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Abstract

Experimental Zika virus infection in non-human primates results in acute viral load dynamics

that can be well-described by mathematical models. The inoculum dose that would be

received in a natural infection setting is likely lower than the experimental infections and how

this difference affects the viral dynamics and immune response is unclear. Here we study a

dataset of experimental infection of non-human primates with a range of doses of Zika virus.

We develop new models of infection incorporating both an innate immune response and

viral interference with that response. We find that such a model explains the data better than

models with no interaction between virus and the immune response. We also find that larger

inoculum doses lead to faster dynamics of infection, but approximately the same total

amount of viral production.

Author summary

The relationship between the infecting dose of a pathogen and the subsequent viral

dynamics is unclear in many disease settings, and this relationship has implications for

both the timing and the required efficacy of antiviral therapy. Since experimental chal-

lenge studies often employ higher doses of virus than would generally be present in natu-

ral infection assessment of this relationship is particularly important for translation of

findings. In this study we used mathematical modelling of viral load data from a multi-

dose study of Zika virus infection in a macaque model to describe the impact of varying

the dose of Zika virus on model parameters, and developed a novel mathematical model

incorporating viral interference with the innate immune response.
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Introduction

Zika virus (ZIKV), which was the cause of an outbreak in South America that was classified by

the World Health Organization as a Global Public Health Emergency in 2016 [1], is a flavivirus

primarily transmitted to humans by a mosquito vector although other mechanisms of trans-

mission have been described [2]. Human infection tends to present as a mild fever [3], how-

ever associations with neurological [4] and fetal complications [5] have raised concerns about

the long-term impact of the outbreak.

A primary experimental readout of the severity of infection with ZIKV and many other

viruses is the plasma viral load (VL): the amount of viral RNA present in one ml of plasma. It

is thought that the majority of ZIKV infections do not result in clinical symptoms, and when

symptoms do occur onset is between 3 and 11 days post exposure [6], hence studying early

events in disease progression is difficult in a clinical context. Experimentally, non-human pri-

mate (NHP) models of infection recapitulate many features of human infection [7,8] and have

been used extensively e.g. [9–13]. In this study we use data from ZIKV infected rhesus

macaques [9] to both investigate the role of innate immune response in controlling plasma

viremia and assess the effect of inoculum dose on plasma viral load dynamics.

The plasma VL dynamics after infection with ZIKV in the NHP model (e.g. [10–13]) mimic

those of other acute infections such as influenza [14,15], dengue [16] and West Nile virus [17],

with a period of exponential growth until a peak viral load is reached and then a period of

exponential decline until the plasma VL becomes undetectable. In a previous modeling study,

we did not find evidence for a role of the immune response in controlling the plasma VL since

a simpler target cell model fit the available data surprisingly well [18]. In that study the animals

were infected with a high dose of ZIKV and we hypothesized that the rapidity of viral spread

and target cell destruction via viral cytopathic effects made any restriction of infection due to

an immune response difficult to identify in the data.

It is known that ZIKV infection elicits a robust innate immune response, with in vitro

studies demonstrating IFN production from a variety of infected cell types [19–21]. Addi-

tionally, NHP infection models demonstrate ZIKV-induced changes in innate immune cell

concentrations and activation levels [22]. However, the extent of the control that this innate

immune response exerts on the acute infection viremia is unclear: ZIKV has been demon-

strated to be able to evade the effect of IFN signaling both by degrading STAT2 directly [23]

and by interfering with STAT2 and STAT3 phosphorylation [24]. Both STAT2 and STAT3

are intracellular transcription factors that play a key role in the JAK-STAT pathway that

leads to the induction of hundreds of interferon-stimulated genes with antiviral effector

functions [25].

The choice of inoculum dose in animal infection models is an important aspect of study

design. In an experimental setting, higher doses are generally expected to provide more reliable

infections, more rapid development of clinically relevant signs and less variability between ani-

mals. However, in the case of infections primarily transmitted by a mosquito vector, the natu-

ral challenge dose is likely relatively small [13]. How observations in high challenge dose

studies can be translated to low natural dose settings is a fundamental question in applying the

results of animal model studies to human infection.

The relationship between infection dose and viral dynamics has been explored both experi-

mentally and in mathematical modeling studies. In a mouse model of norovirus infection,

higher inoculum doses result in higher and earlier peak viral loads in intestine, mesenteric

lymph nodes and spleen [26]. In pigs experimentally infected with foot-and-mouth disease

virus, higher inoculum doses give faster viral dynamics and earlier viremia [27]. In a mathe-

matical modeling study of data from a similar foot-and-mouth disease virus experiment in
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pigs, it was found that differences in viral dynamics after infection with different doses could

be accounted simply by altering the parameter describing the initial viral load [28].

A thorough mathematical modeling study of dose effects [29] analyzed viral kinetics in cot-

ton rats after infection with adenovirus type 5 (ADV) [30] and chickens after infection with

infectious bronchitis virus (IBV) [31]. Interestingly, the specifics of the dose dependencies

were different: for ADV, a higher initial viral growth rate was observed with higher doses

while for IBV the inverse was true; and for ADV the peak viral concentration was higher with

higher doses while for IBV the peak virus concentration was broadly unaffected by inoculum

dose. Testing of different mathematical models found that the observed dose-dependent pat-

terns could not be recapitulated without inclusion of immune responses in the viral dynamics

model [29]. A complex relationship between viral dynamics and infection dose is also

described in Handel et al. [32], where experimental data and mathematical modeling were

used to demonstrate that neither morbidity nor protection from future infection are necessar-

ily monotonic with inoculum dose. A recent study [33] demonstrated that varying inoculum

dose provides evidence for innate immune control of viraemia. Combined, these results moti-

vated us to use our multi-dose ZIKV challenge data to see if we are able to detect the signal of

an immune response, which could not be identified in our previous single dose study [18].

Further understanding of the effect of inoculum dose on infection dynamics is required for

interpretation of results from experimental infection challenges, and here we use data from

NHPs after infection with ZIKV to investigate dose-dependent relationships in this experi-

mental setting and to assess whether the role of the immune response in controlling viremia

can be determined from these data.

Results

Zika plasma viral loads in rhesus macaques

In the data set we analyze, 28 rhesus macaques were infected subcutaneously with 103, 104, 105

or 106 PFU of Brazilian (BR, Brazil-ZIKV2015, Genbank KU497555) or Puerto Rican (PR,

PRVABC59, Genbank KU501215) strains of ZIKV, as reported by Aid et al. [9]. Measured

plasma viral loads (VLs, Fig 1 and S1 Table) showed that the level of viremia 1 day after infec-

tion was dependent on the inoculum dose (Fig 2A), and that higher inoculum dose resulted in

a shortened time to peak VL (Fig 2B). There were no other statistically significant relationships

observed, either with inoculum dose or viral strain (Fig 2).

The area-under-the-curve (AUC) of the log10 plasma VL kinetics can be used as a proxy for

the total viral shedding. Interestingly, we found no relationship between AUC and inoculum

dose or viral strain (Fig 2D), in contrast to some other infection contexts [29]. This lack of

dose-dependence is consistent with, although not conclusive evidence for, a model where viral

control is obtained through ‘resource’ limitation, where in this case the resource can be

thought of as target cells available to be infected by the virus. In previous work focused on ana-

lyzing Zika viral kinetics after high dose inoculation, we showed that a target cell limited

model described infection dynamics well [18], consistent with no observed relationship

between AUC and inoculum dose. Here we extend these analyses to a larger dataset, focusing

on whether studying multiple inoculum dose simultaneously provides any evidence for

immune effects.

Target cell limited model

Mathematical models based on target cell limitation have been used to describe acute infection

plasma viral loads in HIV [34,35], influenza A [14], West Nile virus [17] and Zika virus [18].

