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Abstract: Network-based methods for the analysis of drug-target interactions have gained attention
and rely on the paradigm that a single drug can act on multiple targets rather than a single target.
In this study, we have presented a novel approach to analyze the interactions between the chemicals
in the medicinal plants and multiple targets based on the complex multipartite network of the
medicinal plants, multi-chemicals, and multiple targets. The multipartite network was constructed
via the conjunction of two relationships: chemicals in plants and the biological actions of those
chemicals on the targets. In doing so, we introduced an index of the efficacy of chemicals in a plant on
a protein target of interest, called target potency score (TPS). We showed that the analysis can identify
specific chemical profiles from each group of plants, which can then be employed for discovering
new alternative therapeutic agents. Furthermore, specific clusters of plants and chemicals acting
on specific targets were retrieved using TPS that suggested potential drug candidates with high
probability of clinical success. We expect that this approach may open a way to predict the biological
functions of multi-chemicals and multi-plants on the targets of interest and enable repositioning of
the plants and chemicals.

Keywords: medicinal plants; multi-chemicals; multi-targets; multipartite network; network analysis

1. Introduction

Plants have been used as therapeutic agents for a very long time in the human his-
tory [1,2]. Single bioactive compounds in plants have been developed as well-known
commercial drugs, such as paclitaxel, vinblastine, morphine, and artemisinin [3,4]. Occa-
sionally, single components from natural products have provided chemical scaffolds for
developing more potent semi-synthetic drugs, such as rosuvastatin, tramadol, and eribu-
lin [5]. Similar to these single compound drugs that act on a specific target, a mixture
of components from the whole plants or their sub-fractions have been widely used as
botanical drugs, such as Veregen® and Fulyzaq® [6]. However, the synergistic effects
of multi-chemicals in plants on multiple targets and the underlying complex biological
pathways involved are less understood.

For the purpose of developing drugs composed of multi-chemicals, the identification
of the interactions between the multi-chemicals and multi-targets is important to under-
stand the therapeutic effects as well as the side effects, i.e., the on-target and off-target
effects [7–14]. Identifying the synergistic drug combinations is also critical to develop
effective therapies against cancers and to improve the therapeutic efficacy [15–18]. How-
ever, the complexity of screening all possible candidate combinations of multi-chemicals
and multi-targets prevents the use of the classical way of identifying the interactions via
biological experiments, using in vitro and in vivo assays. Since a medicinal plant produces
a large number of chemical compounds, the target identification of every single chemical is
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impossible for the development of botanical drugs, especially to acquire approval in the
global market requiring well-controlled clinical studies [19].

In recent decades, computational approaches for the systematic analysis of drug-target
interactions have become available, improving efficiency and reducing costs of studying
the interactions [20–23]. Among the computational approaches, network-based approaches
provide alternative methods to deal with the complex molecular interactions [24,25]. Com-
pared with other computational methods, network-based approaches do not require three-
dimensional structures of the targets or negative control samples [26]. These approaches
have also been proposed for botanical drug design in search of optimal combinations of
medicinal plant components and prediction of multiple target activities [27]. However,
studies based on the integrated networks of medicinal plants, chemicals, and multi-targets
are still rare. Most studies have focused only on drug-target networks [28] or the molecular
networks of traditional Chinese medicinal plants [29].

In this study, we introduced an approach based on the integrated network of medicinal
plants, chemical components, and multi-targets to analyze the complex biological roles of
medicinal plants in human body. First, we constructed an integrated multipartite network
of the biomedical entities including Korean medicinal plants, chemicals, and protein targets
from heterogeneous databases. The databases have been curated for biomedical entities,
such as genes, proteins, chemicals, and species and are publicly accessible. In particu-
lar, we employed the ChEMBL database, which is one of the largest public databases of
the activities of small molecules on biological targets [30–33]. It also provides the built-
in, ligand-based target prediction methods that we used to generate the links between
chemicals with targets in the interaction network. We also used the database on com-
pound ingredients extracted from Korean medicinal plants, which was released in 2007
by the Korean Traditional Knowledge Portal (http://www.koreantk.com, accessed on
1 May 2019) [34].

