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Predicting base editing outcomes with an attention-
based deep learning algorithm trained on high-
throughput target library screens
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Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting

CRISPR-Cas module and a single-stranded DNA deaminase. They enable transition of C•G

into T•A base pairs and vice versa on genomic DNA. While base editors have great potential

as genome editing tools for basic research and gene therapy, their application has been

hampered by a broad variation in editing efficiencies on different genomic loci. Here we

perform an extensive analysis of adenine- and cytosine base editors on a library of 28,294

lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep

learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT

is a versatile tool that in principle can be trained on any novel base editor variant, facilitating

the application of base editing for research and therapy.
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Base editors are CRISPR-Cas-guided single-strand DNA
deaminases. They enable precise genome editing by directly
converting a targeted base into another, without the

requirement of DNA double-strand break formation and
homology-directed repair from template DNA1. There are two
major classes of base editors: cytosine base editors (CBEs) con-
verting C•G into a T•A base pairs2, and adenine base editors
(ABEs) converting A•T into G•C base pairs3. The most com-
monly used base editors comprise a nickase (n) variant of SpCas9
to stimulate cellular mismatch repair and have either the rat
cytosine deaminase APOBEC1 (CBE) or a laboratory-evolved
E. coli adenine deaminase ecTadA (ABE) fused to their
N-termini. Both base editor classes convert target bases in a ~5-
nucleotide region within the protospacer target sequence (editing
window), where the DNA strand that is not bound to the sgRNA
becomes accessible to the deaminase2,3.

A major limitation of base editors is their broad variation in
editing efficiencies across different target sequences. These can be
influenced by several parameters, including the consensus
sequence preference of the deaminase4, and the binding efficiency
of the sgRNA to the protospacer5. While low editing rates on a
target locus that contains a single C or A may be circumvented by
extending the exposure time to the base editor, undesired
‘bystander’ editing of additional C or A bases in the editing
window generally requires optimization by experimental testing
of alternative base editor constructs. Potentially successful stra-
tegies are (i) exchanging the sgRNA to shift Cas9 binding
upstream or downstream, (ii) using a base editor with a narrowed
activity window6, or (iii) using a base editor with a deaminase
that displays a different sequence preference (e.g. activation-
induced deaminase (AID) instead of rAPOBEC1 or ecTadA8e
instead of ecTadA7.10)7,8, However, experimental screening with
the different available base editor and sgRNA combinations is
laborious and time-consuming.

In this work, we develop a machine learning algorithm capable
of predicting base editing outcomes of commonly used ABEs and
CBEs on any given protospacer sequence in silico available via
www.be-dict.org.

Results
Generation of large datasets for adenine- and cytidine base
editing via high-throughput screening with self-targeting
libraries. To capture base editing outcomes of SpCas9 CBEs
and ABEs across thousands of sites in a single experiment, we
generated a pooled lentiviral library of constructs encoding
unique 20-nt sgRNA spacers paired with their corresponding
target sequences (20-nt protospacer and a downstream NGG
PAM site) (Fig. 1a). Our library included 23,123 randomly gen-
erated target sequences and 5,171 disease-associated human loci
with transition mutations, comprising a comprehensive and
diverse library for machine learning (Supplementary Data 1).
Oligonucleotides containing the sgRNAs and corresponding tar-
get sequences were synthesized in a pool and cloned into a len-
tiviral backbone containing an upstream U6 promoter and a
puromycin resistance cassette. HEK293T cells were then trans-
duced at a 1000× coverage with a multiplicity of infection (MOI)
of 0.5, and selected with puromycin. Next, cells were transfected
with Tol2 compatible plasmids encoding for blasticidin resistance
and one of the four commonly used base editors: ABEmax
(containing ecTad7.10), CBE4max (containing rAPOPEC1),
ABE8e (containing ecTadA-8e), and Target-AID (containing the
AID ortholog PmCDA1) (Supplementary Fig. 1). Co-transfection
with a Tol2 transposase plasmid allowed stable integration and
prolonged expression of base editors. After 10 days in culture,
cells were harvested, and genomic DNA was collected for

amplicon high-throughput sequencing (HTS) (Fig. 1b and see the
‘Methods’ section).

