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Background. Ferroptosis is a recently identified cell death pathway, and the susceptibility to ferroptosis inducers varies among
cancer cell types. There have been recent attempts to clarify the mechanisms implicated in ferroptosis, glioma invasion, and the
immune microenvironment but little is known about ferroptosis regulation in GBM. Methods. Screening ferroptosis-related
genes from published reports and existing databases, we constructed an integrated model based on the RNA-sequencing data in
GBM. The association of FRGPRS and overall survival is identified and validated across several different datasets. Genomic and
clinical characteristics, immune infiltration, enriched pathways, pan-cancer, drug resistance, and immune checkpoint inhibitor
therapy are compared among various FRGPRS subgroups. Results. We identified and confirmed the influences of five ferroptosis
key hub genes in the FRGPRS model. The FRGPRS model could serve to predict overall survival and progression-free survival
in GBM patients, and high FRGPRS was associated with comparatively stronger immunity, higher proportions of tumour tissue,
and good cytolytic immune and chemotherapeutics response in GBM patients. Conclusions. The five ferroptosis key hub genes
constituting the FRGPRS model could serve to predict overall survival and progression-free survival in patients with GBM and
help guide timely and efficacious therapeutic strategies customised and optimised for each individual patient. This discovery
may lay the foundation for the development and optimisation of other iterations of this model for the improved forecasting,
detection, and treatment of other malignancies notorious for their drug resistance and immune escape.

1. Introduction

Glioblastomamultiforme (GBM) is a primary malignant brain
tumour. Despite the fact that it is treated with multidisciplin-
ary synthetic therapy, including surgical resection, radiother-
apy, and chemotherapy, the patients’ overall survival time is
only approximately 15 months [1, 2]. Tumour necrosis is
common in GBM, and it is positively correlated with tumour
aggressiveness and poor outcome [3, 4]. Previous studies pro-
posed that oxidative phosphorylation disorders and intracellu-
lar adenosine triphosphate (ATP) depletion lead to cell death

in chronic ischaemia microenvironments [5, 6]. Extensive
tumour tissue hypoxia together with rapid tumour expansion
triggers necrosis. Collectively, they comprise the fundamental
stimuli of GBM stem cell progression [7]. Intense research
efforts have elucidated the cell death pathways in other can-
cers. However, no such breakthrough has been made for
GBM.Moreover, themechanisms by which GBM escapes pro-
grammed cell death remain unclear [8–10]. Recent studies
have demonstrated that targeting the cell death pathway is a
promising therapeutic strategy for preventing the progression
of GBM. For example, cell death-targeting drugs combined
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with immunotherapy suppressed tumour growth in murine
GBM models [11]. However, chemoradiotherapy resistance
and immune evasion are extremely variable among GBM
patients. Molecular alterations, such as isocitrate dehydroge-
nase1 (IDH1) mutation and tumour protein p53 (TP53) muta-
tion, are widely utilised for the prognosis and treatment of
GBM. Nevertheless, few of these strategies have been success-
ful. Therefore, new, efficacious treatments for GBM are
urgently required [12, 13].

Ferroptosis is a recently identified cell death pathway
characterised by iron-dependent lipid peroxidation. It differs
from apoptosis, necroptosis, and pyroptosis [14]. Overload-
ing of intracellular iron ions leads to glutathione (GSH)
depletion, reactive oxygen species (ROS) accumulation,
and, ultimately, cell death [15, 16]. Chemotherapy-resistant
GBM and other cancer cells, especially those that are mesen-
chymal and metastatic, are relatively more sensitive to fer-
roptosis induced by glutathione peroxidase-4 (GPX4)
inhibition [17–19]. However, susceptibility to ferroptosis
inducers varies among cancer cell types [20]. Despite the
presence of continuous oxidative stress stimulation, ferropto-
sis is not always triggered during cancer progression [21].
There have been recent attempts to clarify the mechanisms
implicated in ferroptosis, glioma invasion, and the immune
microenvironment [22–25]. Unfortunately, these studies
have not specifically focused on GBM, and little is known
about ferroptosis regulation in GBM. Thus, ferroptosis-
related prognosis and treatment indicators for GBM are
promptly needed.

Now, the treatment of GBM has entered an era of the
comprehensive treatment, therefore, identifying optimal bio-
markers is the key to maximizing the comprehensive thera-
peutic effect. In the present study, we constructed a model
which consists of 5 ferroptosis regulators and proposed it
as a potential molecular classification for GBM, which could
serve to predict overall survival and progression-free survival
in patients with GBM and could identify distinct mutation
pattern, immune infiltration, cytolytic immune response,
and the drug resistance. This discovery may lay the founda-
tion for the development and optimisation of other itera-
tions of this model for the improved forecasting, detection,
and treatment of other malignancies notorious for their drug
resistance and immune escape.

2. Methods

2.1. Patients and Datasets. We download from cBioPortal
database (https://www.cbioportal.org/) TCGA malignant
glioblastoma (glioblastoma multiforme, GBM), genome
sequencing data (whole exome sequencing, WES, 388 sam-
ples), copy number variation data (SNP6.0 chip data,
HG19, 575 samples), transcriptome data (RNA-SEQ, 155
samples), and clinical information data (585 samples).
The sample size of intersection of transcriptome data
and clinical data was 155. Rna-seq data included RSEM
standardized count and Z-score standardized expression
profile. We download a set of validation set of data
(GSE4412), including the transcriptome data and clinical
data, from the GEO resource platform (https://www.ncbi

.nlm.nih.gov/gds). Microarray data of GPL96 transcriptome
sequencing platform (Affymetrix Human Genome U133A
Array) were selected, including 85 samples of right frontal,
right frontal parietal, right frontal temporal, right parietal,
right parietal occipital, right temporal, right temporal parie-
tal, right anterior temporal, right cerebellum, left frontal, left
frontal temporal, left parietal, left parietal occipital, left
temporal, left temporal parietal, and thalamus. 74 patients
were diagnosed with grade III (n = 24) or grade IV (n = 50)
gliomas during the initial surgical treatment and were pro-
vided with fresh frozen materials for analysis as part of the
study. Normal brain tissue RNA-sequencing expression data
for 1,671 patients were obtained from the GTEx project
(https://gtexportal.org/home/). RNA-sequencing data for
514 low-grade glioma (LGG) samples and 407 bladder
urothelial carcinoma (BLCA) samples and their correspond-
ing survival information were downloaded from the cBiopor-
tal database (https://www.cbioportal.org/) for pan-cancer
analyses of ferroptosis-related risk factors. Clinical informa-
tion and RNA-sequencing data for 298 patients with urothe-
lial carcinoma being administered the PD-L1 inhibitor
atezolizumab were extracted using the “IMvigor210Core-
Biologies” package in R4.0.3 (R Core Team, Vienna, Austria).
For patients with GBM, clinical data, including radiotherapy,
race, and ethnicity, were downloaded from the Xena data
resources (https://xenabrowser.net/datapages/?cohort=GDC%
20TCGA%20Glioblastoma%20(GBM)&removeHub=https%
3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). The intersec-
tion of the transcriptome and clinical data was 155. Data type
and sample size information are summarised in Table 1.