In the target-cell limited model described by the ordinary differential equations (ODEs) in

PLOS COMPUTATIONAL BIOLOGY Zika virus dynamics: Inoculum dose, innate immune response and viral interference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008564 January 20, 2021 3 / 26

https://doi.org/10.1371/journal.pcbi.1008564


Eq 1, target cells, T, are infected by free virus, V, under a mass-action like process with infec-

tion rate constant β. The infected cell population in this model is split into two classes of cells:

I1 cells that do not produce virus and are referred to as being in the eclipse phase, which transi-

tion at per capita rate k into I2 cells that are productively infected. The productively infected

cells die at per capita rate δ. It is assumed that since I1 cells do not produce virus they are not

subject to viral cytopathic effects and no death of this cell class is modelled. Productively

infected cells produce free virus, at rate p, which is degraded at per capita rate c. We assume

that, over the timescale of the acute infections considered here, production and loss of target

cells by non-infectious processes roughly balance and hence are neglected in the following

model:

dT=dt ¼ � bVT; Tð0Þ ¼ T0

dI1=dt ¼ bVT � kI1; I1ð0Þ ¼ 0

dI2=dt ¼ kI1 � dI2; I2ð0Þ ¼ 0

dV=dt ¼ pI2 � cV; Vð0Þ ¼ V0

ðEq 1Þ

Target cell limited models, either with or without the eclipse phase as modelled here, have

the property that the VL AUC is determined primarily by the number of target cells available,

independently of the initial dose [15]. Modeling an eclipse phase, which allows for a biologi-

cally necessary amount of time between infection and viral production, introduces an addi-

tional parameter to describe the rate of transition from the eclipse phase to productive

Fig 1. Plasma viral load measurements, in copies (cp) per ml, in rhesus macaques inoculated subcutaneously with the indicated dose of Brazilian (BR, green

triangles) or Puerto Rican (PR, purple circles) ZIKV. The limit of detection of the experimental assay is 100 RNA cp /ml, and when ZIKV was undetectable in a

sample it is shown here at the limit of detection for illustrative purposes.

https://doi.org/10.1371/journal.pcbi.1008564.g001
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infection and as such this might not be supported by model selection theory. However, includ-

ing an eclipse phase makes the model more biologically realistic and in a model of influenza, it

was found that incorporating an eclipse phase provided a more reasonable estimate of the life

span of infected cells [14].

We used non-linear mixed effects modeling, as described in Methods, to fit the plasma VLs

in all 28 monkeys simultaneously and obtain estimates of the population distributions for

model parameters. We found that models incorporating an average eclipse phase length of

four hours or shorter (k� 6 d-1) and a viral clearance rate c� 5 d-1 generally gave indistin-

guishable model fits (S1 Fig). Although the overall fitting criterion was very stable with these

choices of k and c, the estimated population parameters vary somewhat (S2 Fig). To investigate

the presence of dose-dependent relationships and the effect of immune responses in these

data, we chose to use fixed k = 8 d-1 and c = 10 d-1 and based further analysis on the best fit we

found with these parameter values. We note, however, that there is no specific support for

these values of k and c over other fixed values shown in S2 Fig.

Despite not explicitly including any effect of inoculum dose in this model fit, we found that

the estimated initial plasma viral load, V0, for individual animals is tightly correlated with the

inoculum dose administered (S3 Fig, p< 10−10). The viral inoculum in these experiments was

administered subcutaneously, while the VL measurements were taken in the plasma. As such

the estimated V0 represents the effective initial inoculation size in the plasma, after transport

Fig 2. Viral load (VL) characteristics (from measured data, Fig 1) by inoculum dose (log10 PFU, x-axis) and viral strain (indicated by markers, BR: green

triangles, PR: purple circles). Correlations between inoculum dose and VL characteristics are tested by Pearson correlation for each strain separately, and where this

is found to be significant at the α = 0.05 level after Bonferroni correction for multiple testing (m = 6) the linear regression line is shown in the panel, and the p-value

and correlation coefficient are shown in the legend. Differences in VL characteristics between viral strains for each inoculum group are tested with the Mann-Whitney

U test, and none are found to be significant at the α = 0.05 level after Bonferroni correction for multiple testing (m = 6). The day 1 VL, time of peak VL and value of

peak VL are the observed measurements. The area under the curve (AUC) of the log10 plasma VL and the downslope of the log10 plasma VL are calculated as described

in the methods. Animals with VL data only to day 7 or which do not have any undetectable VLs after the peak are excluded from the analysis of “time of first

undetectable plasma VL”.

https://doi.org/10.1371/journal.pcbi.1008564.g002
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from the inoculation site rather than being directly comparable to the inoculum dose. In this

model, no other statistically significant relationships were found between individual parameter

estimates and inoculum dose (S3 Fig) and no differences in parameter estimates were observed

between the two viral strains (S4 Fig).

As a more thorough analysis of the effect of inoculum dose or viral strain on the viral

dynamics parameters, we allowed population parameters to depend on dose or strain as covar-

iates in the model fitting. We then used an iterative approach to determine which covariate

relationships should be retained, as described in Methods. This approach accepts covariate

structures that describe statistically significant relationships between dose and parameter value

while maintaining at least as good a model fit. We found statistical support only for a relation-

ship between estimated initial plasma viral load, V0, and inoculum dose (S2 Table). Including

this covariate relationship in the fitted model (S5–S9 Figs) gave statistically significantly

improved log likelihood of -169.2 (compared to -194.3 without any covariates, p value < 10−10

by the log likelihood ratio test) and reduced the estimated standard deviation of log10 V0 from

1.18 to 0.33 (Table 1).

We noted that the parameter estimates for the death rate of productively infected cells, δ,

gave a population median of 8.8 d-1 (S6 Fig), providing an average estimated lifespan of a pro-

ductively infected cell of less than 3 hours, and a range in individual estimates between approx-

imately 6 d-1 and 11 d-1. These estimates were much higher under this model fit than has been

found for other viruses [14,36,37]. Although there is a substantial amount of uncertainty in the

estimate of this parameter (Table 1), we found that restricting the maximum death rate of pro-

ductively infected cells to< 6 d-1, in line with estimates for other viruses, generally reduced

the quality of the model fit (S10 Fig).

Modelling immune control of plasma viremia

The target cell limited model (Eq 1) is able to provide a good description of the observed viral

load data (S5 and S9 Figs) but does not provide relevant insight into the immune response and

mechanisms of control of plasma viremia. Under the target cell limited model, infection is

controlled only when there is substantial depletion of target cells. Given the breadth of cell

types that ZIKV is able to infect [19,21,38–42] it is likely that a model relying on substantial

depletion of all target cells will be missing important biological mechanisms. Innate immune

Table 1. Estimated population parameters from fitting the indicated models to viral load data from all animals using a non-linear mixed effects model. An explicit

covariate relationship between inoculum dose and initial viral load V0 is incorporated, with the median population estimate for log10 V0 at each inoculum dose shown in

italics. Relative standard errors are shown in parentheses. Fixed parameters used in the model fits are: k = 8 d-1, c = 10 d-1, s = 1 d-1, α = 2 d-1, K = 103, n = 0.25, T(0) = 105

ml-1, each with no variability.