We observed high consistency between both experimental
replicates (Pearson’s r2= 0.88 (ABEmax), 0.86 (CBE4max), 0.92
(ABE8e), and 0.88 (Target-AID)) (Supplementary Fig. 2),
indicating comprehensive and robust sampling of edited target
sites. Mean base editing efficiencies (defined here as the fraction
of mutant reads overall sampled reads of a target site) were 4.26%
for ABEmax, 3.61% for CBE4max, 3.15% for ABE8e, and 3.13%
for Target-AID (Supplementary Fig. 3). In line with previous
studies, we observed maximum editing at position 6 (counting
from PAM distal) with ABEmax, CBE4max, and ABE8e, and at
position 3 for Target-AID (Fig. 1c–f)7–10. Interestingly, the
editing window of ABE8e was broader than ABEmax, and that of
Target-AID was shifted PAM-distally compared to CBE4max
(Fig. 1e, f). Analysis of the trinucleotide sequence context,
moreover, confirmed that ecTadA7.10 of ABEmax and rAPO-
BEC1 of CBE4max have a preference for editing at bases that are
preceded by T (Fig. 1g, h)10–13. ecTadA7.10 additionally has an
aversion for an upstream A and preference for a downstream C.
Notably, ecTad-8e of ABE8e displayed a reduced sequence
preference, although editing of bases that were preceded by an
A was still largely disfavored (Fig. 1i). Compared to rAPOBEC1
PmCDA1 of Target-AID lacked the requirement of a preceding T
for efficient editing, but motifs, where the targeted base is
followed by a C, were disfavored (Fig. 1j).

Development of BE-DICT, an attention-based deep learning
model predicting base editing outcomes. Potentially predictive
features that influence CRISPR/Cas9 sgRNA activity, such as the
GC content and minimum Gibbs free energy of the sgRNA, did
not influence base editing rates (Supplementary Fig. 4). This
prompted us to utilize the comprehensive base editing data
generated in the ABE and CBE target library screens for designing
and training a machine learning model capable of predicting base
editing outcomes at any given target site. We established BE-
DICT (Base Editing preDICTion via attention-based deep
learning), an attention-based deep learning algorithm that models
and interprets dependencies of base editing on the protospacer
target sequence. The model is based on multi-head self-attention
inspired by the Transformer encoder architecture14. It takes a
sequence of nucleotides of the protospacer as input and computes
the probability of editing for each target nucleotide as output
(Fig. 2a). The formal descriptions of the model and the different
computations involved are reported in Supplementary Notes 1–3.
In short, BE-DICT assigns a weight (attention-score) to each base
within the protospacer (i.e. learned fixed-vector representation).
The input mode is dichotomous, where bases with editing effi-
ciencies above or equal mean editing were classified as edited, and
bases below were classified as non-edited. The output is a prob-
ability score, reflecting the likelihood (between 0 and 1) with
which a target base will be edited (C-to-T or A-to-G). To train
and test the model, we included all target sequences with at least
one classified base edit (8,558 for ABEmax; 9,534 for CBE4max;
3,416 for ABE8e; 10,177 for Target-AID). In order to reduce the
tendency towards edited target sequences, which could result in
an inherent bias of the prediction tool, we also added unedited
target sequences at a ratio of 1:4 (Supplementary Data 1). For
model training, we used ∼80% of the dataset and performed
stratified random splits for the rest of the sequences to generate
an equal ratio (1:1) between the test and validation datasets. We
repeated this process five times (denoted by runs), in which
we trained and evaluated a model for every base editor separately
for each run. BE-DICT performance was then plotted using the
area under the receiver operating characteristic curve (AUC), and
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the area under the precision-recall curve (AUPR). For all four
models, an AUC of between 0.92–0.95 and AUPR between
0.733–0.806 was achieved (Fig. 2b–e). Notably, at positions within
the activity window where we have a balanced distribution of
edited vs. unedited substitute bases, BE-DICT performed with
significantly higher accuracy than a per position majority class
predictor—a baseline model that predicts nucleotides conversions
as a Bernoulli trial, using maximum-likelihood estimation for
computing the probability of editing success at each position
(Fig. 2f–i, Supplementary Fig. 5).

BE-DICT can be utilized to predict editing efficiencies at
endogenous loci and predominantly puts attention to bases
flanking the target base. Base editing at endogenous loci may also
be affected by protospacer sequence-independent factors, such as
chromatin accessibility. We, therefore, tested the accuracy of BE-
DICT in predicting base editing outcomes at 18 separate endo-
genous genomic loci for ABEmax and ABE8e, and 16 endogenous
genomic loci for CBE4max and Target-AID. HEK293T cells were
co-transfected with plasmids expressing the sgRNA and base
editor, and genomic DNA was isolated after 4 days for targeted
amplicon HTS analysis. Across all tested loci we observed a strong
correlation between experimental editing rates and the BE-DICT
probability score (Pearson’s r= 0.78 for ABEmax, 0.68 for

CBE4max, 0.57 for ABE8e, and 0.64 for Target-AID; Fig. 3a–d;
Supplementary Data 2). Further validating our model, BE-DICT
also accurately predicted base editing efficiencies from previously
published experiments (Pearson r= 0.82 for ABEmax, 0.71 for
CBE4max, 0.91 for ABE8e, and 0.76 for Target-AID; Supple-
mentary Fig. 7; Source Data)8,15. These results demonstrate that
the BE-DICT probability score can be used as a proxy to predict
ABEmax and CBE4max editing efficiencies with high accuracy.