Two hundred and sixty-nine ferroptosis genes were
obtained from known studies and related databases. There
were 259 in the FerrDb database (http://www.zhounan.org/
ferrdb/), 60 in the study by Yee et al. [5], and 52 in the study
by Liang et al. [26]. Data regarding the interactions among
transcription factors (TF), mRNAs, miRNAs, and lnRNAs
were downloaded from the Transfac (http://gene-regulation
.com/), Chipbase (http://rna.sysu.edu.cn/chipbase/), miTar-
base (http://mirtarbase.cuhk.edu.cn/php/index.php), Star-
base (http://starbase.info/), and LncMAP (http://www.bio-
bigdata.com/LncMAP) datahttp://2fxena.treehouse.gbases.
The protein–protein interaction (PPI) network of the coding
genes was constructed using STRING (V11∙0; https://string-
db.org/cgi/input.pl). Clinical and phenotypic data for TCGA
GBM samples matching the transcriptome data were sorted
as shown in Table 2.

2.2. Identification of Ferroptosis-Related Hub Genes. For the
RNA-sequencing data, genes not expressed in more than five
samples were excluded. Log2-transformation was performed
for both the control and validation groups, namely, 155
tumours (expression data) in TCGA database vs. 155 sam-
ples (expression data) in the GTEx. After gene overlap of
the control and validation groups, expression levels were
obtained for 13,762 genes in tumour and normal tissues.
Batch effects were removed using the ComBat function in
the “sva” package of R. A differentially expressed gene
(DEG) analysis between the GBM and normal brain samples
was performed using the “DESeq2” package in R. The false
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discovery rate- (FDR-) corrected threshold for statistical sig-
nificance was p ≤ 0∙01 (Benjamini and Hochberg method;
FC ≥ 2 or FC ≤ 1/2). Instead of using log2FC, we use FC
directly to represent the threshold. Differential expression
between tumour tissues and normal tissues was divided into
two types: upregulation group (FC ≥ 2) and downregulation
group (FC ≤ 0:5).

A Kyoto Encyclopedia of Genes and Genomes (KEGG)
function enrichment analysis was performed on the DEGs
using the “clusterProfiler” package in R to identify significantly
(p ≤ 0∙01) enriched pathways. Differentially ferroptosis-related
(ferroptosis-DE) genes were selected among the DEGs and
used in subsequent Gene Ontology (GO) functional and
KEGG pathway enrichment analyses using MSigDB (V7∙2)
(http://www.gsea-msigdb.org/gsea/msigdb). The top 15 signifi-

cantly enriched GO terms and pathways were determined, and
the related genes were extracted as Candidate-Ferroptosis-
Geneset1 (cd-Ferr-Geneset1).

Ferroptosis-DE genes were screened out from among the
DEGs. Consensus clustering analysis was performed using
the “ConsensusClusterPlus” package in R to discover the
ferroptosis-DE gene-based clusters in patients with GBM.
Relative changes in the area under the cumulative distribu-
tion function (CDF) curve were evaluated for cluster num-
ber k in the range of two to ten. The optimal number of
categories was determined to be four as the area under the
CDF curve underwent the greatest changes between classes
4 and 5. The differences in survival among the four subcate-
gories were evaluated using a log-rank test. The “survival”
package in R was used to plot Kaplan–Meier (K–M) survival
curves. For all GBM patients within the four categories,
differential expression analyses were performed using the
“DESeq2” package in R (FDR ≤ 0∙05; Benjamini and Hoch-
berg method; FC ≥ 1∙5 or FC ≤ 2/3). The Candidate-
Ferroptosis-Geneset2 (cd-Ferr-geneset2) was obtained by
the intersection of DEGs among the four categories. The
cd-Ferr-Geneset2 expression levels in the four categories
were plotted with a heatmap using the “heatmap” package
in R. A principal component analysis (PCA) was conducted
using the “psych” package in R.

A weighted correlation network analysis (WGCNA) of
the expression levels in the gene set collection was
performed to screen for hub genes. Mean connectivity was
used to select soft thresholds. A hierarchical cluster tree
was plotted to reflect the significance levels of the hub genes
and their associations with the clinical phenotypes. An asso-
ciation analysis was conducted to evaluate the correlations
between the module genes and the clinical phenotypic data.
The modules were identified, and their threshold values were
≥0∙7 and ≥0∙2 for gene significance (GS) and module mem-
bership (MM), respectively. Genes in the PPI networks with
degree > 5 were designated hub genes. The intersection of
the key module and hub genes in the PPI network was
designated as the ferroptosis-related disease hub gene data-
set. Based on the regulatory factors of screened key hub
genes, a multifactor regulatory network was constructed
using the Cytoscape (https://cytoscape.org/download.html).

2.3. Ferroptosis-Related Gene Prognostic Risk Score
(FRGPRS) Construction and Validation. Based on the

Table 1: Basic information of the datasets included in this study.

Dataset Data type N

TCGA GBM

Expression 155

Mutation 388

Copy number 575

Clinical data 585

GTEx brain Expression 1671

GEO (GSE4412) Expression, survival 85

IMvigor210CoreBiologies Expression, survival, drug response 298

GDSC Drug response, genomic markers of sensitivity 155

Table 2: Summary of clinical information in TCGA-GBM dataset.

Total patient (n) 155

Age at diagnosis (median, range) 60 (21-89)

Gender

Male 63

Female 43

Unknown 49

Vital status

Alive 32

Dead 122

Unknown 1

Radiotherapy

Yes 124

No 21

Unknown 10

Ethnicity

Hispanic or Latino 3

Not Hispanic or Latino 126

Unknown 26

Race

Black or African American 10

Asian 5

White 138

Unknown 2
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median expression values of the disease hub and known fer-
roptosis genes, the patients with GBM were separated into
two groups. Thirteen prognosis-related core genes signifi-
cantly influencing progression-free survival (PFS) were
recognised with univariate Cox regression models (p ≤ 0∙01
; log-rank test) and screened and verified using least absolute
shrinkage and selection operator- (Lasso-) logistic regression
analysis. FRGPRS was constructed based on the prognostic
gene expression levels using the regression coefficient from
the multivariate Cox proportional hazards regression analy-
sis. FRGPRS of the ith sample was calculated as follows:

Risk scorei = 〠
n

j=1
Cj ∗ expij, ð1Þ

where Cj is the regression coefficient of the jth prognostic
factor in the Cox regression model, and expij is the expres-
sion level of the jth prognostic factor in the ith sample.

