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Genotype imputation from BeadChip to whole-genome sequencing (WGS)

data is a cost-effective method of obtaining genotypes of WGS variants. Beagle,

one of the most popular imputation software programs, has been widely used

for genotype inference in humans and non-human species. A few studies have

systematically and comprehensively compared the performance of beagle

versions and parameter settings of farm animals. Here, we investigated the

imputation performance of three representative versions of Beagle (Beagle 4.1,

Beagle 5.0, and Beagle 5.4), and the effective population size (Ne) parameter

setting for three species (cattle, pig, and chicken). Six scenarios were

investigated to explore the impact of certain key factors on imputation

performance. The results showed that the default Ne (1,000,000) is not

suitable for livestock and poultry in small reference or low-density arrays of

target panels, with 2.47%–10.45% drops in accuracy. Beagle 5 significantly

reduced the computation time (4.66-fold–13.24-fold) without an accuracy

loss. In addition, using a large combined-reference panel or high-density chip

provides greater imputation accuracy, especially for low minor allele frequency

(MAF) variants. Finally, a highly significant correlation in the measures of

imputation accuracy can be obtained with anMAF equal to or greater than 0.05.
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1 Introduction

Genotype imputation (Yun et al., 2009), which uses linkage disequilibrium knowledge

from haplotypes of a known reference panel to predict genotypes of missing or

ungenotyped markers, is a commonly used procedure for obtaining more genotypes.

This is achieved by imputing low-to high-density single nucleotide polymorphism (SNP)

markers, and even whole-genome sequencing (WGS) SNPmarkers. It has played a crucial
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role in whole-genome studies such as genomic selection (GS)

(Vanraden et al., 2017; Raymond et al., 2018; Zhang et al., 2018)

and genome-wide association studies (GWAS) (Jonathan and

Bryan, 2010; Kelemen et al., 2015; Yan et al., 2017; van den Berg

et al., 2019). The availability of next-generation sequencing

techniques has made it possible to obtain WGS and SNP

markers at reasonable cost. However, sequencing all

individuals is not realistic in livestock and poultry breeding

programs. Thus, one of the most used strategies is to

sequence a subset of a population that is used as a reference

panel to perform genotype imputation with high accuracy. For

example, using the comprehensive reference panels provided by

the 1000 Genomes Project and 1000 Bull Genomes Project

consortium to impute to whole-genome-level SNPs has

recently become more common in humans and other genomic

studies (Kelemen et al., 2015; Liu et al., 2015; Pausch et al., 2016).

Since its first release in 2009 (Browning and Browning, 2009),

Beagle has been widely used for genotype imputation and

phasing. Beagle uses Bayesian methods with the Markov

Chain Monte Carlo (MCMC) algorithm. As one of the most

popular imputation software programs, it has been widely used in

humans and non-human species, such as cattle (Frischknecht

et al., 2017), dogs (Jenkins et al., 2021), pigs (Yang et al., 2021; Li

et al., 2022), and chickens (Ye et al., 2019a; Li et al., 2020b), etc. In

the past 13 years, it has been continuously updated from Beagle

3 to Beagle 5.4 (as of 25 May 2022). Beagle 4.1 was developed for

genotype imputation of millions of reference samples (Browning

and Browning, 2016). Beagle 5.0 was developed to further reduce

the computational cost of imputation from large reference panels

(Browning et al., 2018). Since version 5.2, Beagle has employed a

two-stage phasing algorithm to make it faster and more memory

efficient (Browning et al., 2021). However, the differences of these

version, and their effects of the parameter settings on livestock

and poultry, have not been fully compared. Research have shown

that the parameter effective population size (Ne) has the greatest

impact on the error rate of imputation in chicken and maize

populations (Pook et al., 2020). Thus, the effect of Ne on the

imputation accuracy is considered in our study.