We then preprocessed the multipartite network and adapted the spectral co-clustering
method to identify the subnetworks of closely related biomedical entities within their own
structural properties, such as the average bipartite clustering coefficient [35]. The clustering
results could be used for the single or combination use of Korean medicinal plants in
common target domains. The hierarchical clustering analysis was followed for further
identification of the plant clusters based on the similarities in their chemical composition.
In the analysis, we introduced a network-based mathematical index of interactions between
the medicinal plants and targets, called the target potency score (TPS). The suggested
index is used for ranking the plant clusters or protein targets, and for retrieving the best
subnetworks of the medicinal plants, multi-chemicals, and multi-targets customized to
specific medicinal purposes. Finally, we have demonstrated the utility of the simplified
multipartite network with the hierarchical clusters.

2. Materials and Methods
2.1. Raw Data Sets

We employed several heterogeneous data sets to construct a multipartite network
of medicinal plants, chemicals, and targets. The data set of the medicinal plants was ob-
tained from the Korean Traditional Knowledge Portal (KTKP, http://www.koreantk.com,
accessed on 1 May 2019). The database was built by the Korean Intellectual Property
Office, Ministry of Trade, Industry and Energy, Republic of Korea [34]. The KTKP data
sets contain a list of 5500 Korean medicinal plants and 10,056 chemicals, and their rela-
tions. The data set of chemicals and targets was obtained from the ChEMBL database
(ChEMBL25, http://ftp.ebi.ac.uk/pub/databases/chembl/target_predictions, accessed on
15 March 2019). The ChEMBL25 database contains 1,879,206 compounds, 12,482 targets,
and 15,504,603 bioactivity entries from 72,271 publications. All the chemicals in the KTKP
data sets were identified in the ChEMBL25 database, and the links between the chemicals
and single-protein targets were generated using the prediction model reported previ-
ously [33,36], and is available on the ChEMBL25 database. Specifically, the probability of
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the activation of a compound against a target was estimated by the 10-uM activity cut-off
model in the ChEMBL25 database, and we determined the interaction between a pair of a
chemical and a target at the probability of >0.9.

2.2. Preprocessing

We excluded non-plants from the raw dataset. For instance, minerals (non-living
things) and animals (including corals) were removed, but the fungi were not. After exclud-
ing the non-plants, the raw data sets containing 5500 instances of plants and non-plants
were reduced to a set containing 3614 plants. Then, the duplicated instances were removed
based on their identical “scientific name,” “Latin name” and “use target”, which led to a
remaining list of 2886 plants in the data set.

The multipartite network of the medicinal plants, chemicals, and targets was con-
structed by combining the two bipartite networks: the plants-chemicals network and
chemicals-targets network (Figure 1A). The nodes in the network represented the plants,
chemicals, and targets, and the edges in the network represented the relationships between
the plants and chemicals, and between the chemicals and targets. From the multipartite
network, we removed the nodes of degree zero, i.e., the plants, chemicals, or targets that
were not linked to any other entities. After all, 1138 plants, 10,043 chemicals, and 441 targets
remained for the combined multipartite network. The basic statistics of the preprocessed
network data are summarized in Table 1.

2.3. Methods

We analyzed the multipartite network using the spectral co-clustering algorithm [35].
The algorithm clusters the medicinal plants, chemicals, and targets by solving a net-
work partitioning problem. It partitions the set V of the connected nodes into k subsets,
V1, V2, . . . , Vk in such a way that the k subsets approximately minimize the normalized
cut criterion:

Q(V1, V2, . . . , V3) =
1
k

k

∑
i=1

cut(Vi, Vi)

vol(Vi)
(1)

where Vi = V\Vi is the complement of Vi, the cut(M, N) = ∑
m∈M,n∈N

wmn of two disjoint

sets M and N is defined by the sum of the edge weights, wmn, between two nodes from
each of M and N, and vol(Vi) = ∑

m∈Vi

dm = ∑
m∈Vi

∑
n

wmn the sum of degrees of all nodes in

Vi. The normalized cut criterion represents the level of connectivity between the k subsets,
where a smaller value indicates a weaker connectivity between them.

