel @ and channel @ share 3 features:
WL, IAV, and Kurtosis). The best channels are in italics.

Channel @® Channel @ Channel ® Channel ®  Channel ® Channel ® Channel @ Channel

Channel @ — 3 4 3 5 4 4 4
Channel @ 3 — 3 3 3 2 3 4
Channel ® 4 3 — 3 4 3 3 4
Channel ® 3 3 3 — 3 2 3 2
Channel ® 5 3 4 3 — 4 4 4
Channel ® 4 2 3 2 4 — 3 3
Channel @ 4 3 3 3 4 3 — 3
Channel 4 4 4 3 4 3 3 —
Sum 27 21 24 20 27 21 23 25
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TaBLE 5: Channels used by each feature.

Feature Channels by MTSR Selected Channels by mRMR Selected
WL 0lel0]l6]6) v 0]6]0l0l6]16]V6)] v
1AV ©Jolo; OEE®EED® v
RMS ©6 -

SSI OeGG®® v
Kurtosis ®® 0]0l6]0l6]6]6) v
Skewness @e0® @6

ZC - -

AR1 DOE®OO® v

AR2 0]6]6]6]6lC)] v

AR3 @06 06]Clu)

AR4 OB -

=
s
S 90 + —
o
8
= 85+ |
g - 0-.9.—0 -9
] 0. o o o T e0-e_ . @
é 3o L .,»’.\~._4.(-‘ .\\ /'/ o "—"10
o ®-o_o 0
75 1 1 1 1
0 5 10 15 20 25

The number of validations

—&— Both, channels®,®), and®98.68%
—% - MTSR, channels®,3), and®95.59%
_@- MRMR, channels@,®, and®81.15%

F1GURE 3: The classification accuracies using three channels selected by different methods (channels @, ®, and ® are selected by MTSR,
channels @, ®, and are selected by mRMR, and channels ®, ®, and are jointly selected by the two methods).

accuracy is 95.59% for channels @, ®, and ® and 81.15%
for channels @, ®, and ®).

In addition, comparative experiments for gesture clas-
sification are carried out using two or four channels selected
by different methods. When choosing two channels, we have
channels ® and ® by fusing MTSR and mRMR. For MTSR-
based method, the top two channels are @ and ® or @ and
®; for mRMR, the selected two channels are @D and ®. The
gesture classification accuracies are illustrated in Figure 4,
where channels selected by jointly using MTSR and mRMR
achieve the highest classification accuracy.

As for choosing four channels, channels ®, ®, @, and
are selected by fusing MTSR and mRMR. For MTSR-
based method, the top four channels are @, ®, ®, and ®;
for mRMR, the four channels are @, ®, ®, and ®. Cor-
respondingly, the gesture classification accuracies are drawn
in Figure 5. It also verifies that channels selected by jointly
using MTSR and mRMR achieve the highest classification
accuracy.

4.4. Performance Evaluation and Comparison. To evaluate
the performance of our method by fusing MTSR and mRMR
for channel selection, comparative experiments are con-
ducted in two aspects. Firstly, we further compare the
proposed method with MTSR and mRMR in the task of
channel selection. For the number of selected channels
varying from 2 to 4, precision and recall for gesture clas-
sification corresponding to different method are listed in
Table 6 where the selected channels are in square brackets.

Compared with only 2 channels used, the recognition
performance improves significantly when 3 channels are
selected. It reveals that even 2 informative channels cannot
capture enough information to distinguish different hand
gestures in the experiment, where the best combination of 2
channels [5 8] is picked out by the proposed method. With
more channels added in a certain range, the recognition
performance will increase overall. In all cases, as shown in
the table, our MTSR- and mRMR-fused methods outper-
form each of the two base methods alone.
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FIGURE 4: The classification accuracies using three channels selected by different methods (channels @ and ® and channels @ and ® are
selected by MTSR, channels @ and ® are selected by mRMR, and channels ® and are jointly selected by the two methods).
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-©- mRMR, channels @), @), B, and ®) 97.34%

F1GURE 5: The classification accuracies using three channels selected by different methods (channels @, ®, ®, and ® are selected by MTSR,
channels @, ®, ®, and ® are selected by mRMR, and channels ®, ®, @, and ® are jointly selected by the two methods).

TaBLE 6: Comparison with different research methods.

Method Channel Recall Precision Channel Recall Precision Channel Recall Precision
MTSR [2 8] 83.69 84.59 [23 8] 95.30 95.60 [2358] 96.82 97.18
mRMR [15] 80.52 83.90 [15 8] 85.94 89.81 [1358] 98.61 98.75
MRCS [18] 1 5] 80.52 83.90 [157] 83.64 88.64 [1357] 96.99 97.09
Our method [5 8] 93.42 93.74 [358] 98.92 98.95 [3578] 99.12 99.19

Besides, a latest work proposed a mean Relief-F-based
channel selection method (MRCS) [18]. Under the same
experimental conditions including dataset and features, its
classification performance is shown as the third row in
Table 6. As for selecting four channels, the channel com-
bination [1 3 5 7] is obtained by MRCS, and the

corresponding classification rate is lower than our work
here by selecting 3 channels or 4 channels. It should be
noted that the classification performance can be further
improved by using more informative features as demon-
strated in the work [18], which will be our focus in the work
later.



5. Conclusion

Recent developments in sSEMG instrumentation have made
it possible to record many channels from single or multiple
muscles simultaneously. The current study combines MTSR
and mRMR to process the channel-feature variables, aiming
to reduce the channel number without degrading the gesture
recognition performance.

For a gesture recognition task, sEMG dataset of 8
channels is recorded for 7 hand motions. Given the channel-
features pairs obtained from time-domain features, the most
informative channels are decided by the MTSR- and mRMR-
combined variable selection method. The combination of
MTSR and mRMR makes the selected variables not only
reflect the relationship between labels and feature vectors
but also try to meet the requirement of maximum relevance
and minimum redundancy between vectors. Experimental
results have verified the effectiveness of the proposed
method.

It is worth noting that only time-domain features are
extracted for sSEMG signals in this paper. The channel se-
lection operation is dependent on these features. More
features generated in the frequency domain or time-fre-
quency domain are to be used to test this feature/variable
selection method in the coming work. In addition, this
proposed method for feature selection can also be used in

other pattern recognition and machine learning
applications.
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