Factors affecting imputation accuracy, such as reference

panel size and chip density, have already been studied based

on both simulated and empirical data (Pausch et al., 2013;

Ventura et al., 2016; Pausch et al., 2017). However, most of

them were carried out with default parameters and were not

intended to compare different imputation programs or

parameter settings (Zheng et al., 2012; Pausch et al., 2013;

Ventura et al., 2016), and the calculation of imputation

accuracy is not similar between studies. For example, in some

studies, only random masked sites were used for the calculation

of imputation, and some used all imputed sites but only a part of

the individuals (Frischknecht et al., 2017; Ye et al., 2018; Yuan

et al., 2018). In addition, the commonly used measures of

genotype imputation accuracy include genotype concordance,

the correlation between imputed and true genotypes, and Allele

R-Squared (AR2) and Dosage R-Squared (DR2) in different

versions of Beagle (Pausch et al., 2017; Rowan et al., 2019;

Song et al., 2019; van den Berg et al., 2019). Some studies

only used one method to measure, which made the reliability

of comparison between the studies low. Therefore, it is crucial to

devise an optimal strategy for improving the accuracy of

genotype imputation in GS and GWAS studies, or in livestock

and poultry breeding programs, regardless of the chip density in

the target panel. We performed a comprehensive and systematic

investigation of these factors on imputation accuracy across three

species: cattle, pigs, and chickens.

In the current study, we investigated the performance of

three representative versions of Beagle (Beagle 4.1, Beagle 5.0,

and Beagle 5.4) and the effects of parameter settings on three

farm animals (cattle, pigs, and chickens) to devise an optimal

strategy from the SNP array to whole genome sequencing data

of livestock and poultry. In addition, we explored the effects of

chip density, reference population size, and the relationship

between the target panel and the reference panel on

imputation accuracy. Finally, the correlation between the

measures of imputation accuracy and minor allele

frequency (MAF) was also explored.

2 Materials and methods

2.1 Whole genome sequencing data and
BeadChip data

WGS and BeadChip data based on three livestock and

poultry, including cattle, pigs, and chickens, were used in this

study. The framework of the genotype imputation is shown in

Figure 1. The detailed information is as follows.

2.1.1 Cattle
WGS data, of Beagle-phased SNP calls, were obtained

from RUN 5 of the 1000 Bull Genomes Project, released in

2017 (Daetwyler et al., 2014). A total of 1,682 whole-genome

sequenced animals were provided by the 1000 Bull Genomes

Project (Run 5), which included 1,602 Bos taurus, 53 Bos

indicus, and 27 Chinese yellow cattle (Daetwyler et al., 2014).

Detailed information regarding the breeds of the animals used

is provided in Supplementary Table S1. A total of

67.33 million variants were discovered in these animals, of

which 64.80 million were SNPs and 2.53 million were indels.

Further details about variant calling, genotyping, and filtering

of variants, in the 1000 Bull Genomes Project, were presented

by Daetwyler et al. (2014).

Genotype imputation included two panels: the reference

panel and the target panel. In the genotype imputation

analysis scenarios we investigated, two main target panels and

two main reference panels were considered. One of the target

groups consisted of 100 Holstein cattle, randomly selected from
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the 450 Holstein cattle in the sequencing data, and the other

consisted of 27 Chinese yellow cattle. Correspondingly, the

remaining 350 Holsteins served as the reference panel of

purebreds (ref350). All the remaining 1,555 cattle in the

1000 Bull Genomes Project, RUN5, served as a composite

reference panel (ref1555).

To investigate the influence of different imputation

scenarios, the genotypes of the target panel were masked,

using bovine chips of different densities, to mimic the

scenario from which the animals were genotyped. The low-

, medium-, and high-density chips corresponded to Illumina

BovineSNP 50, 150, and 777 K BeadChip chips, of cattle with

54,609, 138,892, and 777,962 SNPs, respectively. In addition,

the positions of all SNPs, in BeadChip, were based on the B.

taurus UMD3. We used one reference genome (Zimin et al.,

2009) obtained from the UCSC liftover (http://genome.ucsc.

edu/cgi-bin/hgLiftOver), which was consistent with a

genome of the 1000 Bull Genomes Project RUN5. After

removing variants with minor allele counts (less than one),

and variants with more than two alleles across all reference

individuals, Table 1 presents detailed information on variants

in the imputation. Then, imputation from chip variants to

whole genome sequence variants was performed and the

imputation accuracy of imputation (IMP) sites of the

target population was compared to the WGS data of these

target individuals.

FIGURE 1
The framework of the imputation.

TABLE 1 Number of SNPs used across chromosomes under different panels in cattle.