Target cell limited model (Eq 1) Innate immune model (Eq 2) Viral interference model (Eqs 2 & 3)

Parameter Population estimate Variability estimate Population estimate Variability estimate Population estimate Variability estimate

R0 2.59 (16%) 0.0229 (572%) 3.44 (12%) 0.0284 (888%) 4.16 (9%) 0.033 (405%)

δ 8.83 d-1 (57%) 0.211 (60%) 3.31 d-1 (21%) 0.116 (103%) 2.25 d-1 (10%) 0.064 (85%)

p 1724 d-1 (65%) 0.596 (33%) 637 d-1 (24%) 0.536 (24%) 450 d-1 (16%) 0.514 (26%)

γ 3.36 (49%) 0.859 (52%) 0.010 (59%) 2.12 (24%)

τ 5.37 d (5%) 0.239 (15%) 2.68 d (3%) 0.107 (29%)

log10 V0 -1.51 ml-1 (23%) 0.329 (28%) -1.00 ml-1 (8%) 0.341 (26%) -0.96 ml-1 (34%) 0.359 (21%)

at 103 PFU 1.50 ml-1 1.91 ml-1 1.95 ml-1

at 104 PFU 2.50 ml-1 2.87 ml-1 2.92 ml-1

at 105 PFU 3.50 ml-1 3.84 ml-1 3.89 ml-1

at 106 PFU 4.51 ml-1 4.81 ml-1 4.86 ml-1

https://doi.org/10.1371/journal.pcbi.1008564.t001
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responses can rapidly restrict viral infections and in these macaques interferon-stimulated

genes were upregulated following infection [9]. In previous work, using an inoculum dose of

106 PFU, we found no evidence for immune control of Zika plasma viremia [18] when incor-

porating measured immune cell or cytokine dynamics, including type I interferon (IFN), into

the model. In that study, with a high viral challenge the resultant viral kinetics were rapid. In

the data analyzed here the different inoculum doses result in a range of times to peak VL after

infection (Figs 1 and 2) possibly providing more information on early viral replication and the

mechanisms of innate immune control of plasma viremia.

We extended the viral dynamic model given by Eq 1 to incorporate an explicit innate

immune effect on plasma viremia and tested whether this additional complexity could be sup-

ported by the data. We modelled the effect of an innate immune response, X, which could be

thought of as a cytokine such as IFNα, or a combination of cytokines, that act to alter the virus

dynamics. As in the work of Baccam et al. [14] on the innate response to influenza infection,

we assumed this generic innate immune response factor is produced at a rate proportional to

the concentration of productively infected cells, after a time delay, and decays at a constant

rate (Eq. S1). However, we note that the dynamics of X are not necessarily comparable to the

dynamics of soluble IFNα or other cytokines, and instead X should be considered as a measure

of the effective cytokine concentration rather than the measurable cytokine concentration

since ZIKV can interfere with cytokine signaling, including through the JAK/STAT pathway

[23,24,43,44].

There are a number of ways that the action of the innate immune response can be included

in the mathematical model. We initially tested models where the innate response affects the

viral dynamics in one of a number of ways: (i) reducing viral infectivity (Eq. S2), which also

models making target cells less susceptible to infection, (ii) increasing the death rate of infected

cells (Eq. S3), a possible action of natural killer cells or (iii) reducing the rate of viral produc-

tion from infected cells (Eq. S4), an activity of IFNα when used to treat hepatitis C virus infec-

tion [45,46]. Under our initial testing criteria each of these models provided a statistically

better fit to the observed data than the target cell limited model (S1 Text and S3 Table). Allow-

ing the immune response to reduce the rate of viral production from infected cells provided

the best fit in this initial test and therefore we further analyzed this model.

The model where the innate immune response reduces the rate of viral production from

infected cells is described by the following system of ODEs:

dT=dt ¼ � bVT ; Tð0Þ ¼ T0

dI1=dt ¼ bVT � kI1; I1ð0Þ ¼ 0

dI2=dt ¼ kI1 � dI2; I2ð0Þ ¼ 0

dV=dt ¼ p̂I2 � cV; Vð0Þ ¼ V0

dX=dt ¼ sI2ðt � tÞ � aX; Xð0Þ ¼ 0

p̂ ¼ p=ð1þ gXÞ

ðEq 2Þ

Without loss of generality and for the sake of identifiability we set the coefficient of produc-

tion of the innate response factor, s, equal to 1 d-1 such that X is in units of daily production.

This innate immune response model then contains three additional parameters to be esti-

mated: the delay in production of the immune response factor (τ), the rate of degradation of

the immune response factor (α), and the strength of the immune response factor in modulat-

ing viral production (γ). The available VL data do not provide enough information to allow all

of these parameters to be estimated fully in the population. Instead, the degradation rate α was
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fixed to be 2 d-1, approximately equal to the value found in a modelling study of influenza in

ponies [47], and population distributions for τ and γ were estimated.

Fitting the innate immune model (Eq 2) to the plasma VL data (S11–S15 Figs, Table 1 and

S4 Table), including estimating distributions for γ and τ, gave statistical support for this model

over the target cell limited model via the log likelihood ratio test, with a maximum log likeli-

hood of -148.5 (compared to -169.2 for the best target cell limited model, p< 10−6 by the log

likelihood ratio test with six degrees of freedom), providing evidence for a process other than

target cell limitation as a mechanism helping control of plasma viremia in these data. We also

note that the innate immune model provides different estimated parameter distributions than

the target cell limited model (S5 Fig compared to S12 Fig). In particular, the innate immune

model provides lower estimates of the infected cell death rate, δ, more in line with those of

other viral infections [14,36,37]. We found that the estimated parameters are stable to the

choice of the fixed value of α, the rate of degradation of the immune response (S16 Fig).

When considering the individual estimated parameters under this model, we didn’t observe

any statistically significant relationships between parameter values and inoculum dose or viral

strain (S13 and S14 Figs), other than the explicitly incorporated relationship between esti-

mated initial viral load and dose. In the same manner as for the target cell limited model, we

again thoroughly assessed possible inoculum dependencies in parameters by testing each pos-

sible covariate relationship in the model fitting procedure (S5 Table). Inclusion of an explicit

relationship between the timing of the initiation of the immune response, τ, and the inoculum

dose is supported under our selection criteria (see Methods), with a p-value from the Wald test

of< 10−3, significant after Bonferroni correction for multiple testing, and a log likelihood of

-146.17 (compared to -148.5 for the model without this covariate relationship, giving a p-value

of 0.03 under the log likelihood ratio test with 1 degree of freedom). These results suggest the

possibility of some additional dose dependent mechanisms that are not currently being

accounted for in our mathematical model.

Fitting the model including a dose dependency in τ (S17–S21 Figs and S6 Table) resulted in

an estimated covariate coefficient Bτ = 0.178 (see Methods). Perhaps surprisingly this indicates

a positive relationship between inoculum dose and time of initiation of the immune response,

τ, such that this innate immune response model predicts that higher doses result in a longer

delay in immune response. Despite some statistical support for the inclusion of a dose depen-

dency in the timing of the immune response there is not an obvious biological mechanism to

explain this relationship. We speculated that this observed dose dependency was in fact due to

limitations of the current mathematical model and hypothesized that the result could be indic-

ative of the ability of ZIKV to subvert the IFN response through the STAT signaling pathway

[23,24]: at higher inoculum doses this interference might be more successful and in the current

model structure this is being accounted for as a longer delay before the immune response takes

effect. The biological observation of viral interference with immune response motivated the

development of an extended mathematical model to describe how this mechanism might act

on the viral dynamics.

Viral interference of host immune response

To mechanistically describe the ability of ZIKV to subvert the innate immune response in the

context of our viral dynamics model we modified the form of the immune restriction of viral

production, rewriting p̂ in Eq 2 as:

p̂ ¼ p= 1þ gXð1 � gðVÞÞ
� �

with g(V) = 0 corresponding to the model in Eq 2. The function g(V) takes values between 0
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and 1, with g(V) = 0 indicating no viral interference in the immune response and g(V) = 1 indi-

cating complete viral suppression of the innate response effect on viral production. We

describe viral interference in the immune response with a Hill function type expression:

gðVÞ ¼ Vn=ðKn þ VnÞ ðEq 3Þ

such that at low viral loads g(V) is close to 0 (no viral interference) and when the viral load V is

much larger than the parameter K we find that g(V) becomes close to 1 and the viral produc-

tion rate p̂ is less affected by the immune response X (S22 Fig). The parameter K determines

the level of viral load required for 50% viral interference and the parameter n determines how

sharply the level of interference increases with viral load (S22 Fig).