The attention-based BE-DICT model provides insights (atten-
tion scores) for each position within the protospacer with regard
to the position’s influence on the editing outcome. These attention
scores provide a proxy for identifying relevant motifs and
sequence contexts for editing outcomes. Interestingly, we found
that for all base editors (ABEmax, CBE4max, ABE8e, and Target-
AID) BE-DICT attention was mainly focused on bases flanking
the target base and on the target base position itself (Fig. 4a–d). In
addition, we observed that base attention patterns were dependent
on the position of the target base, and occasionally consisted of
complex gapped motifs rather than consecutive bases (Supple-
mentary Fig. 6) underscoring the necessity of using machine
learning for predicting base editing outcomes.

Development of the BE-DICT bystander module. Multiple A or
C nucleotides within the editing window can lead to bystander

Fig. 1 A high-throughput platform for assessing base editor activities. a The design of the self-targeting library was adapted from refs. 27–30. The
lentiviral library contains the sgRNA expression cassette and the target locus on the same DNA molecule. The sgRNA (spacer and scaffold) is transcribed
under the control of a U6 promoter and is designed to direct the base editor (nCas9-deaminase fusion) to the 20-nt sequence upstream of the protospacer
adjacent motif (PAM). hU6 human U6 promoter, ef1α elongation factor 1α promoter, nCas9 nickase Cas9, sgRNA single-guide RNA, Puro puromycin
selection marker. b Overview of library screening. c–f Base editor profiles for loci above mean editing efficiency for c ABEmax, d CBE4max, e ABE8e, and f
Target-AID. The plot shows the average efficiency of A-to-G or C-to-T base conversions at each position across the protospacer target sequence. The top
horizontal bar illustrates the favored activity window of the respective deaminase. g–j Proportion of the different tri-nucleotide motifs for loci above mean
editing efficiency for g ABEmax, h CBE4max, i ABE8e, and j Target-AID. The number of analyzed target sequences shown in a–j are as follows: n= 8,558
(ABEmax); 9,534 (CBE4max); 3,416 (ABE8e); and 10,177 (Target-AID).
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base conversions. These are often undesired, in particular, if they
induce coding mutations in the targeted gene. Given that BE-
DICT per-base models the ‘marginal probability’ of target base
editing by providing a probability score whether a single base will
be edited, it does not directly predict the editing efficiency of a
locus (i.e. it cannot predict co-occurrences of target base- and
bystander editing). Therefore, we next developed an extension
module of BE-DICT, which is adapted to predict the relative
proportions of all different editing outcomes (combinations of
target base and bystander transitions) per target locus (BE-DICT
bystander module—Fig. 5a). The model is based on an
encoder–decoder architecture (adapting the Transformer archi-
tecture used in the BE-DICT per-base model), which takes a
sequence of nucleotides of the protospacer as input, and com-
putes the probability of the different output sequences (i.e.
probabilities for all combinations of sequences with target-based
and bystander transitions, as well as the probability of observing a
wild-type sequence) (Fig. 5a). The formal description of the
model is reported in Supplementary Notes 2 and 3. In short, it

uses an encoder module that computes a vector representation for
each nucleotide in the input protospacer sequence, and then uses
a decoder that has the same components of the encoder module
with the exception of a masked self-attention and cross-attention
layer. The masked self-attention layer acts as an “autoregressive
layer”, ensuring the use of only past information while computing
the probability of the output. The cross-attention layer learns
what parts of the input sequence are important when computing
the vector representation of the nucleotides in the output
sequence, subsequently allowing the model to compute the
probability of each output sequence. For model training, we used
the edited input sequences from the ABEmax-, CBE4max-,
ABE8e-, and Target-AID library screens that were already used to
train and test the BE-DICT per-base model, and again partitioned
them in an 8:1:1 ratio for training, testing, and validation. Unlike
for the per-base BE-DICT model, however, the outcome is non-
binary and represented the frequencies of all outcomes on the
target sites (unedited read and the different edited outcomes) for
a given input sequence (i.e. protospacer). The trained BE-DICT
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Fig. 2 BE-DICT: A machine learning model for predicting base editing outcomes. a Design of an attention-based deep learning algorithm to predict base
editing probabilities. Given a target sequence, the model returns a confidence score to predict the chance of target base conversions. The model has three
main blocks: (1) An embedding block that embeds both the nucleotide and its corresponding position from one-hot encoded representation to a dense
fixed-length vector representation. (2) An encoder block that contains a self-attention layer (with multi-head support), layer normalization31 and residual
connections, and a feed-forward network. (3) An output block that contains a position attention layer, and a classifier layer. b–e The average AUC achieved
across five runs (interpolated) for models trained on data from high-throughput base editing experiments. f–i Line plot of per-position accuracy of the
trained models across five individual runs for base editors in comparison to the accuracy of majority class baseline predictor. Standard deviation is depicted
as a band along with the line plot.
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bystander module predicted various possible editing outcomes
per target sequence, including combinations with multiple base
conversions (Fig. 5b, c). Importantly, the performance was reli-
able for all four base editors, as we achieved strong correlations
between predicted and experimentally observed sequence
proportions in the validation datasets (Pearson’s r= 0.86 for
ABEmax, 0.94 for CBE4max, 0.66 for ABE8e, and 0.97 for Target-
AID; Supplementary Fig. 8).