Chr (Cattle) Chr length
(bp)

Reference panel Target panel IMP sites (ref350) IMP sites (ref1555)

ref350 ref1555 50 K 150 K 777 K 50 K 150 K 777 K 50 K 150 K 777 K

chr1 158,337,067 1,265,065 3,068,377 3,067 6,781 39,186 1,262,134 1,258,329 1,229,993 3,065,312 3,061,599 3,029,193

chr7 112,638,659 847,075 2,063,921 2,064 5,386 28,133 845,108 841,843 822,367 2,061,858 2,058,537 2,035,791

chr21 71,599,096 562,318 1,387,487 1,296 3,071 17,712 561,083 559,274 546,263 1,386,192 1,384,416 1,369,777

chr29 51,505,224 470,173 1,101,854 962 2,190 12,038 469,260 467,998 458,834 1,100,892 1,099,665 1,089,816

Total 394,080,046 3,144,631 7,621,639 7,389 17,428 97,069 3,137,585 3,127,444 3,057,457 7,614,254 7,604,217 7,524,577

Chr, chromosome; IMP sites, imputed sites and locus used to calculate imputation accuracy.
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2.1.2 Pig
WGS data for pigs were downloaded from the Genome

Variation Map (GVM; http://bigd.big.ac.cn/gvm/) database,

which collected and integrated genome variations for

47 species (as of 25 May 2022) (Li et al., 2020a). A total of

409 pigs, with 90.90 million SNPs (based on the Sus scrofa 10.

2 reference genome), were provided by GVM, which included

213 Asian pigs, 181 European pigs, and 15 Sus pig species

(Supplementary Table S2). Variants with a missing rate of

more than 0.2, and a minimum allele frequency of less than 0.

01, were removed for subsequent analysis. Phasing was executed

using Beagle (version5.4) (Browning et al., 2021), with its default

parameters. We randomly selected 25 European and 25 Asian

pigs, as the target population and the remaining 359 pigs were a

part of the reference population. The genotypes of the target

panel were masked to a PorcineSNP80K BeadChip (Illumina, San

TABLE 2 Number of SNPs used across chromosomes in pigs and chickens.

Species Chr Chr length
(bp)

Reference panel Target panel IMP sites

Pig chr1 315,321,322 2,756,826 5,014 2,751,812

chr6 157,765,593 1,782,136 3,693 1,778,443

chr12 63,588,571 893,925 2,138 891,787

chr18 61,220,071 879,515 1,439 878,076

Total 597,895,557 6,312,402 12,284 6,300,118

Chicken chr1 196,202,544 7,158,664 9,841 80,339

chr3 111,302,122 4,079,325 5,506 44,859

chr6 35,467,016 1,479,613 2,117 17,537

chr28 4,974,273 190,787 534 4,187

Total 347,945,955 12,908,389 17,998 146,922

Chr, chromosome; IMP sites, imputed sites and locus used to calculate imputation accuracy.

TABLE 3 Scenarios used to evaluate imputation performance.

Scenario Description Species Target panel Reference
panel

Software Ne

S1 Effects of beagle version and Ne
parameter size on imputation accuracy
in three species

Cattle 100 Holstein (50, 150, 777 K) ref350, ref1555 Beagle4.1,
Beagle5.0,
Beagle5.4

100, 1,000, 5,000, 10,000,
20,000, 50,000, 100,000,
1,000,000

Pig 25 Asian pigs + 25 European
pigs (80 K)

359 pigs Beagle4.1,
Beagle5.0,
Beagle5.4

100, 1,000, 5,000, 10,000,
20,000, 50,000, 100,000,
1,000,000

Chicken 450 yellow-feather dwarf broiler
chickens (60 K)

355 chickens Beagle4.1,
Beagle5.0,
Beagle5.4

100, 1,000, 5,000, 10,000,
20,000, 50,000, 100,000,
1,000,000

S2 Chip density and reference panel size
on the imputation accuracy

Cattle 100 Holstein (50, 150, 777 K) ref350, ref1555 Beagle4.1,
Beagle5.0,
Beagle5.4

100,000

S3 Imputation accuracy against minor
allele frequency

Cattle 100 Holstein (50, 150, 777 K) ref350, ref1555 Beagle5.4 100,000

S4 The relationship of the measure of
imputation accuracy (Acc, Cor,
AR2, DR2)

Cattle 100 Holstein (50, 150, 777 K) ref350, ref1555 Beagle4.1 (for
AR2), Beagle5.4

100,000

S5 The relationship between target panel
and reference panel on the imputation
accuracy

Cattle 27 Chinese yellow cattle (50, 150,
777 K) and 100 Holstein (50, 150,
777 K)

ref350, ref1555 Beagle5.4 100,000

S6 Time consuming Cattle 100 Holstein (50, 150, 777 K) ref350, ref1555 Beagle4.1,
Beagle5.0,
Beagle5.4

100,000

Ne, effective population size; AR2, allelic R-squared; DR2, dosage R-squared; Acc, genotype concordance; Cor: correlation.
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Diego, CA, United States). After imputation, like that of cattle,

the imputation accuracy was calculated by comparing the IMP

sites in the target population with the WGS data of target

individuals. The statistics of the number of SNPs are listed in

Table 2.