This form of the reduced viral production rate p̂ introduces two additional parameters

which are unable to be well estimated from the available viral load data. Instead, we tested the

model fit with different fixed values of K and n, allowing the initial viral load, V(0), to depend

on the inoculum dose but requiring that timing of the immune response, τ, follows the same

distribution for all animals. Taking n = 0.25 or 0.5 and K between 100 and 103 provides indis-

tinguishable fits by log likelihood (S23 Fig). For further analysis we selected the model fit with

K = 103 and n = 0.25 (Table 1 and S24–S28 Figs), which has a log likelihood of -145.0 and pro-

vides a slightly better description of the observed viral loads than the model with g(V) = 0 (log

likelihood ratio test with 2 degrees of freedom to account for K and n, p = 0.03).

We again tested each possible additional covariate relationship in this model and under our

selection criteria (see Methods) found no statistically significant relationships between inocu-

lum dose or strain and model parameter values (S7 Table), except for the included dependency

of V0 on inoculum dose.

This viral interference model describes the individual viral dynamics in each animal well

(Fig 3) and provides a statistically significant improvement in fit after accounting for addi-

tional parameters over the innate immune model without viral interference, as well as over the

target cell limited model which relies solely on resource depletion to account for viral control.

Adding the known biological phenomenon of viral interference with immune response allows

for more insight into the effect of both host response and viral evasion of that response, as well

as providing a somewhat improved fit of the model to the data.

In Fig 4, we show the effects of the predicted immune response on virus and viral produc-

tion. We can now clearly see that higher inoculum results in faster stimulation of the immune

response (X), but also a stronger viral interference effect g(V) early on, which overall results in

larger daily viral production. This indicates that, as well as improving the model fit to the data,

this viral interference mechanism removes the biologically strange delayed immune response

phenomenon observed with the simpler immune response model.

The fraction p̂=p can be used as a measure of the extent to which the innate response is able

to reduce the viral production rate, with a value of 0 meaning complete suppression of viral

production and a value of 1 meaning no effect of the immune response. At higher inoculum

doses the area under the curve of p̂=p is higher (S29A Fig), indicating that higher doses result

in a less efficient innate immune response overall. Similarly, immune-mediated viral restric-

tion (1 � ðp̂=pÞ; S29B Fig) is lower when the inoculum dose is higher. However, despite the

ability of higher inoculum doses to subvert the immune response, the total viral production is

not related to dose (S14C Fig) as suggested by the observed lack of correlation between inocu-

lum dose and viral load AUC (Fig 2). The fact that total viral production is not related to dose

may simply reflect that at higher doses with the innate immune response partially subverted

viral load peaks early and then rapidly declines to undetectable levels as cells susceptible to

infection are depleted (S30 Fig).
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The estimated parameter distributions from each of the models considered in this study

(Fig 5) show that the estimated infected cell death rate is much lower in the innate immune

models than in the target cell limited model. The estimate for the time delay in the innate

immune response is reduced to a median 2.7 d when viral interference is included in the

model, but this estimate is still longer than the time when we were able to detect soluble inter-

ferons in circulation in our previous ZIKV study [18]. However, we interpret this as suggesting

that the effect of the immune response is delayed from the production of the cytokines, as

ZIKV does not affect the production of cytokines but rather their signaling through the JAK/

STAT pathway. Alternatively, it could be that the timing of the immune response is also sub-

ject to viral interference which is unaccounted for in our modelling. Fitting the model with no

time delay in the immune response reduces the quality of the fit: across a range of values tested

for log10 K and n, the maximum log likelihood we achieved with τ = 0 was -154.4, compared to

a log likelihood of -145.0 with the best-fitted τ.

Fig 3. Individual viral load predictions from population model fits. For each animal the observed plasma viral loads (markers), the predicted viral load

from the immune response model with viral interference (Eq 3, Table 1) are shown. The horizontal grey dotted line represents the limit of detection of the

assay, and samples in which virus is not detected are shown with open markers at this value. Viral strain is indicated by marker and color (BR: green triangles,

PR: purple circles) and both inoculum dose and viral strain are indicated in the top right corner of each panel.

https://doi.org/10.1371/journal.pcbi.1008564.g003
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The only dose dependency that is supported in the viral interference model is in the initial

viral load V(0), and the observed relationships between dose and day 1 plasma viral load and

time of peak viral load (Fig 2) are captured by the model without requiring any additional

dose-parameter relationships (S31 Fig). Interestingly, in the simulated data we see a statistically

significant relationship between inoculum dose and the area under the viral load curve as well

as between inoculum dose and the time viral load first becomes undetectable, suggesting that

these relationships may be present in the observed data, but without enough power to be statis-

tically significant. These additional relationships suggest that higher inoculum doses result in

plasma viral load dynamics with a faster time to undetectable and a (very slightly) lower total

viral burden. However, given the extremely shallow relationship between dose and area under

Fig 4. Predicted dynamics for the immune response model with viral interference (Eqs 2 and 3, Table 1). Each inoculum dose is indicated by color, with the

mean predicted dynamics within an inoculum group shown. The solid line shows the model dynamics with the estimated parameters. The dotted line shows the

model dynamics with estimated parameters but with g(V) fixed at 0, such that viral interference has no effect on immune response.

https://doi.org/10.1371/journal.pcbi.1008564.g004
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the curve it’s unlikely that this relationship would have any translational effect in animal

models.

Discussion

Experimental challenge models are used to study many viral infections, and in order to obtain

robust infections it is often the case that the inoculum doses used are many times higher than

exposure in a natural setting. In order to translate findings from experimental to natural infec-

tion settings the impact of the inoculum dose needs to be understood.

Here we studied the effect of inoculum dose on plasma viral loads (VLs) after Zika infection

of non-human primates. We found dose-dependent behavior in the viral load dynamics that is

not readily apparent from summary statistics of the VL measurements, demonstrating the

value of careful mathematical modelling analyses.

Fig 5. Estimated parameter distributions for the three model fits: immune response model with viral interference (Eq 3, Table 1, solid line), the innate immune

response model including a dose dependency in the timing of the immune response (Eq 2, S6 Table, dashed line) and the target cell limited model (Eq 1, Table 1,

dotted line). Where inoculum dose is explicitly included as a covariate in the model, the distributions for each dose are indicated by color.

https://doi.org/10.1371/journal.pcbi.1008564.g005

PLOS COMPUTATIONAL BIOLOGY Zika virus dynamics: Inoculum dose, innate immune response and viral interference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008564 January 20, 2021 12 / 26

https://doi.org/10.1371/journal.pcbi.1008564.g005
https://doi.org/10.1371/journal.pcbi.1008564


The subcutaneous viral inoculum dose given (measured in PFU) was found to be well cor-

related with the estimated effective initial viral load in circulation (measured in RNA cp/ mL),

and across the dose range used in this study we saw no evidence of any saturation in the trans-

port process from tissue to circulation. With an appropriate transformation, the log10 inocu-

lum dose can be considered to be equivalent to the initial log10 viral load in the model (e.g S3

and S5 Figs).

The data presented in this analysis, in contrast to our previous study [18], statistically sup-

ports a mathematical model of an IFNα-like immune response to viral infection, reducing the

rate at which infected cells are able to produce new viral particles. However, the experimental

data doesn’t include any kinetic measures of the immune response at early timepoints after

infection, restricting our analysis to a heuristic model of the innate immune response. The VL

data alone is not sufficient to identify the dominant mechanism of immune response: here we

primarily worked with a model where the immune response restricts viral production, but

other models where the immune response increases the rate of clearance of infected cells,

reduces the infectivity of the virus, or protects target cells from infection are all also statistically

supported above the target cell limited model, although do not give as good a fit to the

observed data as the model with reduction in viral production. In order to more clearly under-

stand control of Zika virus in mild acute infections further careful data collection will be

required. In particular, the relationship between soluble cytokine concentration and the mag-

nitude of the effect of the cytokine is not necessarily linear.