Recently, two other machine learning models capable of
predicting base editing outcomes have been developed. BE-
Hive10, which is a deep conditional autoregressive model, and
DeepBaseEditor13, which is based on a two-hidden layer
convolutional neural network framework. Contrary to the BE-
DICT bystander module that directly predicts the proportions of
all outcomes at the target locus, both models separately predict
the proportions of edited outcomes and the overall editing
efficiency of the target site, and combining both values is required
to estimate the frequency of precise target base conversion
without bystander mutations (Fig. 5d). Since also BE-Hive and
DeepBaseEditor have been trained and applied on TadA7.10-ABE
and APOBEC1-CBE datasets, we decided to compare their
performance to our attention-based machine learning model.
First, we only benchmarked the ability of the three models to
predict the proportions of edited outcomes. Therefore, we
adapted the BE-DICT bystander model to only calculate the
proportions of edited outcomes, comparable to the BE-Hive
bystander and DeepBaseEditor proportion models. When applied
to the high-throughput datasets of the three studies, all models

achieved similarly good correlations with the experimentally
observed values using Pearson’s correlation (Fig. 5e, f; Supple-
mentary Fig. 10a, b) or Spearman’s correlation (Supplementary
Fig. 9). Next, we compared the ability of the three models to
predict the proportions of all outcomes (including the wildtype
sequence) at a target locus. Again, predicted values correlated well
with the experimentally observed values for all three models
(Fig. 5g, h; Supplementary Fig. 10c, d). Interestingly, the
performance of the three models was not substantially affected
by the differences in the experimental setup of the three datasets
(Fig. 5e–h; Supplementary Fig. 10), suggesting that they can
tolerate variations in experimental procedures between labora-
tories. Confirming this hypothesis, when BE-DICT was retrained
on the ABE datasets of Song et al. 13 (HT_ABE_Train),
correlations between predicted and experimentally observed
editing outcomes on the HT_ABE_Test dataset of Song et al.
increased only incrementally to r= 0.94 (Supplementary Fig. 11).
Altogether, we conclude that the three machine learning models
operate robustly on different experimental datasets and with
comparable accuracy.

Discussion
In this study, we used a high-throughput approach to assess the
activity and accuracy of base editors on thousands of target sites.
The resulting datasets were used to train BE-DICT, a deep
learning model capable of accurately predicting the editing of a
target nucleotide and surrounding bystander nucleotides.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