The patients with GBM were separated into two groups
based on their median FRGPRS values. The relationship
between FRGPRS and patients’ overall survival (OS) was
evaluated using log-rank test. ROC curves were plotted using
the “timeROC” package of R and used to estimate the prog-
nostic performance of the FRGPRS. GEO data (GSE4412)
were used for validation analysis. Based on the FRGPRS,
pan-cancer analyses were performed on TCGA GBM, GEO
GBM, TCGA LGG, and TCGA BLCA.

2.4. Comprehensive Analysis of Genomic, Clinical, and
Immune Characteristics, Pan-Cancer, Drug Resistance, and
Immune Checkpoint Inhibitor Therapy among Various
FRGPRS Subgroups. The relationships among FRGPRS level
and clinical (gender, radiotherapy, and age) and genomic
(IDH1 mutation, 1p/19q codeletion, and TP53 mutation sta-
tus) characteristics were examined. Moreover, the patients
with GBM were divided into high-risk and low-risk groups
based on their median FRGPRS values. Correlation analyses
were performed on the immune characteristics and genome
variants among the different groups. The immune subtypes
come from previous studies on immune characteristics anal-
ysis of TCGA data [27]. For immune subtypes, gliomas
involve only 3 subtypes, namely, C1, C4, and C5. The
homologous recombination deficiency (HRD) scores,
neoantigens, fractions altered, and mRNAsi indices were
assessed according to previous analyses of the genomic char-
acteristics of TCGA data [27, 28]. Nonsynonymous GBM
tumour mutation burdens were calculated using the tumour
mutational burden (TMB) analysis. Chromosomal instabil-
ity was associated with HRD, and genomic DNA damage
was assessed by loss-of-heterozygosity, large scale transition,
and telomeric allelic imbalance (NtAI) [29]. The infiltration
levels of 22 different immunocytes were determined with the
“CIBERSORT” package in R [30]. The Wilcoxon rank-sum
test compares significance between pairs, while the KW test
is a nonparametric test that compares multiple groups.
Based on the proportions of the stromal and cellular compo-
nents, the immune, stromal, and ESTIMATE scores were
evaluated using the “ESTIMATE” package in R [31]. Based

on GBM cell line and drug response data derived from the
Genomics of Drug Sensitivity in Cancer website (http://
www.cancerrxgene.org/), a drug sensitivity prediction model
for the patients with GBM was constructed using ridge
regression [32].

Survival analyses of FRGPRS groups were conducted to
explore the predictive performance of FRGPRS in patients
undergoing immune checkpoint inhibitor therapy. Based
on their immunotherapy responses, the 298 aforementioned
patients with urothelial carcinoma were divided into com-
plete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD) groups for validation
analysis [33].

2.5. Genomic Variant and Copy Number Variation Analyses.
To establish the differences in variation between low and
high FRGPRS, mutation spectra were plotted using the
“Maftools” package in R for the top 30 genes with highest
frequency. The copy number alteration (CNA) frequency
was calculated using the “copynumber” package in R. The
log2CNA thresholds were set to ±0∙3, namely, -0∙3 for loss
and 0∙3 for gain. A Wilcoxon test was used to plot the
CNA frequency distribution graphs [34].

2.6. Individualized Prognostic Prediction Models. During the
quantification of the risk on individuals in a clinical setting
with the integration of multiple risk factors, the nomogram
acts as a powerful tool in the assessment. A nomogram
was constructed using the survival rate and “RMS” R pack-
age, and a correction curve was drawn to evaluate the consis-
tency between the actual and predicted survival rates.

2.7. Statistics. A Wilcoxon rank-sum test was used to calcu-
late the significance levels in pairs of groups. A Kruskal–
Wallis test was used to compare the gene expression levels
between two or more groups. The Benjamini and Hochberg
method was used to correct the significance levels. Univari-
ate and multivariate logistic regression models were applied
to calculate the hazard ratios (HRs). Predictive performance
of the model was evaluated by ROC curve analysis. p ≤ 0∙05
was considered statistically significant.

3. Results

3.1. Differential Expression Analysis between GBM and
Normal Tissues. We assessed the expression profiles of pre-
processed GBM and normal brain tissue sample data down-
loaded from TCGA and GTEx. A differential expression
analysis was performed using the “DEseq2” package in R,
the screening threshold was FDR ≤ 0∙01, and the Benjamini
and Hochberg correction significance level was FC ≥ 2 OR
FC ≤ 1/2. Three hundred and fifty-seven DEGs were identi-
fied. Of these, 266 were upregulated and 91 were downregu-
lated (Table S1). A volcano map was plotted based on the
foregoing results (Figure 1(a)). To display the gene
expression levels in the tumour and normal brain tissues,
we extracted 60 upregulated and 20 downregulated DEGs
(Table S1) and used their expression levels to plot a
standardized expression profile heat map (Figure 1(b)).
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Figure 1: Differential expression analysis between GBM samples and normal brain tissue. (a) Volcano plot showing DEGs between GBM
and normal brain tissue. (b) Heatmap showing differences in DEG expression patterns between GBM and normal brain tissue. Red,
upregulated; blue, downregulated. GBM: glioblastoma multiforme; DEGs: differentially expressed genes.
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Figure 2: Continued.
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3.2. Candidate Ferroptosis Geneset1 (cd-Ferr-Geneset1) Was
Obtained Based on GO and KEGG Pathway Analyses of
Ferroptosis-DE Genes. A KEGG function enrichment analy-
sis was performed on the DEGs identified in the GBM and
normal brain tissue samples. We screened significantly
enriched pathways (Figure S1). The DEGs were enriched in
pathways related to cell growth and development,
transcriptional regulation, and calcium signalling, such as
“cell cycle,” “p53 signalling,” “Toll-like receptor signalling,”
and “calcium signalling” (Figure S1). A GO enrichment
analysis showed that the DEGs were not enriched in any
iron-related function. Hence, 122 ferroptosis-DE genes were
screened from among the DEGs for KEGG and GO
enrichment analyses. According to the significance
threshold, the top 15 significantly enriched pathways and
GO terms were screened out for display. A KEGG functional
enrichment analysis showed that the ferroptosis-DE genes
were enriched in iron-related pathways, such as “ferroptosis”
(p = 3∙16E − 17; Figure 2(a); Table S2). The GO enrichment
analysis showed that the ferroptosis-DE genes were enriched
in iron and oxygen consumption-related functions. For
example, the GO functions in molecular function included
“iron ion binding” (p = 2∙53E − 04; Figure 2(b); Table S3).
The GO functions in biological process include “iron ion
transport” (p = 5∙15E − 08), “iron ion homeostasis” (p = 1∙
97E − 08), “cellular iron ion homeostasis” (p = 3∙97E − 08),
“response to iron ion” (p = 7∙07E − 07), and “iron ion
transmembrane transport” (p = 4∙70E − 04) (Figure 2(c);
Table S4). In terms of cell components, however, no
significant iron-related functions were found (Figure 2(d);
Table S5). To obtain the cd-Ferr-Geneset1 (Table S6), we
downloaded all pathway and GO term genes from the