The statistical approach of estimating population parameter distributions that was used in

this study allows for an analysis of whether the inoculum dose size has an influence on any of

the model’s parameter values. We saw that introducing a relationship between the inoculum

dose and the time delay in the immune response improved the model fit and was statistically

significant. The time delay in the model can be thought of as the time it takes for the appropri-

ate cytokine signaling, cytokine production and the cytokine’s effect to occur after a cell

becomes infected. The predicted relationship between this time delay and the inoculum dose

was such that at higher doses there was a longer delay. Rather than reflecting a true biological

dose-dependence, we took this relationship as providing clues for additional mechanisms to

include in the model. Zika virus is able to interfere with the host immune system, and model-

ing this interference with a Hill function-like dependency on viral concentration allowed us to

describe the observed data better.

Our novel viral interference model is able to capture more of the biology of the dynamics

seen in these acute infections. It removes the surprising relationship between inoculum dose

and the timing of the immune response seen with the innate immune response model, as well

as providing a framework for a quantitative description of the effect of the experimentally

observed degradation of cytokine signaling by ZIKV.

However, we were not able to accurately identify the shape of the relationship between viral

load and suppression of the immune response. The half-maximal concentration was seen to be

able to range over 3 orders of magnitude while providing equivalently good fits, and Hill coeffi-

cients of 0.25 and 0.5, meaning shallow slopes in the Hill function g(V) (S22 Fig), both gave good

descriptions of the observed viral loads (S23 Fig). Hill coefficients of less than 1 are usually inter-

preted, in a biochemical reaction setting, as negative co-operation. How this parameter value

should be interpreted in the setting of viral interference is less clear. A Hill coefficient of less than 1

gives behavior in the viral interference expression g(V) where the per-virion interference, g(V)/V,

decreases as viral concentration increases even though g(V) is monotonically increasing. At lower

viral concentrations, early in infection or after low inoculum doses as in a natural infection, the

per-virion interference with immune response is more effective than when the viral load is higher.
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In our mathematical model, the viral concentration exerts effects on itself, beyond the sim-

ple viral replication through cell infection, via two competing mechanisms. First, free virus

infects target cells in a concentration dependent manner and the infected cells initiate an

immune response that restricts production of new free virus. Second, free virus is able to

inhibit the immune response through the viral interference mechanism, increasing viral pro-

duction back towards the baseline rate. The combined impact of these two mechanisms on the

course of infection will be complex and depends on both the timing and magnitude of the

immune response and viral interference.

These two mechanisms do not depend on viral concentration in the same manner. As dis-

cussed above, the per-virion effect of interference decreases with higher viral concentrations,

while the per-virion effect of immune response does not vary with viral concentration

although there is a complicating factor of the time delays in the immune response. These dif-

fering concentration dependencies mean that the ratio of immune response effect to viral

interference is more heavily weighted towards the viral interference mechanism at low viral

loads than at high viral loads. In natural infection settings, the initial viral concentration from

a mosquito bite is likely to be substantially lower than in experimental infection models. Dud-

ley et al [13] infected macaques with ZIKV via mosquito bite, with mosquitos that were

allowed to feed on infected mice 12 days previously. They found that immediately after infect-

ing the macaques, the mosquito saliva contained approximately 102 PFU of ZIKV, compared

to a lowest inoculum dose of 103 PFU in the experimental infection data examined in the cur-

rent study. Since viral loads in infected macaques are likely to be lower early in natural infec-

tion compared to high dose experimental infections, it is feasible that viral interference of the

innate immune response is a key mechanism in natural infection.

This framework for considering the effect of the immune response on viral dynamics might

have an impact on assessments of antiviral efficacy from high dose experimental challenge mod-

els. A treatment that reduces viral load will also presumably reduce both the innate response

and viral interference with the innate response. The variable balance of the effect of these mech-

anisms at a lower challenge dose might change the effectiveness of the therapy. The dynamics of

the host immune response, and how the virus interferes with it are important to uncover in

order to further our understanding of how ZIKV infection is usually effectively controlled.

Methods

Data

Plasma viral load (VL) measurements, assessed using an RT-PCR assay, were collected after

subcutaneous infection with ZIKV as described in [9]. They were analyzed as log10 VL, and for

visualization purposes when ZIKV was undetectable in a sample, the data point is displayed at

the experimental limit of detection, 100 RNA copies /mL. Area under the curve (AUC) was

calculated via a trapezoid method on the log10 viral loads above the detection limit (log10 viral

load minus log10 detection limit). The downslope was measured by linear regression on the

log10 data points between the peak viral load and the first undetectable sample, inclusive.

Where there was no undetectable sample after the peak viral load, in the few animals where

samples were only taken to day 7, the data points between the peak viral load and the last mea-

sured viral load were used for linear regression.

Statistical significance

Statistical significance was assessed with a threshold of α = 0.05, accounting for multiple test-

ing via the Bonferroni correction where appropriate.
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Mathematical models

Ordinary differential equation (ODE) based compartmental models were used to describe the

plasma viral dynamics, as detailed in the text.

Model fitting approach. As in our previous Zika modeling work [18], we used a non-lin-

ear mixed effects modeling approach, implemented in Monolix 2016 (lixoft.com/products/

monolix/) in which the VL data from all animals, at all doses, was fitted simultaneously, on a

log10 scale. In this modeling approach each estimated parameter is assumed to follow a log-

normal distribution in the population, and the parameter value for an individual i can be

expressed as yi ¼ yeZi where θ is the median value of the population distribution and ηi is the

individual random effect, assumed to be normally distributed as N(0, ω2), accounting for vari-

ability between individuals. We note that we did not fit or enforce in the statistical model

structure any correlations among parameters. For model fitting in Monolix we use settings:

SAEM k1 = 1000, k2 = 200, MCMC chains = 4, estimation of the Fisher information matrix

(FIM) by linearization and log-likelihood (using natural logarithms) by importance sampling.

For other settings, the defaults were retained. Data below the limit of detection of the experi-

mental assay was handled as censored data [48].

Parameters. We typically have seven positive data points per animal, thus it is likely that

not all parameters are practically identifiable [49], especially for parameters describing pro-

cesses that occur on the scale of hours or minutes. For this reason, we chose to test a set of

fixed values for the rate of viral clearance, c, and for the transition rate from the eclipse phase

to productive infection, k, instead of trying to estimate these rates by fitting.

For dengue virus, a similarly structured flavivirus, a mathematical modeling study esti-

mated the clearance rate to be around 5 d-1 [50]. For West Nile virus, also a flavivirus, mea-

surements of viral loss from serum over 90 minutes after intravenous infection showed a total

clearance rate greater than 40 d-1, although this rate includes infection of target cells and is

therefore an upper bound. For HCV, another flavivirus, the viral clearance rate has been esti-

mated to be around 22 d-1 [51]. With the daily sampling schedule in the data used in this

study, the viral clearance rate is likely too fast to be estimated well. As such, we tested a range

of values of clearance rates between 5 d-1 and 20 d-1.

Similarly, the length of the eclipse phase is unlikely to be identifiable from these viral load

data, since the samples are taken at most daily and the average eclipse phase length is likely to

be less than 1 day given the high VLs observed on day 1 in many monkeys. As such, VL mea-

surements within the first day post infection would be required to fully estimate the eclipse

phase length. Hamel et al. [19] found detectable ZIKV production in vitro 6 hours after infec-

tion of primary human fibroblasts, and analysis of the data from more detailed in vitro studies

such as [52] would provide further insight into the eclipse phase length in ZIKV infection. In

this study, we tested model fits with fixed eclipse phase transition parameter values between 1

d-1 (giving an average eclipse phase length of 24 hours) and 24 d-1 (giving an average eclipse

phase length of 1 hour).