To determine the number of clusters, k, we computed the modularity, defined by

Modularity(k) =
1

2E

k

∑
i=1

∑
m∈Vi ,n∈Vi

(
wmn −

dmdn

2E

)
(2)

where E is the number of edges and dm is the degree of a node m [37–39]. The modularity
measures the strength of a partition with respect to the distribution of edges because it
compares the number of edges, ∑

m,n
wmn with the expected number of edges placed at

random, ∑
m,n

dmdn/2E, within the partition. An optimal number of clusters is determined

at the maximum point of the modularity.
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Figure 1. (A) The construction and visualization of the multipartite network database. (B) The 
representative multipartite network generated from the nodes which were randomly selected 
from 10% of the nodes 1138 plants, 10,043 chemicals, and 441 targets in the whole network. (C) 
The distribution of the node degrees for the plants, chemicals, or targets. 
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Figure 1. (A) The construction and visualization of the multipartite network database. (B) The repre-
sentative multipartite network generated from the nodes which were randomly selected from 10% of
the nodes 1138 plants, 10,043 chemicals, and 441 targets in the whole network. (C) The distribution
of the node degrees for the plants, chemicals, or targets.

Table 1. Basic statistic of the combined multipartite network data.

Number of Nodes Number of Edges
Density 1Plant

(Np)
Chemical

(Nc)
Target
(Nt)

Total
(N)

Plant-
Chemical

Chemical-
Target

Total
(E)

Raw Data 5500 10,056 1224 16,780 58,068 100,290 158,358 0.00234

without Non-plants 3614 10,056 1224 14,894 54,585 100,290 154,875 0.00318

without Non-plants
or Duplicates 2886 10,056 1224 14,166 34,549 100,290 134,839 0.00326

Only targets with the
probability of above 0.9 2886 10,056 441 13,383 34,549 73,112 107,661 0.00322

Pre-processed Data 1138 10,043 441 11,622 34,549 73,112 107,661 0.00679
1 The density of a multipartite network is computed by E/(Np × Nc + Nc × Nt).

The hierarchical clustering analysis led to the identification of the clusters of medicinal
plants based on their chemical profiles. The goal of the analysis was to provide insight into
the biologically or chemically inter-related plants and search for their potentials medicinal
effects in the integrated network. We use the Bray-Curtis distance for the hierarchical
clustering, which is defined by, between two plants u and v,

d(u, v) =
∑j

∣∣uj − vj
∣∣

∑j
∣∣uj

∣∣+ ∣∣vj
∣∣ (3)

where uj (or vj) is equal to one if the plant u (or v) is connected to the jth chemical in the
network, and zero otherwise. The Bray-Curtis distance takes a value between 0 and 1,
and it has two favorable properties for the multipartite network analysis: (i) It is a scale-free
distance metric, that is, it depends only on the fraction of the number of chemicals connected
to the plants, rather than the total number of chemicals in the network. The scale-freeness
is a crucial property for analyzing sparsely connected networks, such as the multipartite
network in this study where most of the uj (or vj) values are zero; see, for example, Figure S1
in Supplemental Information for a visualization. (ii) It is suitable for the unweighted
networks because it only considers the number of edges while ignoring the edge weights.

We used the complete linkage method for hierarchical clustering, that is, the distance
between two clusters is defined by the distance between two elements that are farthest
from each other. The combined use of the Bray-Curtis distance and complete linkage yields
a meaningful interpretation of clustering results. That is, if we combine two clusters one
whenever they are at a distance of less than one, then every pair of elements will have a
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distance less than one. It implies that every pair of medicinal plants in a cluster will have at
least one common chemical because d(u,v) < 1 implies that uj = vj = 1 for some chemical j.

Finally, we proposed an index called TPS, which is a similarity measure between a
plant cluster and a target. TPS of a plant cluster P to a target T is defined by the fraction

TPS(P, T) =
|CP ∩ CT |
|C T |

=
number of chemicals connected to both P and T

number of chemicals connected to T
(4)

where CP is the set of all chemicals connected to at least one plant in the plant cluster P,
CT is the set of all chemicals connected to the target T, and |·| denotes the number of
elements in a set. TPS can represent potential efficacy of a plant cluster for predicting a
protein target. We used the TPS to search for the multipartite network for plant clusters of
the highest efficacy or most active targets.