MSigDB (V7∙2) database. Furthermore, from the KEGG
and GO term analysis of ferroptosis-DE genes, we
extracted genes as they were enriched in iron and oxygen
consumption-related functions.

3.3. Candidate Ferroptosis Geneset2 (cd-Ferr-Geneset2)
Obtained Based on Cluster Analysis of Ferroptosis-DE
Genes. Based on the ferroptosis-DE gene expression levels,
we used the consensus cluster analysis method on patients
with GBM and explore the correlations between clustering
category and patient survival time (Figures 3(a) and 3(b)).
The optimal clustering effect was realised when the patients
with GBM were divided into four subtypes (Figure 3(b)).
A survival analysis showed that subtype 4 had relatively
longer survival times than subtypes 1 and 3 (p = 0∙031
and p = 0∙055, respectively) (Figure 3(c)). We used the
“DEseq2” package in R for differential gene expression
analysis and compared differential gene expression among
the four subtypes. In all cases, the screening threshold was
FDR ≤ 0∙05, and the Benjamini and Hochberg correction
significance level was FC ≥ 1∙5 OR FC ≤ 2/3. Intersection
of the DEGs identified in the four subtypes identified the
ferroptosis-DE genes in the GBM samples. These 24 genes
were then used as cd-Ferr-Geneset2 (Table S7). A heatmap
of the cd-Ferr-Geneset2 expression levels in the four
ferroptosis subtypes was plotted using the “pheatmap”
package in R. The genes in the cd-Ferr-Geneset2 were
significantly differentially expressed among the four subtypes
(Table S8-11). We used the “Psych” package in R to conduct
a PCA based on the cd-Ferr-Geneset2 expression levels in
the four ferroptosis subtypes. We displayed the first two
principal components (PC1 and PC2) contributing to the
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Figure 2: Functional enrichment analysis of ferroptosis-related DEGs in GBM samples. (a) KEGG pathway enrichment analysis network for
ferroptosis-related DEGs. (b)–(d) GO enrichment analysis of MF, BP, and CC ranked by adjusted p value (p:adjust ≤ 0∙05), respectively.
DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; GBM: glioblastoma multiforme; GO: Gene
Ontology; MF: molecular function; BP: biological process; CC: cellular component.
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Figure 3: Continued.
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majority of the sample characteristics. The genes in the cd-
Ferr-Geneset2 were localised mainly to PC1 for all four
ferroptosis subtypes. Subtype 2 had a higher degree of
discrimination than the other subtypes (Figure 3(e)). By
combining cd-Ferr-Geneset1, cd-Ferr-Geneset2, and known
ferroptosis genes (Table S12), we found that forty-eight
genes intersected between ferroptosis genes and cd-Ferr-
Geneset1, whereas four genes intersected between
ferroptosis genes and cd-Ferr-Geneset2. Only one gene
intersected between cd-Ferr-Geneset1 and cd-Ferr-Geneset2
(Figure 3(f)).

3.4. Weighted Gene Coexpression Network Analysis
(WGCNA) Based on Ferroptosis Geneset. The union of
known ferroptosis genes, cd-Ferr-Geneset1, and cd-Ferr-
Geneset2 was plotted to generate a ferroptosis geneset con-
sisting of 543 genes (Figure 3(f)). A weighted gene network
was constructed by calculating Pearson’s correlation coeffi-
cient between gene pairs. The soft threshold was calculated
to the nth power operation of Pearson’s correlation coeffi-
cient. Based on the soft threshold distribution diagram and
the mean connectivity, we obtained a power of five
(Figure 4(a)). A hierarchical cluster dendrogram was plotted
using the Pearson’s correlation coefficients for gene pairs.
Different colours and cluster tree branches represent differ-
ent modules and gene modules, respectively. We divided
the genes into 16 modules (Figures 4(b) and 4(c); Table 3).
Based on their weighted Pearson’s correlation coefficients,
the genes were classified by expression pattern. Genes with
similar patterns were grouped into a single module. We
found that most of the modules had a significance level of
approximately 0∙1. The mean significance level of the
green-yellow module was the highest (0∙165) (Figure 4(c)).

A correlation analysis between the modules and clinical
features revealed that the green-yellow module had the
strongest positive correlation with the clinical feature age
(r = 0∙25; p = 0∙009; Figure 4(d)). In the present study, then,
the green-yellow module was selected for the subsequent
downstream analysis. When we calculated the correlations
between the green-yellow module and age separately, we
identified significant positive correlations between both
modules (r = 0∙2; p = 0∙0011; Figure 4(e)).

3.5. Construction of a Multifactor Regulatory Network of
Ferroptosis Key Hub Genes. Twenty-nine genes were
screened according to the threshold of the correlation coeffi-
cient of MM and GS. Based on the degrees of the known PPI
interaction network and using degree ≥ 5 as the threshold,
194 hub genes were screened (Figure 5(a)). There were 26
intersections between the hub nodes genes and the key mod-
ule genes (Figure S2). These intersections were regarded as
the ferroptosis key hub genes in GBM. Regulatory
relationship data for the TFs and noncoding RNAs
(miRNAs and lncRNAs) on the mRNAs were downloaded
from known databases to identify the regulatory factors of
ferroptosis key hub genes in GBM. Cytoscape was used to
construct a multifactor regulatory network of the
ferroptosis key hub genes (Figure 5(b); Table S13).