To select values of c and k, the fitting algorithm was run for each pair of fixed values at each

of 10 randomly generated seeds and 10 randomly generated sets of initial guesses, giving a

total of 100 algorithm runs for each tested set of k and c. Model fits under each pair of fixed val-

ues of c and k were assessed by log likelihood.

Additionally, it is known that in this model only the product pT0 is identifiable from viral

load data [34], so we fixed the initial concentration of target cells, T0 = 105 cells ml-1, a value

used previously [18], and estimated a production rate p.

Following Snoeck et al. [53], we chose to reparametrize the model to allow estimation of the

basic reproductive ratio, R0, which represents the number of cells that would be infected by the
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virus produced from a single infected cell introduced into a fully susceptible target cell popula-

tion. R0 in the target cell limited model with eclipse phase (Eq 1), assuming no cell death dur-

ing the eclipse phase, is given by R0 = βpT0/(δc) [54,55]. We reparametrize using β = R0δc/

(pT0) and for parameters R0, δ, p and V0, we estimated both the population parameter value

and the inter-individual variability. Since the viral load data was fitted on a log10 scale we esti-

mated the initial viral load, V0, on a log10 scale, allowing log10 V0 to take a normal distribution

in the population, so that V0 follows a lognormal distribution like the other parameters. For

the innate immune response models (Eqs 2 and 3 plus 4, 5, or 6), we continued to use the fixed

values of k and c selected for the target cell limited model (Eq 2) and in addition we fixed α = 2

d-1 and s = 1 d-1.

Model selection. Model selection was based on log likelihoods (natural logarithms) to

compare different model structures and Wald tests for inclusion of covariates, as provided by

Monolix. Comparisons between nested models were performed using the log likelihood ratio

test (LLRT).

To assess the effect of inoculum dose and viral strain we allowed for model parameters to

depend on those two covariates (dose and strain) using the following standard procedure. Each

possible covariate structure was added to the model one at a time and the parameter estimation

algorithm was run for each. The possible covariate structures include relationships between

each fitted parameter and either inoculum dose or viral strain. Inoculum dose was included as a

continuous covariate. For a lognormally distributed parameter θ and the median value for indi-

viduals receiving inoculum dose D (log10 PFU) is given by: �y ¼ ypopeByD where the population

parameter value θpop and the covariate coefficient Bθ are to be estimated. Viral strain was

included as a categorical covariate. For a lognormally distributed parameter θ the median value

is given by �y ¼ ypopeSyIPR where IPR is an indicator function, equal to 1 if individual is infected

with PR ZIKV and equal to 0 otherwise, and as above θpop and Sθ are to be estimated.

We selected covariate relationships to incorporate into our model structure based on both

statistical significance and model fit. A covariate relationship is included in the model struc-

ture if it both has a significant p-value (at a threshold of 0.05 after correction for multiple test-

ing) by the Wald test as provided by Monolix and provides at least as good a log likelihood as

the model without the relationship. If more than one covariate relationship fulfilled these crite-

ria, the one with the lowest p-value was selected to be incorporated into the model first. After a

covariate relationship was incorporated under these criteria, the remaining possible relation-

ships were again retested on top of the incorporated relationships and this iterative procedure

was repeated until no covariate relationships were supported statistically. Note that we did not

fix the value of Bθ for any of the covariate relationships but allowed them to be estimated each

time the fitting algorithm is run.

Model assessment. We visually inspected model fits to data at the individual level by

obtaining predicted viral kinetics from estimated individual parameters and plotting these

with the observed data measurements. At a population level, we used visual predictive checks

(VPCs), whereby parameter sets are repeatedly selected at random (and independently) from

the estimated distributions and predicted viral load dynamics are recorded for comparison

with observed data. The range of these predicted viral kinetics are then plotted alongside the

aggregated observed data measurements.
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S1 Table. Observed plasma Zika viral loads used in this study, in log10 RNA copies per ml

at days post infection (dpi), as reported by Aid et al. [9]. Where viral RNA was undetectable

in a sample it is indicated at the limit of detection of the assay, 102 RNA copies/ml.

(PDF)

S2 Table. Results from adding covariate relationships to the target cell limited model (Eq

1). Only a covariate relationship been inoculum dose and initial plasma viral load V(0) is

accepted and included in the model structure. Note that the p-values shown here are as pro-

vided by Monolix and are not corrected for multiple testing.
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S3 Table. Model fitting results from the target cell limited model and innate immune mod-

els. The value of τ shown is the one that was found to provide the maximum likelihood. The p-

value shown is from a log likelihood ratio test against the target cell limited model with three

degrees of freedom for the median and variability on the parameter γ and the fixed values of τ
tested.
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S4 Table. Estimated population parameter values from fitting the innate immune model

with reduced viral production (Eq 2) to viral load data from all animals using a non-linear

mixed effects model. Relative standard errors are shown in parentheses. An explicit covariate

relationship between inoculum dose and initial viral load V0 is incorporated, with the median

population estimate for log10 V0 at each inoculum dose shown in italics. Fixed parameters

used in the model fit are: k = 8 d-1, c = 10 d-1, s = 1 d-1, α = 2 d-1, T(0) = 105 ml-1, each with no

variability.

(PDF)

S5 Table. Results from adding covariate relationships to the innate immune model with

reduced viral production rate (Eq 2). Note that the p-values shown here are as provided by

Monolix and are not corrected for multiple testing. The covariate relationship between inocu-

lum dose and τ fulfils both the log likelihood and Wald test criteria (see methods) and so is

accepted. No additional covariate relationships on top of this are accepted.

(PDF)

S6 Table. Estimated population parameter values from fitting the innate immune model

with reduced viral production (Eq 2) to viral load data from all animals using a non-linear

mixed effects model. Relative standard errors are shown in parentheses. Explicit covariate

relationships between inoculum dose and initial viral load V0 and between inoculum dose and

delay to immune response τ are included, and the median population values of these parame-

ters at each dose are shown in italics. Fixed parameters used in the model fit are: k = 8 d-1,

c = 10 d-1, s = 1 d-1, α = 2 d-1, T(0) = 105 ml-1, each with no variability.
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S7 Table. Results from adding covariate relationships to the viral interference model (Eq

3). No covariate relationships fulfil both criteria (log likelihood and p-value, see methods) to

be included in the model. Note that the p-values shown here are as provided by Monolix and

are not corrected for multiple testing. Given 11 tested covariate relationships, the significance

threshold is 0.05/11 = 0.0045, and our testing criteria (see methods) require a covariate rela-

tionship with a significant Wald test and a log likelihood at least as good as the model without
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S1 Fig. The log-likelihood of the target cell limited model (Eq 1) fit to plasma VL data

from all 28 animals simultaneously, with different fixed values of k (the transition rate

from the eclipse phase to productively infected) and c (the viral clearance rate). At each

pair of values for k and c the model fitting algorithm is repeated 100 times with different initial

guesses for the fitted parameters and different random seeds for the algorithm. Left: the log-

likelihood from each repeated data fitting is shown by dots (visible in the inset), and the

median is shown by the line. The inset shows the same data, focused on those fits providing

the maximum log-likelihoods. Right: the median log-likelihood for each pair of values of k and

c, colored by value. Those pairs of k and c which provide a median log-likelihood within 2

points of the maximum median log-likelihood are outlined and colored white.

(PDF)

S2 Fig. Estimated population parameter values at each pair of fixed c and k that provide a

median log- likelihood within 2 points of the maximum median log-likelihood. Results

from each implementation of the fitting algorithm (as described in SF1) are shown by markers,

medians are shown by horizontal bars and interquartile ranges are shown by vertical lines

(often not visible due to tightly distributed estimates). The 100 implementations of the fitting

algorithm shown here are each from different initial parameter guesses and random seeds.