2.1.3 Chicken
This dataset was adopted from Ye et al.’s studies (Ye et al.,

2018; Yuan et al., 2018). A total of 335 chickens were sequenced

using WGS technology (based on the galGal5 reference genome),

and 450 yellow-feather dwarf broiler chickens were genotyped

using the 600 K Affymetrix® Axiom® high-density genotyping

array (Supplementary Table S3). The WGS panel contains

diverse breeds including red junglefowl, green junglefowl,

Tibetan chickens, fighting chickens, white leghorn chickens

and so on. It is worth mentioning that 24 key individuals of

the yellow-feather dwarf broiler population were included in the

355 WGS populations. Following Ye et al. (2018), Ye et al.

(2019b), the supposed 60 K chip data were generated by

sampling the first SNP in each bin of adjacent 10 SNPs, of the

600 K SNP chip as the target panel for imputation. The

450 chickens with a 60 K BeadChip chip were used as the

target panel, and the 335 WGS chickens were used as the

reference panel for imputation. After the imputation was

performed, the IMP sites coincident with 600 K were used to

calculate the imputation accuracy, as shown in Table 2.

2.2 Genotype imputation strategy

To improve computational efficiency, four autosomes across

large, medium, and small chromosomes, were separately selected

for cattle (chr1, chr7, chr21, chr29), pig (chr1, chr6, chr12,

chr18), and chicken (chr1, chr3, chr6, chr28). The variant

information of the genotype imputation in this study is listed

in Tables 1 and 2.

We compared the effect of Beagle versions, setting effective

population size (Ne), chip density, reference panel sizing, and the

relationship between the target and reference panels on

imputation accuracy, as shown in Table 3. To explore the

effect of the Beagle version and the parameter of effective

population size (Ne) on the imputation accuracy of the three

livestock and poultry, the imputation were performed by Beagle

4.1 (Beagle.27Jan18.7e1.jar) (Browning and Browning, 2016),

FIGURE 2
Principal component analysis (PCA) showing the population structure of the three farm animals (cattle, pigs, and chickens). (A) PCA showing the
population structure of 1,682 sequenced cattle in the RUN5 of the 1000 bull genome project. (B) PCA showing the population structure of
409 sequenced pigs in genome variation map database (C) PCA showing the population structure of 335 sequenced chickens. GJF, green jungle
fowl; RJF, red jungle fowl; YFDB, yellow feather dwarf broiler. Different colors and symbols represent different classes.
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Beagle 5.0 (beagle.12Jul19.0df.jar) (Browning et al., 2018), and

Beagle 5.4 (beagle.19Apr22.7c0.jar) (Browning et al., 2021) with

the parameters of effective population size (Ne) set to 100, 1,000,

5,000, 10,000, 20,000, 50,000, 100,000, and 1,000,000 for the three

livestock. In both Beagle 4.1 and Beagle 5.0, the default parameter

of Ne was 1,000,000, but in Beagle 5.4, the default parameter of

Ne was 100,000. Furthermore, in cattle populations, the effects of

reference population size and chip density on imputation

accuracy were also explored. Furthermore, using cattle as an

example, we explored the relationship between the target and

reference panels on the accuracy of genotype imputation with

27 Chinese yellow cattle as the target panel. Meanwhile, the

imputation accuracy against minor allele frequency, the

correlation of the measure of imputation accuracy, and the

time used was explored using cattle datasets.

2.3 Evaluation of imputation accuracy

Two criteria were used to measure the imputation

performance: 1) correlation between true and imputed

genotypes (Cor), which were coded as 0, 1, and 2 for

genotypes AA, AB, and BB, respectively; 2) genotype

concordance (Acc), which was defined as the proportion of

genotypes of the imputed variants that were the same as the

true genotypes. In addition, Allele R-Squared (AR2, estimated

squared correlation between the most probable REF dose and

true REF dose) and Dosage-R2 (DR2, estimated squared

correlation between estimated REF dose and true REF dose)

output by Beagle (Beagle 4.1 generates both the AR2 and DR2,

Beagle 5 only generates DR2) were also used to make a

comparison of these imputation accuracy measurements.