3.6. Univariate Cox Regression Analysis Screened Key Hub
Genes Related to GBM Prognosis. The patients with GBM
were grouped according to the median expression levels of
ferroptosis key hub genes and known ferroptosis genes.
The relationships between the expression levels of the prog-
nostic key genes and patient survival time were explored
using the log-rank test. The analysis demonstrated that high
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Figure 3: Identification of candidate ferroptosis genes in GBM samples. (a) Heatmap showing optimal consensus cluster effect (four
subtypes), white (not clustered), and blue (clustered). (b) AUC of cumulative distribution function (c, d, and f). (c) Overall survival of
patients among subtypes. (d) Heatmap showing DEG expression levels in four subtypes. (e) PCA showing expression levels in four
subtypes. (f) Venn diagram of two categories of newly identified genes (cd-Ferr-Geneset1; cd-Ferr-Geneset2) and known ferroptosis
genes. GBM: glioblastoma multiforme; AUC: area under curve; DEGs: differentially expressed genes; PCA: principal component analysis.
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expression levels of certain known ferroptosis-related genes
and some of ferroptosis key hub genes are associated with
significantly worse patient survival time (Figure 6). Other
ferroptosis-related genes are listed in Figure S3. Thirteen
prognosis-related genes were screened (Figure 7(a)).

3.7. Construction of a Prognostic Risk Scoring Model for
Ferroptosis Key Hub Genes. A Lasso-logistic regression was
used to screen for other prognostic factors and remove
redundant ones. The model had optimal performance when

it included five prognostic factors (Figure 7(b)). Hence, they
were selected for the subsequent analyses. A Cox regression
analysis identified one protective factor (DUOX1) and four
risk factors (CDKN1A, GSS, ALOX5, and SQSTM1)
(Figure 7(c), Table S14).

3.8. Evaluation of the Effectiveness of the Risk Scoring Model
and Pan-Cancer Analysis. To evaluate the overall influence
of these prognostic factors on patient survival time, a scoring
model was constructed based on their expression levels and
Cox regression coefficients. We calculated the sample
FRGPRS as well (Materials and Methods). The model was
used to evaluate the predictive efficacy of TCGA GBM data
and the validation dataset (GSE4412) (Table S15). For
patient survival time (PFS) in TCGA, FRGPRS was ranked
from low to high, and a median score of 0∙551 was
obtained (Figure 8(a)). The patients were grouped
according to median score. Those in the FRGPRS group
had significantly worse PFS (p = 5∙4E − 03; Figure 8(b)).
When the scoring model was applied to the GEO dataset,
the median FRGPRS was 0∙384 (Figure 8(f)). Patients in
the high-risk group had significantly worse (OS; p = 6∙5E −
03; Figure 8(g)). The patient survival status figure was
drawn by the FRGPRS and ranked from small to large.
Deceased patients had greater FRGPRS than living
patients, especially in the TCGA GBM dataset (Figures 8(c)
and 8(h)). Heatmaps of the prognostic factors were plotted
on TCGA GBM data and GEO validation dataset. Patients
with high CDKN1A, GSS, ALOX5, and SQSTM1
expression levels were relatively more likely to be enriched
in FRGPRS. By contrast, the expression levels of the
protective factor DUOX1 were negatively correlated with
patient FRGPRS (Figures 8(d) and 8(i)). These findings
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Figure 4: WGCNA of gene expression level in GBM. (a) Distribution diagram of soft threshold and mean connectivity. (b) Hierarchical
cluster displaying various modules. Different colours represent genes in different modules; grey = unclassified genes. (c) Gene significance
across modules. Average correlations among various module genes and clinical phenotypes. (d) Association analysis of module genes and
clinical phenotypes; red (positive correlation), and blue (negative correlation). (e) Scattergram of correlations between green-yellow
modules and the clinical age phenotypes. WGCNA: weighted gene coexpression network analysis; GBM: glioblastoma multiforme.

Table 3: Gene number of each module in WGCNA.

Module type Number

Black 361

Blue 864

Brown 433

Cyan 99

Green 378

Green-yellow 265

Grey 699

Magenta 276

Midnight blue 85

Pink 338

Purple 273

Red 362

Yellow 402

Turquoise 1,201

Tan 183

Salmon 131
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Figure 5: Identification of ferroptosis-related hub genes. (a) Screening of ferroptosis-related hub genes by PPI network; red (hub genes),
purple (degree > five), and green (degree < five). (b) Multifactor regulatory network of ferroptosis-related hub genes in GBM; red (hub
genes), green (lnRNA), purple (miRNA), and blue (TF). PPI: protein-protein interaction; TF: transcription factor.
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Figure 6: Continued.
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were consistent with the effect of the expression level of a
single gene on patient survival (Figures 6 and S3). We used
the ROC curve to evaluate the prediction efficacy of the
model. The areas under the curve (AUC) for one-year
survival time were 0∙69 (TCGA GBM dataset) and 0∙68
(GEO validation data set) (Figures 8(e) and 8(j)). To
characterise the prognostic efficacy of FRGPRS in pan-
cancer, we downloaded multicentre data, including GBM
(TCGA data, 155 samples; GEO data, 85 samples), LGG
(514 samples), and BLCA (407 samples), calculated the
FRGPRS, and explored the impact of the score on patient
survival time (OS). Patients with high FRGPRS in TCGA
LGG showed significantly worse OS (p = 0∙0018; log-rank
test; Figure 7(d)). A Cox regression analysis demonstrated
that FRGPRS was a significant risk factor, and it affected
the OS of patients with LGG (HR = 1∙11; 95% CI [1∙05,
1∙18]; p = 2E − 04; Figure 7(f)). FRGPRS also influenced
the OS of patients with GEO GBM as a significant risk
factor (HR = 1∙1; 95% CI [1∙01, 1∙19]; p = 0∙019;
Figures 7(f) and 8(g)). However, FRGPRS was not
correlated with patient OS for TCGA GBM or BLCA
(Figures 7(e) and 7(f), and S4A). Compared with other
models [1, 2, 17], our ferroptosis model had superior
prognostic efficacy. The AUC of our model was 0∙69,
whereas those of previous models were 0∙65 and 0∙66,
respectively (Figure S4B).

3.9. Differential Analysis of FRGPRS in Grouping Genomic
and Clinical Characteristics. The genomic characteristics
included IDH1 mutation, 1p/19q co-del, and TP53 mutation
status. The clinical characteristics included gender, radio-
therapy, and age. Patients with IDH1 mutation had signifi-

cantly lower FRGPRS than those with wildtype IDH
(p = 0∙0069; Wilcoxon rank-sum test; Figure 9(a)). More-
over, the patient with 1p/19q co-del had comparatively low
FRGPRS. As there was only one patient of this type, an accu-
rate significance level could not be calculated (Figure 9(b)).
Patients with TP53 mutation had significantly lower
FRGPRS (p = 6∙3E − 04; Figure 9(a)) than patients with
wildtype TP53. Patients aged 60 years (p = 0∙039) or sub-
jected to radiotherapy (p = 0∙052) had relatively reduced
FRGPRS (Figures 9(d) and 9(e)). No correlation was found
between gender and FRGPRS (p = 0∙85; Figure 9(f)). HRD
scores, mutation and neoantigens loads, fractions altered,
chromosome instability, and stemness indices (mRNAsi)
were obtained from published studies. FRGPRS associated
with genomic characteristics was reflected in Figure S5.