(PDF)

S3 Fig. Relationships between individual estimated parameters and inoculum dose. Indi-

vidual estimated parameters are derived from the population fit of the target cell limited model

(Eq 1) with fixed k = 8 d-1 and fixed c = 10 d-1, without any explicit inclusion of covariate struc-

tures between inoculum and parameter value. Correlations between parameters and inoculum

dose are assessed via the Pearson correlation, with p-value (N.S. indicates non-significant rela-

tionship) and correlation coefficient shown above each panel. Where the correlation is statisti-

cally significant after Bonferroni correction the linear regression line is shown. Markers for

individual animals are colored by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S4 Fig. Relationships between individual estimated parameters and viral strain. Individual

estimated parameters are derived from the population fit of the target cell limited model (Eq 1)

with fixed k = 8 d-1 and fixed c = 10 d-1. Differences between parameters by viral strain are

assessed by the Mann Whitney U test, with p-value (N.S. indicates non-significant relation-

ship) shown in each panel. Markers for individual animals show the inoculum dose (103 PFU:

light blue triangles, 104 PFU: dark blue squares, 105 PFU: orange pentagons, 106 PFU: red

hexagons) and the horizontal black line represents the median parameter value for each group.

(PDF)

S5 Fig. Visual predictive checks for the fit of the target cell limited model (Eq 1) with fixed

k = 8 d-1 and fixed c = 10 d-1 and with a dose-dependency in log10 V0 explicitly incorporated

(Table 1). 100,000 repeated random parameter sets were selected from the estimated parame-

ter distributions for each inoculum dose, and predicted viral loads given these parameter val-

ues were recorded. Black lines show median predicted viral load, grey shaded region shows

2.5th– 97.5th percentiles of predicted viral loads and black points indicate experimentally

observed viral loads. The limit of detection of the experimental assay is shown with a horizon-

tal dashed line and where experimental measurements failed to detect ZIKV in a sample it is

shown with an open marker at this limit of detection.

(PDF)
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S6 Fig. Estimated parameter distributions from the target cell limited model (Eq 1) with

fixed k = 8 d-1 and fixed c = 10 d-1 and with a dose-dependency in log10 V0 explicitly incor-

porated (Table 1). Inoculum dose indicated by color where relevant (light blue = 103 PFU,

dark blue = 104 PFU, orange = 105 PFU, red = 106 PFU).

(PDF)

S7 Fig. Relationships between individual estimated parameters and inoculum dose, with

individual estimated parameters from the target cell limited model (Eq 1) with fixed k = 8

d-1 and fixed c = 10 d-1 and with a dose-dependency in log10 V0 explicitly incorporated

(Table 1). Correlations between parameters and inoculum dose are assessed via the Pearson

correlation, and where this is significant after Bonferroni correction the linear regression line

is shown (dashed) and the p-value is shown above the panel. Markers for individual animals

are colored by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S8 Fig. Relationships between individual estimated parameters and viral strain, with indi-

vidual estimated parameters from the target cell limited model (Eq 1) with fixed k = 8 d-1

and fixed c = 10 d-1 and with a dose-dependency in log10 V0 explicitly incorporated

(Table 1). Differences between parameters by viral strain are assessed by the Mann Whitney U

test, and no significant relationships after Bonferroni correction are observed. Markers for

individual animals are colored by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S9 Fig. Predicted viral loads for each individual animal from the fit of the target cell lim-

ited model (Eq 1) with fixed k = 8 d-1 and fixed c = 10 d-1 and with a dose-dependency in

log10 V0 explicitly incorporated (Table 1). Color and marker shape indicate inoculum strain

(BR: green triangles, PR: purple circles) and inoculum dose is indicated top left of each panel.

Observed VLs are shown by markers and model prediction is shown by the solid line. The

limit of detection of the experimental assay is shown by the horizontal dashed line and where

ZIKV is not detectable in a sample it is shown with an open marker at this value.

(PDF)

S10 Fig. The log likelihood from model fits where the population distribution of δ is a

scaled logit-normal, so it is only able to take values up to a maximum, rather than a lognor-

mal as for other parameters. Model fits are of the target cell limited model (Eq 1) with fixed

k = 8 d-1 and fixed c = 10 d-1 and with a dose-dependency in log10 V0 explicitly incorporated.

Each circle represents the output from a repeated fit with randomly selected initial parameter

guesses and random seeds. The horizontal line shows the log-likelihood from the model fit

with lognormally distributed δ.

(PDF)

S11 Fig. Visual predictive checks for the fit of the innate immune model with reduced viral

production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α = 2 d-

1, and with a dose-dependency in log10 V0 explicitly incorporated (S4 Table). 100,000

repeated random parameter sets were selected from the estimated parameter distributions for

each inoculum dose, and predicted viral loads given these parameter values were recorded.

Black lines show median predicted viral load, grey shaded region shows 2.5th– 97.5th percen-

tiles of predicted viral loads and black points indicate experimentally observed viral loads. The

limit of detection of the experimental assay is shown with a horizontal dashed line and where

experimental measurements failed to detect ZIKV in a sample it is shown with an open marker
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at this limit of detection.

(PDF)

S12 Fig. Estimated parameter distributions from the innate immune model with reduced

viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed

α = 2 d-1, and with a dose-dependency in log10 V0 explicitly incorporated (S4 Table). Inocu-

lum dose indicated by color where relevant (light blue = 103 PFU, dark blue = 104 PFU,

orange = 105 PFU, red = 106 PFU).

(PDF)

S13 Fig. Relationships between individual estimated parameters and inoculum dose, with

individual estimated parameters from the innate immune model with reduced viral pro-

duction rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α = 2 d-1,

and with a dose-dependency in log10 V0 explicitly incorporated (S4 Table). Correlations

between parameters and inoculum dose are assessed via the Pearson correlation, and where

this is significant after Bonferroni correction the linear regression line is shown (dashed) and

the p-value is shown above the panel. Markers for individual animals are colored by the viral

strain (BR: green triangles, PR: purple circles).

(PDF)

S14 Fig. Relationships between individual estimated parameters and viral strain, with indi-

vidual estimated parameters from the innate immune model with reduced viral produc-

tion rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α = 2 d-1, and

with a dose-dependency in log10 V0 explicitly incorporated (S4 Table). Differences between

parameters by viral strain are assessed by the Mann Whitney U test, and no significant rela-

tionships after Bonferroni correction are observed. Markers for individual animals are colored

by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S15 Fig. Predicted viral loads for each individual animal from the fit of the innate immune

model with reduced viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed

s = 1 d-1 and fixed α = 2 d-1, and with a dose-dependency in log10 V0 explicitly incorporated

(S4 Table). Color and marker shape indicate inoculum strain (BR: green triangles, PR: purple

circles) and inoculum dose is indicated top left of each panel. Observed VLs are shown by

markers and model prediction is shown by the solid line. The limit of detection of the experi-

mental assay is shown by the horizontal dashed line and where ZIKV is not detectable in a

sample it is shown with an open marker at this value.

(PDF)

S16 Fig. Estimated log likelihood and population parameters (Table 1) of the innate

immune model with reduced viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10

d-1, fixed s = 1 d-1 and fixed α as indicated on the horizontal axis. Each circle represents the

model fit from one implementation of the fitting algorithm with randomly selected initial

guesses and random seed. In the likelihood panel, the horizontal line shows the maximum like-

lihood with fixed α = 2 d-1 (S9 Fig and Table 1). The p-values (N.S denotes non-significance

after Bonferroni correction) above each panel are from a Friedman test for repeated measure-

ments.