HEKsite no. 18

RSF1 no. 2

EMX1 no. 2

FANCF no. 3

FANCF no. 5

TARDBP no. 2

HEKsite no. 1

HEKsite no. 9

HEKsite no. 2

EMX1 no. 1

HEKsite no. 7

HEKsite no. 11

HEKsite no. 14

HEKsite no. 8

HEKsite no. 3

DOCK3 no. 2

ZNF212 no. 1

NEK1 no. 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

HEKsite no. 18

RSF1 no. 2

EMX1 no. 2

FANCF no. 3

FANCF no. 5

TARDBP no. 2

HEKsite no. 1

HEKsite no. 9

HEKsite no. 2

EMX1 no. 1

HEKsite no. 7

HEKsite no. 11

HEKsite no. 14

HEKsite no. 8

HEKsite no. 3

DOCK3 no. 2

ZNF212 no. 1

NEK1 no. 2

HEKsite no. 18

EMX1 no. 2

FANCF no. 3

FANCF no. 5

HEKsite no. 1

HEKsite no. 10

HEKsite no. 2

EMX1 no. 1

HEKsite no. 11

HEKsite no. 14

HEKsite no. 16

HEKsite no. 8

HEKsite no. 3

DOCK3 no. 2

ZNF212 no. 1

RSF1 no. 1

HEKsite no. 18

EMX1 no. 2

FANCF no. 3

FANCF no. 5

HEKsite no. 1

HEKsite no. 10

HEKsite no. 2

EMX1 no. 1

HEKsite no. 11

HEKsite no. 14

HEKsite no. 16

HEKsite no. 8

HEKsite no. 3

DOCK3 no. 2

ZNF212 no. 1

RSF1 no. 1

0

10

20
30
50

Actual

0.00

0.25

0.50

0.75

BE−DICT
1.00

0

10

20
30

Actual

0.00

0.25

0.50

0.75

BE−DICT
1.00

0

10

20
30

Actual

0.00

0.25

0.50

0.75

BE−DICT
1.00

0

10

20
30

Actual

0.00

0.25

0.50

0.75

BE−DICT
1.00

a b

dc

ABEmax (r=0.78) ABE8e (r=0.57)

CBE4max (r=0.68) Target-AID (r=0.64)

Fig. 3 BE-DICT accurately predicts base editing activities on endogenous genomic loci in HEK293T cells. Endogenous genomic target sequences with at
least two substrate nucleotides were targeted separately by co-transfection of the sgRNA and base editors a ABEmax, b CBE4max, c ABE8e, and d Target-
AID. Heatmap shows the BE-DICT prediction score (green) and experimentally observed target base conversion (purple). Substrate bases for the
respective base editor are outlined in bold. Pearson’s correlation (r) for all target bases is shown.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25375-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5114 | https://doi.org/10.1038/s41467-021-25375-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Currently, BE-DICT is trained on datasets for ABEmax, CBE4-
max, ABE8e, and Target-AID, and the respective models are
freely accessible at www.be-dict.org. As the algorithm is versatile,
it could also be adopted to various other base editor variants in
the future, enabling researchers a priori selection of an optimal
base editor for their target locus. This is essential when base
editors are applied in genome editing therapies, where a disease-
causing point mutation should be repaired without inducing
bystander edits1,10. In addition, it is also important for the
application of BEs in genetic screening, as bystander mutations
might affect the phenotype that is caused by the target base
conversion16.

Recently, two other machine learning models have been
developed that also predict the proportions of base editing out-
comes (BE-Hive and DeepBaseEditor). We extensively compared
the three models and found that they perform with similar
accuracy. Notably, in addition to the bystander module, BE-DICT
also offers a per-base module. While this module only gives the
probability with which a target base is edited (or not), and also
cannot predict combinations of target base and bystander con-
versions, it offers the feature of identifying motifs that are highly
favored or disfavored by currently available base editors. This
could potentially guide researchers to develop novel base editor
variants with improved activities in the future. In addition, the
BE-DICT per-base module implicitly models the marginal editing
probability at each position. Thus, unlike the other models (i.e.
bystander models), for which complexity of the search space
increases exponentially with the nucleotide number, the BE-DICT
per-base module exhibits a quadratic complexity, which may be
further improved by scaling the self-attention layer to O(n)

complexity17—in principle enabling the model to consider a
much wider sequence context far beyond the protospacer target
site. Overall, the BE-DICT modules can accurately predict base
editing outcomes and can guide researchers in designing base
editing experiments.

Methods
Oligonucleotide-library design. The custom oligonucleotide pool containing pairs
of sgRNA and corresponding target sequences was purchased from Twist
Bioscience. The library includes 23,123 random DNA sequences and 5,171 disease
loci theoretically targetable using base editors. Designed oligonucleotides include
the following elements: The G/20N spacer and SpCas9 gRNA scaffold, a six-
nucleotide randomized barcode, the corresponding target locus containing the
PAM, and a second six-nucleotide randomized barcode (Supplementary Note 4).
Randomized DNA sequences of 20 bp length and 1:1:1:1 proportion of each
nucleotide were generated using a custom Python script to form a random
sequence library. The disease loci were selected from the NCBI ClinVar18 database
(accessed in May 2019) using the following criteria: (a) all disease-associated SNPs
were accessed and restricted to pathogenic and monogenic filters (b) SNPs were
further restricted to the possible base conversions targetable by ABEs (A-to-G) and
CBEs (C-to-G). (c) Genomic region flanking the SNP genomic coordinates were
extracted from UCSC server (http://genome.ucsc.edu/). (d) The sequences were
then scanned presence of an NGG PAM 8–18 bases away from the target base.
Only SNPs passing these filtering criteria were included in the study and were then
appended to the list of aforementioned random sequences to form the final library.