3. Results
3.1. Multipartite Network Analysis

We constructed the multipartite network with the nodes of medicinal plants, chemicals,
and targets for the interpretation of the biological roles of these chemicals and plants
containing them on multi-targets. The preprocessed network is shown in Figure 1B,
where 10% of the nodes are randomly selected for visualization. Note that the plants and
targets have connections only to the chemicals. Figure 1C shows the distribution of the
node degrees for the plants, chemicals, or targets, where the vertical axes are on a log scale.
The distribution of the power-law degree imply that the network is a scale-free network [40–42].

The structural properties of the multipartite network were further analyzed by the net-
work analysis techniques. We divided the network into five subnetworks by applying the
spectral co-clustering algorithm. Then, the structural properties of the multipartite network
and the five subnetworks were computed and summarized in Table S1 in Supplemental
Information. The computed structural properties are a standard set of theoretic graphical
measures, such as the diameter, average bipartite clustering coefficient, and degree of
assortativity. Figure S3 in Supplemental Information illustrates the multipartite network,
modularity, and five subnetworks, where only 10% of the whole nodes were randomly
selected for visualization.

3.2. Hierarchical Clustering Analysis of Plants

We performed the hierarchical clustering analysis of the medicinal plants in the
multipartite network, and generated dendrograms to visually inspect the clusters of the
medicinal plants (Figure 2 and Figure S2 in Supplemental Information). In the two largest
clusters of the plants (Figure 2A,C, Tables S2 and S3 in Supplemental Information), the same
species with different usage parts have been aggregated at the bottom level (i.e., at the
height of zero) in the dendrogram, and different species belonging to the same family are
grouped together at low levels. However, some species belonging to the same family are far
apart or the ones belonging to a different family are closely located. In the largest cluster,
many different species sharing β-sitosterol, which is one of the most common phytosterols
and is distributed over a wide range in the plant kingdom, existed [43]; many plants
belonging to different families share more chemicals than the ones belonging to the same
family (Figure 2A). The chemical diversity of the cluster shows that the specialized dis-
tribution of the secondary metabolites in plants is not dependent on their family level.
However, in the second largest cluster, the chemical profiles of the plants depending on
the family contributed to the classification of the smaller clusters (Figure 2C). Additionally,
the chemical diversity of the plants in the second largest cluster (123 types of subclasses and
311 types of direct parent levels) was bigger than the largest cluster (109 types of subclasses
and 257 types of direct parent levels) (Figure 2B,D). Among the smaller clusters, two clus-
ters containing the specialized types of chemicals, protoberberine alkaloids (Figure 2E,F,
and Table S4 in Supplemental Information) and vitamins (Figure 2G,H, Table S5 in Supple-
mental Information), were clearly categorized by the family. We expect that the clustering
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information by the chemical profiles between the plants can be utilized not only for the
chemotaxonomic study of the medicinal plants, but also for alternative use of the medici-
nal plants.
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3.3. Interaction between Plants and Targets Based on TPS

In the multipartite network, the interaction between the plants and targets is mediated
by the connectivity of the chemicals in the network. We used the TPS to quantitatively
measure the interaction that represents the potential efficacy of the plants for the targets.
Because the plants in the same cluster share chemicals in common, the TPS was calculated
between a cluster of plants and target.

The TPS was applied in two ways. First, the targets with the highest TPS values
were selected for each of the four clusters of plants that were mentioned in the previous
section and were manually investigated to validate our approaches. The subnetworks of
the selected targets, chemicals connected to the targets, and corresponding cluster of plants
connected to the chemicals are illustrated in Figure 3A–D, for the inspection of the effects
of the mixture of chemicals or the plants in the cluster. Specifically speaking, the targets
with the TPS values greater than 0.05~0.5 were selected while the number of chemicals
connected to the targets was kept sufficiently large enough (at least 20) to produce reliable
TPS values.
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10A, which has been studied as a therapeutic target for colon cancer and neurological 
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cannabinoid CB1 and CB2 receptors, in the network from the second largest cluster (Fig-
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cannabinoids from the genus Cannabis [45]. In the third network, protoberberine-type al-
kaloids from three families, Papaveraceae, Ranunculaceae, and Rutaceae, were linked 
with the targets, dopamine receptors, and alpha adrenergic receptors, which are known 
as the main target of these chemicals [46,47]. Tetraterpenoids, such as lycopene, lutein, 
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way, had multiple linkages with retinoic acid receptor gamma (RAR-γ) and retinoid X 
receptor beta (RXR-β) [48–50]. These results show that the target information predicted by 