3.10. FRGPRS Tumour Immune Microenvironment Analysis.
There were various overall immune cell infiltration scores
among the high- and low-FRGPRS groups (p < 2∙2E − 16;
Figure 10(a)). In addition, patients with high FRGPRS had
higher infiltration scores for M0 macrophages (p < 0∙05),
M2 macrophages (p < 0∙01), activated mast cells (p < 0∙05),
and monocytes (p < 0∙05; Figure 10(a)). By contrast, patients
with low FRGPRS had higher infiltration scores for resting
mast cells (p < 0∙01), CD8+ T cells (p < 0∙05), and follicular
helper T cells (p < 0∙01; Figure 10(a)). We estimated the
immune, stromal, and tumour purity (ESTIMATE) scores
based on the stromal: immune cell ratios. Patients with high
FRGPRS had significantly higher stromal cell (p = 7∙1E − 10;
Figure 10(b)), immune cell (p = 2∙9E − 12; Figure 10(c)), and
tumour purity (p = 4∙9E − 12; Figure 10(d)) scores than
those with low FRGPRS.
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Figure 6: Identification of prognostic ferroptosis key hub genes. Prognostic ferroptosis key hub genes in GBM samples were screened using
univariate Cox regression analysis and depicted by Kaplan-Meier survival analysis. (a)–(c) Known ferroptosis-related genes (AlOX5,
CDKN1, and AHMOX1). Ferroptosis-related hub genes (CD68, IL10RA, and ITGB2) (d)–(f). GBM: glioblastoma multiforme.
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3.11. FRGPRS Genomic Mutation and CNA Analyses. Silent
mutations are removed while nonsynonymous mutations
playing roles in protein-coding genes are retained. Thirty
genes ranking from high- to low-mutation frequency were
extracted and displayed using the “Maftools” package in R.
PTEN (34%) had the highest mutation frequency. It
included several mutations in GBM, including Nonsense_
Mutation, Frame_Shift_Del, and Missense_Mutation
(Figure 11(a)). PTEN is more likely to be mutated in the
high-risk (41∙6%) than in the low-risk (25∙7%) patients. By
contrast, for TP53 (34%), the major mutation type was
Missense_Mutation, and it was more likely to occur in
low-risk patients. We also explored the relationship between
edge disturbance characteristic subtypes and CNA fre-
quency. We used the “copynumber” package in R to plot
the CNA frequency for each subtype. This parameter dif-
fered between high- and low-risk groups (Figures 12(b)
and 12(c); p < 2∙2E − 16; Wilcoxon test).

3.12. Association of FRGPRS with GBM Drug Resistance and
Immunotherapy. To determine whether FRGPRS could
serve as an immunotherapy response marker, we extracted
transcriptome and clinical data for urothelial carcinoma
patients treated with the PD-L1 blocker atezolizumab. High
FRGPRS was associated with poor patient outcome
(p = 0∙028; log-rank test; Figure 12(a)). Patients in the
high-risk group had comparatively lower atezolizumab
response rates (CR/PR = 13∙2%), whereas those in the
low-risk group had relatively higher atezolizumab response

rates (CR/PR = 16∙1%; Figure 12(b)). The atezolizumab
response (CR/PR) and nonresponse (SD/PD) groups
differed in terms of their FRGPRS (p = 0∙0017; Kruskal–
Wallis test; Figure 12(c)). Patients with SD and PD had
higher FRGPRS than patients with CR and PR. Ridge
regression was used to predict drug sensitivity in patients
based on cell line expression and drug response data
downloaded from GDSC. We examined the correlations
between the high- and low-risk groups and their drug
response patterns. Low-risk GBM patients were compara-
tively more sensitive to temozolomide (p = 4∙9E − 03;
Figure 12(d)), cisplatin (p = 2E − 05), the PARP inhibitor ola-
parib (p = 0∙025), and anthracycline/taxanes. Low-risk GBM
patients had significantly lower levels IC50 for doxorubicin
(p = 0∙013) and docetaxel (p = 0∙0049). By contrast, high-
risk GBM patients showed lower IC50 for imatinib
(p = 4∙9E − 10) (Figure 12(d)). In addition, the response
patterns of patients with low FRGPRS that were sensitive to
zibotentan (p = 1∙8E − 06) and gemcitabine (p = 3∙9E − 04)
were consistent with those for temozolomide (Figure 12(d)).

3.13. Independent Prognostic Factor Analysis of FRGPRS.
FRGPRS was applied to TCGA GBM and GEO samples in
univariate Cox analyses. FRGPRS (log2HR = 0∙15; 95% CI
[0∙07, 0∙23]; p = 0∙0024; Figure 13(a)) and age (log2HR =
− 0∙03; 95% CI [0, -0∙05]; p = 0∙019) were significant risk
factors influencing GBM patient survival. Moreover, the
radiotherapy status of patients with GBM positively affected
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Figure 7: Construction of FRGPRS model for GBM. (a) Univariate Cox regression analysis. Forest plot of associations among 13 prognosis
factors and GBM survival. Genes with HR > 1 are risk factors, whereas genes with HR < 1 are protective factors. (b) Identification of five-
gene OS risk signature using Lasso-logistic regression analysis. (c) Lasso coefficient spectrum of five genes in GBM. (d)–(f) Prognostic
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Figure 8: Continued.
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patient survival (log2HR = −1∙23; 95% CI [-2∙02, -0∙44]; p
= 0∙0024; Figure 13(a)). After adjusting for age, sex, race,
and radiotherapy status, a multivariate Cox regression anal-
ysis showed that FRGPRS was an independent risk prognos-
tic factor influencing patient survival (HR = 1∙13; 95% CI
[1∙037, 1∙23]; p = 0∙005; Figure 13(b)). Radiotherapy status
was also an independent protective prognostic factor
(HR = 0∙36; 95% CI [0∙143, 0∙89]; p = 0∙027). FRGPRS was
applied to the validation set (GEO) and indicated to be a
significant risk factor (log2HR = 0∙14; 95% CI [0∙02, 0∙25];
p = 0∙0195; Figure 13(c)). Age, tumour grade, and GBM sub-
type were significant risk factors affecting patient survival
(age: log2HR = 0∙03; 95% CI [0, 0∙06]; p = 0∙028; tumour
grade: log2HR = 1∙94; 95% CI [0∙97, 2∙91]; p = 1E − 04;

GBM subtype: log2HR = 2∙95; 95% CI [1∙87, 4∙02]; p < 0∙
0001; Figure 13(c)). After correcting for age, tumour grade,
and GBM subtype, however, the multivariate Cox regression
analysis showed that the influence of FRGPRS was not sig-
nificant (p = 0∙48; Figure 13(d)).