Plasmid-library preparation. The plasmid library containing the sgRNA and the
corresponding target sequence was prepared using a one-step cloning process to
prevent uncoupling of the sgRNA- and target sequence. The oligonucleotide pool
was PCR-amplified in 10 cycles (Primers stated in Supplemental Information) and
KAPA® HiFi HotStart Polymerase (Roche) following the manufacturer’s instruc-
tions. The resulting amplicons were then purified using 0.8 × volumes of para-
magnetic AMPure XP beads (Beckman Coulter) following the manufacturer’s
instructions for PCR cleanup. We digested the Lenti-gRNA-Puro plasmid with
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BsmBI restriction enzyme (New England Biolabs, NEB) for 12 h at 55 °C. Lenti-
gRNA-Puro was a gift from Hyongbum Kim (Addgene no. 8475219). After
digestion, the plasmid was treated with calf intestinal alkaline phosphatase (NEB)
for 30 min at 37 °C and gel purified with a NucleoSpin Gel and PCR Clean-up Mini
kit (Macherey-Nagel). The oligo-pool amplicons were assembled into the linearized

Lenti-gRNA-Puro plasmid using NEBuilder HiFi DNA Assembly Master Mix
(NEB) for 1 h at 50 °C. The product was precipitated by adding one volume of
Isopropanol (99%), 0.01 volumes of GlycoBlue coprecipitant (Invitrogen), and 0.02
volumes of 5 M NaCl solution. The mix was vortexed for 10 sec and incubated at
room temperature for 15 min followed by 15 min of centrifugation (15,000 × g).
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The supernatant was discarded and replaced by two volumes of ice-cold ethanol
(80%). Ethanol was removed immediately and the pellet was air-dried for 1 min.
The pellet was dissolved in TE buffer (10 mM Tris, 0.1 mM EDTA) and incubated
at 55 °C for 10 min. In 12 transformation replicates, 2 µL of plasmid library were
transformed per 50 µL of electrocompetent cells (ElectroMAX Stabl4, Invitrogen)
using a Gene Pulser II device (Bio-Rad). Transformed cells were recovered in
S.O.C. media (from ElectroMAX Stabl4 kit) for 1 h and spread on Luria–Bertani
agar plates (245 × 245 mm, Thermo Fisher Scientific) containing 100 µg/mL
ampicillin. After incubation at 30 °C for 14 h, the colonies were scraped and
plasmids were purified using a Plasmid Maxiprep kit (Qiagen).

Cell culture. HEK293T (ATCC CRL-3216) were maintained in DMEM plus
GlutaMax (Thermo Fisher Scientific), supplemented with 10% (vol/vol) fetal
bovine serum (FBS, Sigma-Aldrich) and 1 × penicillin–streptomycin (Thermo
Fisher Scientific) at 37 °C and 5% CO2. Cells were maintained at confluency below
90% and passaged every 2–3 days. Cells were discarded after 15 consecutive
passages.

Packaging of guide RNA library into lentivirus. Transfection in T225 cell culture
flasks was conducted as follows: 3.4 µg pCMV-VSV-G (lentiviral helper plasmid;
addgene plasmid no. 8454, a gift from B. Weinberg20), 6.8 µg psPAX2 (lentiviral
helper plasmid; addgene plasmid no. 12260, a gift from D. Trono) and 13.6 µg
target library plasmid were mixed in 651 µL serum-free Opti-MEM (Thermo Fisher
Scientific), supplied with 195 µL of polyethyleneimine (PEI, 1 mg/mL), vortexed for
10 s and incubated for 10 min. 25 mL of DMEM was added to the transfection mix
and gently pipetted to the cells at ~70% confluency. The medium was changed
1 day after transfection. 2 days later, supernatant-containing lentiviral particles
were harvested and filtered using a Filtropur S 0.4 (Sarstedt) filter. The virus
suspension was ultracentrifuged (20,000×g) for 2 h. Aliquots were frozen at −80 °C
until use.

Cloning of base editors. Expression plasmids were constructed using isothermal
assembly (NEBuilder® HiFi DNA Assembly Cloning Kit, NEB) or restriction digest
and ligation using T4 ligase (NEB). Plasmid p2T-ABE8e-BlastR was generated by
ligation of the ABE8e transgene (AgeI-NotI digest of pCMV-ABE8e) into the Tol2
compatible backbone (AgeI-NotI-EcoRV digest of p2T-CMV-ABEmax-BlastR).
Plasmid p2T-Target-AID-GFP-BlastR was generated by isothermal assembly of
PCR amplified Target-AID transgene from the template plasmid pRZ762 and the
Tol2 compatible backbone (AgeI-NotI-EcoRV digest of p2T-CMV-ABEmax-
BlastR). PCR was conducted using NEBNext® High-Fidelity 2X PCR Master Mix
(NEB). Plasmids p2T-CMV-ABEmax-BlastR (Addgene no. 152989) and ABE8e
(Addgene plasmid no. 138489) were gifts from David Liu8,10. Target-AID (pRZ762,
Addgene plasmid no. 131300) was a gift from Keith Joung21.