Figure 3. (A) The network diagram for the plants cluster in Figure 2A and the 6 targets retrieved
based on the TPS index greater than or equal to 0.1. The chemicals effective to the targets are depicted
in red circles. (B) The network diagram for the plants cluster in Figure 2C and the 2 targets retrieved
based on the TPS index greater than or equal to 0.5. The chemicals effective to the targets are depicted
in red circles. (C) The network diagram for the plants cluster in Figure 2E and the 7 targets retrieved
based on the TPS index greater than or equal to 0.05. The chemicals effective to the targets are
depicted in red circles. (D) The network diagram for the plants cluster in Figure 2G and the 5 targets
retrieved based on the TPS index greater than or equal to 0.05. The chemicals effective to the targets
are depicted in red circles.

In each network, a single target had multiple edges with chemicals, but only a few
chemicals contributed to the connection between the plants and targets. In the largest
cluster, six targets, signal transducer and activator of transcription 3, phosphodiesterase
10A, anandamide amidohydrolase, prostanoid EP2 receptor, sphingosine 1-phosphate
receptor Edg-3, and pepsin A, are displayed (Figure 3A). For example, in case of phos-
phodiesterase 10A, which has been studied as a therapeutic target for colon cancer and
neurological symptoms [44], 12 chemicals, mainly carboline-type alkaloids, are displayed
with linkages to the target (Table S6 in Supplemental Information). The well-known targets,
such as cannabinoid CB1 and CB2 receptors, in the network from the second largest cluster
(Figures 2C and 3B) shared the monoterpenoids and benzopyran-type chemicals including
cannabinoids from the genus Cannabis [45]. In the third network, protoberberine-type
alkaloids from three families, Papaveraceae, Ranunculaceae, and Rutaceae, were linked
with the targets, dopamine receptors, and alpha adrenergic receptors, which are known as
the main target of these chemicals [46,47]. Tetraterpenoids, such as lycopene, lutein, and β-
carotene, which are the well-known chemicals targeting the retinoid signaling pathway,
had multiple linkages with retinoic acid receptor gamma (RAR-γ) and retinoid X receptor
beta (RXR-β) [48–50]. These results show that the target information predicted by the
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chemicals in the multipartite network is reliable enough to investigate alternative targets
of the chemicals, for which biological roles have not been defined in previous studies or
they existed as mixed forms with other chemicals in a plant.

Second, the proposed TPS was applied for searching the closest related plants, which are
predictive of a given target based on the highest TPS value. The results provide clues to
understand the complex biological roles of the combination of medicinal plants or the
chemicals produced from the plants. In this scenario, a cluster of plants is recommended
from among the large-scale network as the candidate medicinal plant for a single target
of interest. For example, we used ”tyrosinase” as the model target to validate the sug-
gested method and to investigate the medicinal effects of the retrieved cluster of plants
(Figure 4A). In the multipartite network retrieved for the target “tyrosinase,” 165 chemicals
from 31 different species were linked with the target node. Among them, 50 chemicals
from Morus alba were found in the middle of the network (Table S7 in Supplemental
Information). Additionally, Carthamus tinctorius, Cudrania tricuspidata, Glycyrrhiza inflata,
and Glycyrrhiza uralensis had more than 10 chemicals, which were predicted to act on ty-
rosinases (Table S8 in Supplemental Information). These five plants have been known as
the most popular and successful sources for the whitening products used in the cosmetic
industry [51,52].
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Figure 4. (A) The network diagram for the plants cluster having the largest TPS index to the target
”Tyrosinase” (CHEMBL3318). (B) The combined network generated from three network diagrams
for the plants cluster having the largest TPS index to the three targets, ”steroid 5α-reductase 1“
(S5R1, ChEMBL1787), ”steroid 5α-reductase 2“ (S5R2, ChEMBL1856) and ”androgen receptor” (AR,
ChEMBL1871). The chemical profiles sharing from chemicals from S5R1 and S5R2, from S5R1 and
AR and from S5R2 and AR.