3.14. FRGPRS Nomogram. Using the FRGPRS, TP53/ID-
H1/EGFRmutation status, age, gender, and radiotherapy sta-
tus data, a nomogram for the clinical analysis of patients with
GBM was generated with the “RMS” package in R. In this
study, the c-index calculated after 500 iterations is 0.683.
For instance, if one patient had FRGPRS = 0∙6 (points =
52), age = 50 (points = 43), TP53mutation status = wildtype
(points = 10), IDH1mutation status = wildtype (points = 58),

Log rank test
p = 0.0065
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Figure 8: Efficiency evaluation of FRGPRS model for GBM. (a) and (e) Evaluation with TCGA GBM. (f) and (j) Evaluation with GEO
validation set (GSE4412). (a) and (f) distribution diagram of two patient FRGPRS datasets. Groups higher than median are high-risk,
whereas those lower than median are low-risk. (b) and (g) Kaplan-Meier survival analysis of two patient FRGPRS datasets. (c) and (h)
Distribution diagram of two survival FRGPRS datasets. (d) and (i) Expression levels of various prognostic factors in FRGPRS. (e) and (j)
ROC curve of two survival FRGPRS datasets. GBM: glioblastoma multiforme; RCO: receiver operator characteristic.
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EGFRmutation status = wildtype (points = 12), and sex =
female (points = 10), then points = 185. The 1.5-year, 2-year,
and three-year survival rates would be 22%, 17%, and
15%, respectively (Figure 14). A calibration curve was
plotted for the nomogram to compare between the actual
and predicted risk at years one and a half, two, and three.
The curves for years two and three approximated the ideal
line (Figure 14(b)). A decision curve analysis was con-
ducted based on the TP53 mutation state. The patient with
wildtype TP53 had comparatively superior net benefit
(Figure 14(c)). If we choose to diagnose and treat GBM
with a predicted probability of 50%, then 5/100 patients
with TP53 mutation will benefit from it without reducing
the benefit to other patients. However, 7/100 patients with
wildtype TP53 will benefit from it without decreasing the
benefit to other patients (Figure 14(c)). Graphical abstract
is for comprehensive characterization of FRGPRS groups
in GBM (Figure 15).

4. Discussion

In the present study, we comprehensively evaluated
ferroptosis-related genes and their correlations with patient
prognosis, drug resistance, immune infiltration, immuno-
therapy response, and gene mutation in GBM. As prognosis
and survival are poor for GBM, concerted efforts have been
made to improve quality of life and clinical benefit for GBM
patients. To these ends, we constructed a prognostic risk
model of five ferroptosis-related genes in patients with
GBM. It was based on the PFS in TCGA chart and was val-
idated with a GEO dataset. The calibration curve indicated
that the prediction effect for years two and three was rela-
tively good (Figure 14(b)). High-FRGPRS levels indicated

poor prognosis and insensitivity to first-line chemotherapy
in GBM patients. Immunotherapy results revealed that the
anti-PD-L1 response to urothelial cancer was comparatively
more sensitive in low-risk patients. FRGPRS was signifi-
cantly correlated with CAN and reflected the predictive
power of gene mutation and immune infiltration, and these
were closely related to clinical features, outcome, recurrence,
and immune function.

There is growing evidence to suggest that ferroptosis is
indispensable in eradicating cancer cells and that ferroptosis
sensitivity differs among cancer types [35]. FRGPRS com-
prises five genes, namely, one protective factor (dual oxidase
1; DUOX1) and four risk factors (CDKN1A, GSS, ALOX5,
and SQSTM1). DUOX1 is normally expressed in epithelial
cells and plays an important role in the immune response
[36]. DUOX1 silencing frequently occurs in epithelial-
derived cancers and correlates with positive prognosis in
certain tumours. However, DUOX1 expression levels in
GBM are unknown [37–39]. Conditional DUOX1 overex-
pression could serve to evaluate the correlation between
DUOX1 silencing and cancer progression or response to
therapy [40]. Recent studies have revealed that DUOX1 sup-
pression in cancer is driven mainly by hypermethylation of
its promoter. Hence, DNA methyltransferase inhibition
may be a promising approach toward recovering DUOX1
expression [37–39]. Defective cell cycle control is a common
cause of tumorigenesis. CDKN1A is a prognostic marker for
ferroptosis-related GBM [25]. CDKN1A is transcriptionally
controlled by p53-dependent and p53-independent path-
ways and may regulate cell migration, DNA repair, and
DNA reprogramming during induced pluripotent stem cell
generation [40]. CDKN1A can act as a tumour suppressor
or oncogene, depending on the cellular context [41]. The
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Figure 9: FRGPRS associated with genomic mutation and clinical characteristics. (a)–(c) Box plots depicting differences among patients
with IDH1 mutation (a), 1p/19q co-del (b), and TP53 mutation (c). (d)–(f) Box plots depicting differences among patients according to
radiotherapy (d), age (e), and sex (f). GBM: glioblastoma multiforme.
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GPX4-GSS/GSR-GGT axis is a crucial target of ammonium
ferric citrate-induced ferroptosis. Interactions between the
rapamycin kinase and GPX4 targets may regulate
autophagy-dependent ferroptosis in cancer cells. GPX4
downregulation enhances sensitivity to chemotherapy by
promoting ferroptotic cell death [42, 43]. Lipid peroxidation
is positively regulated by ALOX5 and contributes to ferrop-
totic cell death. Here, differential ALOX5 expression was
observed between the high- and low-FRGPRS groups. This
discovery was consistent with a previous report [24]. Nrf2

and p62/SQSTM1 jointly contribute to mesenchymal transi-
tion and tumour infiltration in GBM [24]. The present study
showed that high SQSTM1 expression indicated poor prog-
nosis in GBM.