Pooled base editor screens. T175 cell culture flasks were seeded with
HEK293T cells and cultured to reach 70–80% confluence. 10 µg/mL polybrene was
added to the media and the gRNA-pool lentivirus was transduced at a MOI of 0.5
and a calculated coverage of 1,000 cells per gRNA. One day after transduction, cells
were supplied with fresh media with 2.5 µg/mL puromycin. After 9 days of pur-
omycin selection, the respective base editor plasmids (9.25 µg) and helper plasmid
(9.25 µg of pCMV-Tol2) were transfected in a 1:3 DNA:PEI ratio per T175 flask.
7.0 × 107 cells were transfected for each replicate independently. One day after
transfection, cells were supplied with fresh media with 7.5 µg/mL blasticidin,
depleting <50% of the initially transfected cells during selection. Ten days later,
cells were detached and genomic DNA was extracted using a Blood & Cell Culture
DNA Maxi kit (Qiagen) according to the manufacturer’s instructions. Base editor
plasmid p2T-CMV-BE4max-BlastR (Addgene no. 152991) was a gift from
David Liu10. Helper plasmid pCMV-Tol2 (Addgene plasmid no. 31823) was a gift
from Stephen Ekker22.

Guide RNA cloning. The vector backbone (lentiGuide-Puro, Plasmid no. 52963, a
gift from F. Zhang23) was digested with Esp3I (NEB) and treated with rSAP (NEB)
at 37 °C for 3 h and gel-purified on a 0.5% agarose gel. For sgRNA phospho-
annealing (sequences in Supplementary Note 4), 1 µL of sgRNA top and bottom
strand oligonucleotide (100 µM each), 1 µL 10× T4 DNA Ligase Buffer, 1 µL T4
PNK (NEB) and 6 µL H2O were mixed and incubated in a thermocycler (BioRad)
using the following program: 37 °C for 30 min, 95 °C for 5 min, ramp down to
25 °C at a rate of 5 °C/min. The annealed oligonucleotides were diluted 1:100 in
H2O and ligated into the vector backbone using 50 ng digested lentiGuide-Puro
plasmid, 1 µL annealed oligonucleotide, 1 µL 10× Ligase Buffer (NEB), and 1 µL T4
DNA Ligase (NEB) in a 10 µL reaction (filled up to total volume with H2O). The
ligation mix was incubated at room temperature for 3 h and transformed into NEB
Stable Competent E. coli (C3040H) following the manufacturer’s instructions.
Correct assembly of the sgRNA into the backbone was confirmed by SANGER-
Sequencing (Microsynth) and plasmids were isolated using a GeneJET Plasmid
Miniprep Kit (Thermo Fisher Scientific) following the manufacturer’s instructions.

Arrayed sgRNA transfections. For base editor DNA on-target experiments
HEK293T cells were seeded into 96-well flat-bottom cell culture plates (Corning),
transfected 24 h after seeding with 150 ng of the base editor, and 50 ng of gRNA
expression plasmid and 0.5 µL of Lipofectamine 2000 (Invitrogen) per well. One
day later, the medium was removed and cells were detached using one drop of
TrypLE (Gibco) per well, resuspended in a fresh medium containing 2.5 µg/µL
puromycin, and plated again into 96-well flat-bottom cell culture plates. Cells were
detached 4 days after transfection and pelleted by centrifugation. To obtain
genomic DNA, cells were resuspended in 30 µL 1× PBS and 10 µL of lysis buffer
(4× Lysis Buffer: 10 mM Tris–HCl at pH 8, 2% Triton X, 1 mM EDTA, and 1%
freshly added Proteinase K (Qiagen)) was added to the cell suspension. The lysis
was performed in a thermocycler (Bio-Rad) using the following program: 60 °C,
60 min; 95 °C, 10 min; 4 °C, hold. The lysate was diluted to a final volume of 100 µL
using nuclease-free water and 1 µL of each lysate was used for the subsequent PCR.
Plasmids pCMV-ABEmax-P2A-GFP (Addgene plasmid no. 112101), pCMV-
BE4max-P2A-GFP (Addgene plasmid no. 112099), and pCMV-ABE8e (Addgene
plasmid no. 138489) were gifts from David Liu9.