Next, we combined three subnetworks-networks from three targets, steroid 5α-
reductase 1 (S5R1), steroid 5α-reductase 2 (S5R2), and androgen receptor (AR), which are
involved in the androgen metabolism, for the interaction of plants and chemicals on
multi-targets (Figure 4B). In total, 44 among 52 and 54 chemicals from S5R1 and S5R2,
respectively, shared with each other, but 10 of 52 from S5R1 and 7 of 54 from S5R2 only
shared those with 58 chemicals from AR (Tables S9–S11 in Supplemental Information).
The types of chemicals between the pairs of targets showed significantly different patterns.
The chemicals co-targeting S5R1 and S5R2 were mainly the steroid derivatives, such as
cholestanes, ergostanes, and stigmastanes, which were synthesized via the triterpenoid
pathways (Figure 4); however, sesquiterpenoids and diterpenoids were the main compo-
nents sharing the pairs of S5R1 and AR, or S5R2 and AR (Figure 4). We found that only 6
chemicals simultaneously acted on three targets and plants containing them (Table 2).
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Table 2. List of chemicals simultaneously acting on three targets, S5R1, S5R2 and AR.

Chemical Name CAS Number
Chemicals Classification

Kingdom Superclass Class Subclass Direct Parent

Kusunol 20489-45-6 Organic
compounds

Lipids and
lipid-like
molecules

Prenol lipids Sesquiterpenoids

Eremophilane,
8,9-secoeremophilane and

furoeremophilane
sesquiterpenoids

Stigmasta-4,6-
dien-3-one 29374-98-9 Organic

compounds

Lipids and
lipid-like
molecules

Steroids and
steroid

derivatives

Stigmastanes and
derivatives

Stigmastanes and
derivatives

Stigmastan-3-one
(5-alpha) 102734-69-0 Organic

compounds

Lipids and
lipid-like
molecules

Steroids and
steroid

derivatives

Stigmastanes and
derivatives

Stigmastanes and
derivatives

Dehydroabietinal 13601-88-2 Organic
compounds

Lipids and
lipid-like
molecules

Prenol lipids Diterpenoids Diterpenoids

(-)-alpha-
Copaene 3856-25-5 Organic

compounds

Lipids and
lipid-like
molecules

Prenol lipids Sesquiterpenoids Sesquiterpenoids

(-)-Ylangene 14912-44-8 Organic
compounds

Lipids and
lipid-like
molecules

Prenol lipids Sesquiterpenoids Sesquiterpenoids

4. Discussion

In this study, we tried to unravel the complex interaction between multi-chemicals and
multiple targets using the computational target prediction model and multipartite networks
comprising the relationship between the plants, chemicals, and targets. In hierarchical
cluster analysis, plants producing similar specialized metabolites are clustered only within
a taxon. In particular, in chemotaxonomy, secondary metabolites can be used as specialized
markers to distinguish among plants [53]. However, not all secondary metabolites are
produced in the same taxon. For example, flavonoids are widely distributed in plants and
even in fungi, fulfilling many functions, such as ultraviolet filtration, symbiotic nitrogen
fixation, and floral pigmentation [54]. The chemical profile of each plant has a minor effect
on the classification of the plant.

To unravel the clusters of multipartite networks from hierarchical clustering analysis,
we introduced an index of potential efficacy of plant clusters toward a target, called TPS.
TPS indicated the proximity of subnetworks of the metabolic relationships between plant
clusters and targets. We utilized it to search for and suggest candidate plants and chemicals
acting on specific targets (Figure 3). It was validated that the plants with more than 10 chem-
icals had enough experimental evidence to explain the biological roles on specific targets
retrieved in the network. TPS was also used for the extraction of a list of plants and
chemicals acting on a specific target of interest (Figure 4).

We also obtained potent plant and chemical candidates for the specific target, “tyrosinase”,
confirming the validity of the approach. The node information of the plants in the network is
expected to guide toward new alternative sources developed by plant combinations.