2.4 Population structural analysis

The population structure was demonstrated by principal

component analysis (PCA), using GCTA (version

1.92.0 beta2) software (Yang et al., 2011), and the first

20 eigenvectors were output and then plotted using the R

program (Valero-Mora, 2010). Variants with an MAF of less

than 0.05 were removed for this analysis.

3 Results

3.1 Population structure

Principal component analysis (PCA) for the three livestock,

cattle, pig, and chicken, is shown in Figure 2. For cattle, it can be

seen that Bos taurus and Bos indicus were first separated by

PC1 in 1,682 individuals, and then the individuals were separated

FIGURE 3
Accuracy of imputation for three density BeadChip chips, two reference population sizes and three imputation software with a range of
effective population size (Ne) sets in cattle. (A) Imputation accuracy measured by the genotype concordance (Acc). (B) Imputation accuracy
measured by the correlation (Cor) (C,D) corresponds to (A) and (B) with minor allele frequency sites less than 0.05 removed.
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into B. taurus, B. indicus, or Chinese yellow cattle by PC2.

Among the B. taurus, Holstein cattle had the largest number

of individuals were Holstein cattle (450 samples). For pigs, it was

clearly shown that European pigs, Asian pigs, and Sus species pigs

were separate from 409 pigs. For chickens, it was clearly shown

that red jungle fowl and green jungle fowl separate from the other

samples in 335 chickens. The detailed breed compositions are

presented in Supplementary Tables S1–S3.

3.2 Beagle versions and the parameter of
the effective population size settings on
imputation accuracy

The imputation accuracy of the parameter setting on the

effective population size (Ne) of three different Beagle versions

for cattle, pigs, and chickens are shown in Figure 3 and

Supplementary Figures S1, S2, respectively. For the

comparison of imputation accuracy of the different versions

of Beagle, we found that the three versions of Beagle software

achieved almost the same accuracy in different scenarios with

only slight differences. Beagle 5.0 and Beagle 5.4 performed

nearly the same imputation accuracy across all scenarios.

Compared with Beagle 4.1, Beagle 5 (including Beagle

5.0 and Beagle 5.4) showed 0.1% and 0.6% improvement in

Acc, and 0.4% and 0.9% improvement in Cor for pigs and

chickens, respectively, when Ne was equal to 100,000

(Supplementary Figures S1, S2). Similarly, the imputation

accuracy varies by a few tenths of thousands of beagles.

However, the size of Ne has a significant impact on

imputation accuracy. In the case where the default Ne size of

Beagle 4.1 and Beagle 5.0 (Ne = 1,000,000), the imputation

accuracy for the cattle’s 50 K was significantly reduced, whether

imputed with ref350 (Acc and Cor dropped by 7.72% and

5.28%, respectively, for all imputed sites; Acc and Cor

dropped by 9.77% and 10.45%, respectively, for the imputed

sites with MAF ≥ 0.05) or ref1555 (Acc and Cor dropped by

2.47% and 4.13%, respectively, for all imputed sites; Acc and

Cor dropped by 8.24% and 7.55%, respectively, for the imputed

sites with MAF ≥ 0.05). The imputation accuracy also decreased

when the imputation was performed from the 150 K chip to the

WGS, with ref350 (Acc dropped by 5.88% and no drop in Cor

for all imputed sites; Acc and Cor dropped by 5.40% and 3.62%,

respectively, for the imputed sites with MAF ≥ 0.05). The other

panels in cattle imputation, such as imputation from 777 K to

WGS and from 150 K to WGS with ref350, Ne had less impact

on the accuracy of imputation (Figure 3). In addition, we

noticed that in pig and chicken imputation, the default Ne

size in Beagle 4.1 and Beagle 5.0 (Ne = 1,000,000) also reduced

the imputation accuracy (Supplementary Figures S1, S2). All

these results suggest that the impact of different Beagle versions

on the imputation accuracy is small, but the default value of Ne

has a great impact on the imputation accuracy, especially for the

imputation of low-density chips or small reference panels.