Library preparation for targeted amplicon sequencing of DNA. Next-generation
sequencing (NGS) preparation of DNA was performed as previously described24.
In short, the first PCR was performed to amplify genomic sites of interest with
primers containing Illumina forward and reverse adaptor sequences (see Supple-
mentary Note 4 for oligonucleotides used in this study). To cope with high DNA
input used for pooled screens, the Herculase II Fusion DNA Polymerase (Agilent)
was used according to the manufacturer’s instructions. For all other NGS-PCRs on
genomic DNA and the second NGS-PCR, the NEBNext High-Fidelity 2 × PCR
Master Mix (NEB) was used according to the manufacturer’s instructions. In brief,
0.96 mg of genomic DNA per replicate of the pooled gRNA screen was amplified in
24 cycles for the first PCR using 10 µg gDNA input in 100 µL reactions. For arrayed
gRNA experiments, 1 µL of the cell lysate per replicate was used in a 12.5 µL PCR
reaction. The first PCR products were cleaned with paramagnetic beads, then the
second PCR was performed to add barcodes with primers containing unique sets of
p5/p7 Illumina barcodes (analogous to TruSeq indexes). The second PCR product
was again cleaned with paramagnetic beads. The final pool was quantified on the
Qubit 4 (Invitrogen) instrument. Pooled sgRNA screens were sequenced single-end
on the Illumina NovaSeq 6000 machine using an S1 Reagent Kit (100 cycles).
Arrayed gRNA experiments were sequenced paired-end (2 × 150) on the Illumina
MiSeq machine using a MiSeq Reagent Kit v2 Nano.

HTS analysis. Fastq reads obtained from deep sequencing were trimmed up to the
guide sequence and the flanking barcodes (6+ 20+ 3+ 6= 35 bp) by removing
the Illumina adapters and the plasmid scaffold sequences using Cutadapt v2.225.
The trimmed reads were then mapped using bowtie2 v2.3.5.126 with default
parameters to a reference consisting of target sequences making up the library and
the proportions of edited reads carrying distinct base conversions were tabulated.
The loci were further filtered for reading depth of at least 100 and above mean
editing efficiency for each base editor library. Edited reads were further restricted to
C-to-T (in case of CBE) or A-to-G (in case of ABE) conversions in the protospacer.
Only reads passing the filtering criteria were used for further analysis.

Statistics and reproducibility. All statistics were performed using R 3.5.2 and
Python3. The editing efficiency for each gRNA was calculated according to the
following formula:

Editing percentage ¼ Read count of edited base
Total read count of the target sequence

´ 100

Overall editing percentage ¼ Sum of read count of all edited reads for the target
Total read count of the target sequence

´ 100

Base editing experiments were performed at least in independent biological
duplicates. Unless indicated otherwise, BE-DICT model predictions were collected
from five runs.

DeltaG was calculated using the online resource at http://www.unafold.org/
Dinamelt/applications/quickfold.php.

Benchmarking three machine learning models. To benchmark the ability of the
three models to predict the proportions of edited outcomes (with and without the
wild-type sequences), we used published data from Song et al. (HT_ABE_Train,
HT_ABE_Test, HT_CBE_Train, HT_CBE_Test)13, Arbab et al. (HEK293T_12k-
Char_ABE, HEK293T_12kChar_BE4)10 and our data for both ABEmax and
CBE4max editors. We prepared the data for each model (Supplementary Data 3),
such that each model has to predict editing combinations (i.e. canonical transitions
A-to-G and C-to-T) anywhere in the protospacer sequences (i.e. 20 nucleotides).
Each model predicted the proportion of edit outcomes for each of the three datasets
and the results were correlated to the “ground-truth” observed edited outcomes in
the respective data. Similarly, we compared the ability of the three models to
predict the proportions of all outcomes (including the wildtype sequence) occur-
ring in the protospacer sequence for each dataset. For the Song et al. 13 models (i.e.
DeepBaseEditor) we used the models provided in the reported web application and
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parsed the output to extract predicted values for the corresponding protospacers
reported in Supplementary Data 3. Similarly, for Arbab et al. 10 (i.e. BE-Hive), we
used the models reported in the code repository (on Github). For both models
(DeepBaseEditor and BE-hive), we used “bystander” and “overall efficiency”
models (as described in the respective manuscripts and online web tools) to predict
the proportions of all outcomes (including the wildtype sequence) in the proto-
spacers corresponding to the three datasets used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We have provided the data sets used in this study as Supplementary Data 1–3. Additional
information on the BE-DICT algorithm and DNA used in this study can be found in
the Supplementary Information (Supplementary Notes 1–4). DNA-sequencing data are
deposited under accession number PRJNA735610 (NCBI Sequence Read Archive)
(https://www.ncbi.nlm.nih.gov/bioproject/?term= PRJNA735610). Source data are
provided with this paper.

Code availability
We have made the source code for BE-DICT and the custom Python scripts used to train
and evaluate the models available on GitHub at https://github.com/uzh-dqbm-cmi/crispr
and https://github.com/sharan-j/GenCountTable. The web application for BE-DICT, which
predicts the base editing patterns in the DNA sequence is available at www.be-dict.org.
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