The approach is based on the multipartite network of plants and chemicals for a
single target using the TPS and could be expanded for multi-targets that closely interact
with each other. The plants and chemicals, which are expected to act on multiple targets,
including S5R1, S5R2, and AR, could be suggested to control the levels of testosterone
(T) and dihydrotestosterone (DHT), involved in the androgen metabolism. It is known
that the blockade of AR can decrease benign prostate hyperplasia (BPH) symptoms and
further relieve the lower urinary tract symptoms [55]. Since the alterations in AR are
associated with prostate cancer, the inhibition of AR by drugs is the prevention target for
prostate cancer growth [56]. The 5α-reductase inhibitors, which suppress the conversion
of T into DHT, contribute to the reduction in BPH or preventing prostate cancer [55,57].
In the present study, the AR-targeted chemicals were sesquiterpenoid and diterpenoid-
type, while the steroid derivatives were suggested as the chemicals targeting 5α-reductases
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(S5R1 and S5R2). We expected that the plants containing the chemicals acting on all three
targets, S5R1, S5R2, and AR, can be the new candidates for controlling the symptoms
or diseases involving androgen metabolism, such as BPH and prostate cancer. The well-
organized multipartite network is expected to explain the synergistic effects between the
multi-chemicals in single or multiple medicinal plants.

We have constructed a multipartite network by integrating the databases of the medic-
inal plants, chemicals, and targets for the prediction of the biological roles of the plants and
chemicals on specific targets. We have presented a novel computational approach based on
the multipartite network with which the plant species can be distinguished based on their
chemical profiles. In the clustered bipartite network of plants and chemicals, the chemical
profiles of the plants in identical or similar species were clustered closely at the bottom
level of the dendrogram. However, the plants in the same family were found far apart in
the dendrogram in many cases, which implies that the chemical profiles of the plants do
not significantly contribute to the classification of the species.

5. Conclusions

We have demonstrated that the network analysis helps to understand the biological
roles of multi-chemicals on multi-targets. With the target prediction models, it also provides
a way to discover alternative therapeutic agents from natural sources by extrapolating
from the known bioactivities of chemicals on targets. The predicted results about the
biological roles of multi-chemicals on multi-targets allow to explain the therapeutic activity
of the medicinal plant extracts via subnetworks of molecular mechanisms and suggest the
combinatory preparation of several medicinal plants on multi-targets to be involved in
the symptoms or diseases of interest. In our future study, we will study the candidates,
especially the combinations of plants or chemicals, predicted from the multipartite network
in in vitro and in vivo models to validate our approaches and further develop novel
therapeutic botanical drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11040546/s1, Figure S1: Visualization of non-zero values of the data matrix for the plants
and chemicals, where the rows correspond to the plants and the columns correspond to the chemicals,
Figure S2: The whole dendrogram for clustering of plants obtained by the hierarchical clustering
analysis, Figure S3: Visualization of the results of the spectral co-clustering. (A) Spectral co-clustering
of the whole network. (B) The modularity values for the determination of the number of clusters
for the spectral co-clustering algorithm. (C) The subnetworks induced by each of the five subsets of
nodes obtained by the spectral co-clustering. The 10% of the whole nodes were randomly selected
for visualization, Table S1: The structural properties of the whole network and the five subnetworks
obtained by the spectral co-clustering algorithm, Table S2: List of plants illustrated in Figure 2A,B,
Table S3: List of plants illustrated in Figure 2C,D, Table S4: List of plants illustrated in Figure 2E,F,
Table S5: List of plants illustrated in Figure 2G,H, Table S6: List of chemicals which are targeted on
phosphodiesterase 10A in Figure 3A, Table S7: List of chemicals linked with the plant, Morus alba
and the target, tyrosinase, Table S8: List of chemicals linked with the plants, Carthamus tinctorius,
Cudrania tricuspidata, Glycyrrhiza inflata and Glycyrrhiza uralensis and the target, tyrosinase, Table S9:
List of chemicals which are co-targeted on S5R1 and S5R2, Table S10: List of chemicals which are
co-targeted on S5R1 and AR, Table S11. List of chemicals which are co-targeted on S5R2 and AR.
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