(PDF)

S17 Fig. Visual predictive checks for the fit of the innate immune model with reduced

viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed

α = 2 d-1, and with dose-dependencies in log10 V0 and in τ explicitly incorporated (S6 Table).
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100,000 repeated random parameter sets were selected from the estimated parameter distribu-

tions for each inoculum dose, and predicted viral loads given these parameter values were

recorded. Black lines show median predicted viral load, grey shaded region shows 2.5th– 97.5th

percentiles of predicted viral loads and black points indicate experimentally observed viral loads.

The limit of detection of the experimental assay is shown with a horizontal dashed line and

where experimental measurements failed to detect ZIKV in a sample it is shown with an open

marker at this limit of detection.

(PDF)

S18 Fig. Estimated parameter distributions from the innate immune model with reduced

viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α
= 2 d-1, and with dose-dependencies in log10 V0 and in τ explicitly incorporated (S6 Table).

Inoculum dose indicated by color where relevant (light blue = 103 PFU, dark blue = 104 PFU,

orange = 105 PFU, red = 106 PFU).

(PDF)

S19 Fig. Relationships between individual estimated parameters and inoculum dose, with

individual estimated parameters from the innate immune model with reduced viral pro-

duction rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α = 2 d-1,

and with dose-dependencies in log10 V0 and in τ explicitly incorporated (S6 Table). Corre-

lations between parameters and inoculum dose are assessed via the Pearson correlation, and

where this is significant after Bonferroni correction the linear regression line is shown

(dashed) and the p-value is shown above the panel. Markers for individual animals are colored

by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S20 Fig. Relationships between individual estimated parameters and viral strain, with indi-

vidual estimated parameters from the innate immune model with reduced viral produc-

tion rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1 and fixed α = 2 d-1, and

with dose-dependencies in log10 V0 and in τ explicitly incorporated (S6 Table). Differences

between parameters by viral strain are assessed by the Mann Whitney U test, and no signifi-

cant relationships after Bonferroni correction are observed. Markers for individual animals are

colored by the viral strain (BR: green triangles, PR: purple circles).

(PDF)

S21 Fig. Predicted viral loads for each individual animal from the fit of the innate immune

model with reduced viral production rate (Eq 2) with fixed k = 8 d-1, fixed c = 10 d-1, fixed

s = 1 d-1 and fixed α = 2 d-1, and with dose-dependencies in log10 V0 and in τ explicitly

incorporated (S6 Table). Color and marker shape indicate inoculum strain (BR: green trian-

gles, PR: purple circles) and inoculum dose is indicated top left of each panel. Observed VLs

are shown by markers and model prediction is shown by the solid line. The limit of detection

of the experimental assay is shown by the horizontal dashed line and where ZIKV is not detect-

able in a sample it is shown with an open marker at this value.

(PDF)

S22 Fig. The relationship between viral load V (x-axis) and viral interference g(V) in the

viral interference model (Eq 3).

(PDF)

S23 Fig. Maximum log likelihoods, colored by value, found from fitting the viral interfer-

ence model (Eq 3) to observed viral load data with different values of K (the half maximal

response parameter) and n (the Hill coefficient). Those fits which are indistinguishable by
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log likelihood, within 2 points of the maximum, are highlighted in white.

(PDF)

S24 Fig. Visual predictive checks for the fit of the viral interference model (Eq 3) with

fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1, fixed α = 2 d-1, fixed K = 103 and fixed

n = 0.25, and with a dose-dependency in log10 V0 explicitly incorporated (Table 1). 100,000

repeated random parameter sets were selected from the estimated parameter distributions for

each inoculum dose, and predicted viral loads given these parameter values were recorded.

Black lines show median predicted viral load, grey shaded region shows 2.5th– 97.5th percen-

tiles of predicted viral loads and black points indicate experimentally observed viral loads. The

limit of detection of the experimental assay is shown with a horizontal dashed line and where

experimental measurements failed to detect ZIKV in a sample it is shown with an open marker

at this limit of detection.

(PDF)

S25 Fig. Estimated parameter distributions from the viral interference model (Eq 3) with

fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1, fixed α = 2 d-1, fixed K = 103 and fixed

n = 0.25, and with a dose-dependency in log10 V0 explicitly incorporated (Table 1). Inocu-

lum dose indicated by color where relevant (light blue = 103 PFU, dark blue = 104 PFU,

orange = 105 PFU, red = 106 PFU).

(PDF)

S26 Fig. Relationships between individual estimated parameters and inoculum dose, with

individual estimated parameters from the viral interference model (Eq 3) with fixed k = 8

d-1, fixed c = 10 d-1, fixed s = 1 d-1, fixed α = 2 d-1, fixed K = 103 and fixed n = 0.25, and with

a dose-dependency in log10 V0 explicitly incorporated (Table 1). Correlations between

parameters and inoculum dose are assessed via the Pearson correlation, and where this is sig-

nificant after Bonferroni correction the linear regression line is shown (dashed) and the p-

value is shown above the panel. Markers for individual animals are colored by the viral strain

(BR: green triangles, PR: purple circles).

(PDF)

S27 Fig. Relationships between individual estimated parameters and viral strain, with indi-

vidual estimated parameters from the viral interference model (Eq 3) with fixed k = 8 d-1,

fixed c = 10 d-1, fixed s = 1 d-1, fixed α = 2 d-1, fixed K = 103 and fixed n = 0.25, and with a

dose-dependency in log10 V0 explicitly incorporated (Table 1). Differences between parame-

ters by viral strain are assessed by the Mann Whitney U test, and no significant relationships

after Bonferroni correction are observed. Markers for individual animals are colored by the

viral strain (BR: green triangles, PR: purple circles).

(PDF)

S28 Fig. Predicted viral loads for each individual animal from the viral interference model

(Eq 3) with fixed k = 8 d-1, fixed c = 10 d-1, fixed s = 1 d-1, fixed α = 2 d-1, fixed K = 103 and

fixed n = 0.25, and with a dose-dependency in log10 V0 explicitly incorporated (Table 1).

Color and marker shape indicate inoculum strain (BR: green triangles, PR: purple circles) and

inoculum dose is indicated top left of each panel. Observed VLs are shown by markers and

model prediction is shown by the solid line. The limit of detection of the experimental assay is

shown by the horizontal dashed line and where ZIKV is not detectable in a sample it is shown

with an open marker at this value.

(PDF)
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S29 Fig. Immune response summary quantities by inoculum dose for the viral interference

model (Eq 3, Table 1). Top: the area under the curve (AUC) of the immune-response-

restricted viral production rate (p̂ðtÞ) normalized by the estimated viral production rate in the

absence of immune response (p) for each animal. Middle: The maximum effect of immune

response on viral production rate, with 1 representing complete control of viral production, 0

representing no restriction of viral production. Bottom: the AUC of the total viral production,

given by the immune restricted viral production rate p̂ðtÞmultiplied by the productive infected

cell concentration I2(t). In each panel, the p-value shown is from a linear regression and where

this is statistically significant (p< 0.05) the linear regression line is shown.

(PDF)

S30 Fig. The mean predicted viral load (left axis, black) and mean predicted target cell con-

centration normalized by T(0) (purple, right axis) at each dose group, from the innate

immune model with restricted viral production and viral interference (Eq 3, Table 1).

(PDF)

S31 Fig. Viral load (VL) characteristics from 100 simulated viral dynamics profiles with

model parameters selected from the fit of the viral interference model (Eq 3, Table 1). Cor-

relations between inoculum dose and viral characteristic are assessed via a Pearson correlation,

with p-value shown in each panel. Where this relationship is found to be significant at the α =

0.05 level after Bonferroni correction for multiple testing (m = 6) the linear regression line is

shown in the panel. The VL AUC and downslopes are calculated as for the observed viral

loads, described in Methods.

(PDF)
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