Significantly higher immune, stromal, and ESTIMATE
scores were observed in the high-FRGPRS group than in
the low-FRGPRS group. Patients in the former group had
comparatively higher immune activity, greater proportions
of tumour tissue, and favourable cytolytic immune response.
Prior research emphasised the importance of tumour
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Figure 10: FRGPRS associated with TIME. (a) Infiltration abundance level distribution of 22 immune cell types in high- and low-risk
groups (∗p < 0∙05 and ∗∗p < 0∙01). (b)–(d) Box plots diagram showing differences in (c) stromal score, (d) immune score, and (e)
tumour purity between high- and low-FRGPRS groups. TIME: tumour immune microenvironment.
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Figure 11: Analysis of genomic variation in FRGPRS. (a) OncoPrint diagram showing gene mutation distributions of high- and low-risk
FRGPRS. (b) CNA distributions of high- and low-risk FRGPRS. (c) Violin plots depicting correlation analyses between CNA and
FRGPRS. CNA: copy number alteration.

22 Oxidative Medicine and Cellular Longevity



immune classification and the evaluation of local immuno-
logical biomarkers to make decisions regarding patient
prognosis and prediction of treatment efficacy [44–46]. Fer-
roptosis may participate in cancer immune evasion. There

has been growing interest in clarifying the mechanisms reg-
ulating cancer cell sensitivity to ferroptosis [47]. PTGS2
upregulation and PGE2 release induce ferroptosis which
may, in turn, modulate antitumor immunosuppression
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Figure 12: FRGPRS in prediction of immunotherapeutic benefits. (a) Kaplan–Meier curves and clinical responses to anti-PD-1 therapy in
patients in IMvigor210 cohort with high- and low-FRGPRS. (b) Proportions of immunotherapy responses in high- and low-risk FRGPRS.
(c) Box plots diagram depicting correlation analyses of overall response status and FRGPRS. (d) Violin plots depicting differences in
estimated IC50 for temozolomide, cisplatin, doxorubicin, docetaxel, imatinib, zibotentan, olaparib, and gemcitabine between high- and
low-FRGPRS groups. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Figure 13: Continued.

24 Oxidative Medicine and Cellular Longevity



[48, 49]. Further research is required to elucidate the
immunomodulatory roles of ferroptosis in antitumor
immunity [48, 49]. Elevated CD8+ and follicular helper T
cell counts and infiltration in the low-FRGPRS group were
indicative of antitumor efficacy. Immunotherapy promotes
effector T cell function mainly by inducing cell death
through the perforin-granzyme and Fas–Fas ligand path-
ways [50–52]. There is emerging evidence that ferroptosis
is associated with various pathological scenarios. However,
it is unclear whether, or how, ferroptosis is implicated in
T cell immunity and cancer immunotherapy. CD8+ T cells
secrete interferon gamma, regulate SLC3A2 and SLC7A11
expression, and promote cancer cell lipid peroxidation
and ferroptosis [53]. Evidently, T cell-induced cancer fer-
roptosis is an antitumor mechanism that may serve as a
novel approach toward GBM immunotherapy.

We assessed the differences in gene mutation between
the low- and high-FRGPRS groups to clarify the mecha-

nisms of ferroptosis. Patients in the high-FRGPRS group
showed significantly lower copy number variation frequen-
cies than those in the low-FRGPRS group. Missense muta-
tion and 1p19q codeletion furnish prognostically relevant
information along with histological classification [54].
IDH1 mutation status was considered the basis for glioma
diagnosis according to the 2016 WHO classification of
CNS tumours. Gliomas with IDH1 mutations have relatively
better outcomes and superior responses to therapy than
those with the wildtype IDH1 gene. Nevertheless, the under-
lying mechanism has not been clarified [55]. A recent study
revealed the roles of mutant IDH1 and 2-hydroxyglutarate
in ferroptosis. The former reduces the GPX4 protein levels,
thereby promoting the accumulating of lipid ROS and by
extension ferroptosis [56]. Another study demonstrated that
a TP53 gene variant plays a vital role in the functional inter-
actions among thiol-based redox signalling, metabolism, and
ferroptosis [57]. The low- and high-FRGPRS groups
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markedly differed in terms of their types of IDH1 and TP53
mutations. Overall, the wildtype forms were more abundant
in the high-FRGPRS group. Hence, high FRGPRS is associ-
ated with a relatively greater risk of wildtype mutation and,
therefore, worse prognosis. This finding was consistent with
our survival results.

The present study revealed a significant association
between FRGPRS and immunotherapy response in urothe-
lial carcinoma patients treated with atezolizumab (anti-PD-

L1). The high-risk groups presented with worse survival
after atezolizumab treatment. In general, PD-L1 (+) tumours
respond better to anti-PD-1/PD-L1 therapy than PD-L1 (-)
tumours [58, 59]. However, certain studies failed to show
any significant correlation in this case possibly because of a
lack of consistency in the measurements and variability of
the threshold used to define PD-L1 positivity [60]. There-
fore, further investigations are needed to establish the corre-
lation between PD-L1 and GBM.
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Drug resistance is a major hindrance in GBM therapy.
Our research showed that low-FRGPRS patients were rela-
tively more sensitive to temozolomide, cisplatin, and ola-
parib than high-FRGPRS patients. Liu et al. reported that
TMZ-resistant glioma cells are more likely to undergo
ferroptosis than normal glioma cells [24]. This finding was
consistent with our research. The pathways regulating fer-
roptosis and inducing GBM TMZ resistance are complex,
multifactorial processes that remain to be elucidated [18,
61–63]. A recent study demonstrated that ferroptosis plays

a vital role in cancer cell chemoresistance, and glioma-
ferroptosis resistance is a putative TMZ resistance mecha-
nism [64]. Iron is an important element in drug-resistant
cancer cells. Iron-dependent ROS accumulation triggers
ferroptosis [65]. Targeted ferroptosis-related pathways are
promising strategies for reversing TMZ resistance.

The present study had certain limitations. As the survival
time of GBM patient is short, we constructed a model based
on PFS rather than OS. The independent prognostic risk fac-
tor FRGPRS was not significantly correlated with patient
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survival according to a multivariate Cox regression, possi-
bly because of sample size and other factors. Nevertheless,
the training and validation sets showed that high FRGPRS
significantly shortened patient survival and demonstrated
the reliability of the model. The present study exclusively
analysed GBM samples. Thus, it is unclear whether the
FRGPRS model could be applied to any glioma sample
from any genetic background. Moreover, the five-gene-
based ferroptosis-related signature should be validated
using larger samples. Future experiments should explore
the potential mechanisms of the five genes in GBM ferrop-
tosis and attempt to establish their correlations with
immunotherapy and drug resistance.

5. Conclusions

In conclusion, the FRGPRS model is a powerful tool for pre-
dicting the survival and guiding the treatment of GBM. It
might help distinguish immune and molecular characteris-
tics, predict patient outcome, and stratify GBM patients
benefiting from chemotherapy and immunotherapy. How-
ever, further research is required to identify and confirm
the prognostic value of FRGPRS.
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