FIGURE 4
Imputation accuracy by minor allele frequency (MAF) class. The SNPs were divided into bins of 0.01 per increment according to their MAF. AR2,
allelic R-squared; DR2, dosage R-squared; Acc, genotype concordance; Cor, correlation.
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3.3 Impact of reference population size
and chip density on imputation accuracy

The imputation accuracy when using different chip

densities with different reference population sizes is shown

in Figure 3. Overall, the large reference populations resulted

in higher imputation accuracy. The imputation accuracies

measured by genotype concordances (Acc) at 50, 150, and

777 K, using ref350, were 0.925, 0.952, and 0.962,

respectively, and their corresponding Cor values were

0.735, 0.784, and 0.812, respectively. The imputation

accuracies measured by Acc at 50, 150, and 777 K, using

ref1555, were 0.972, 0.981, and 0.985, respectively, and their

corresponding Cor values were 0.720, 0.781, and 0.823,

respectively. In general, the higher the chip density of the

target panel, and the larger the number of reference panels,

the higher the imputation accuracy. The Acc at chip densities

of 50, 150, and 777 K were improved by 4.73%, 2.88%, and

2.30%, respectively, when the reference population was

increased from ref350 to ref1555.

FIGURE 5
The spearman correlation of the threemeasures of imputation accuracy andminor allele frequency (MAF) among each other. (A) All sites (B) the
sites with minor allele frequency no less than 0.05.
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3.4 Effect of minor allele frequency on the
imputation accuracy

The SNPs were divided into 50 successive bins according to

their MAF, with 0.01 step increments. Generally, we found that

Acc was slightly decreased when Cor and DR2 were high

(Figure 4). Because AR2 is only generated by Beagle 4.1, we

also provide an example of the imputation results from 150 K to

the two reference panels, which are like the results in

Supplementary Figure S3, and AR2 is slightly lower than DR2.

As expected, the imputation accuracy increased with an increase

in MAF, and the accuracy changed rapidly when the MAF was

less than 0.05. In addition, we can see that with a large reference

panel, the imputation accuracy of low-MAF sites can be

significantly improved. When the reference panel was

increased from ref350 to ref1555, the lowest classified MAF

site bin (MAF ≤ 0.01) imputation accuracy of Acc for 50, 150,

and 777 K chips increased by 4.05%, 1.78%, and 1.16%,

respectively; Cor increased by 2.28%, 6.97%, and 8.93%, and

DR2 increased by 13.05%, 4.81%, and 4.52%, respectively. In the

case of the same reference panel, with the increase in chip density,

the imputation accuracy of the low-MAF sites will also be greatly

improved. When the chip density was increased from 50 to

777 K, the imputation accuracy of Acc, Cor, and DR2 for

ref350 increased by 4.44%, 17.21%, and 33.32%, respectively,

and by 1.54%, 23.86%, and 24.80%, respectively, for ref1555.

3.5 The correlation between different
measures of imputation accuracy

The Spearman correlation between MAF and the three

measures of imputation accuracy was calculated and plotted,

as shown in Figure 5. All the correlations were significant, with

strong positive correlations between Acc and Cor (range from

0.78 to 0.93 with an average of 0.87), Cor and DR2 (range from

0.69 to 0.79, with an average of 0.74) at all loci, and Acc was

moderately negatively correlated with MAF (range

from −0.38 to −0.14, with an average of −0.26 for ref350,

ranging from −0.75 to −0.53, with an average of −0.65 for

ref1555), while DR2 had a strong positive correlation with

MAF (range from 0.77 to 0.87, with an average of 0.83). Since

the inconsistency between Acc and other accuracy measures

was mainly in the case of MAF < 0.05 (Figure 4;

Supplementary Figure S3), we also calculated the

correlation after removing the sites with MAF less than

0.05. Here, we found a strong positive correlation between

Acc, Cor, and DR2, with Acc and Cor being 0.96, Acc and

DR2 being 0.73, and Cor and DR2 being 0.76. There was a

weak negative correlation between Acc and MAF (−0.05), and

a weak positive correlation between Cor and MAF (0.12),

DR2, and MAF (0.24). Similarly, we also evaluated the

correlation of AR2 with other metrics using imputation

from 150 K to the two reference panels. As expected, there

is a high correlation between AR2 and DR2 (0.98 for all sites

and 1 for the sites with MAF greater than or equal to 0.05)

FIGURE 6
Genotype concordance calculated in the individual lever for
100 Holstein and 27 Chinese yellow cattle.

TABLE 4 The imputation accuracy for 27 Chinese yellow cattle.

Breed Individual number Imputation accuracy

Menggu 2 0.953

Yanbian 2 0.941

Hasake 2 0.919

Xizang 1 0.888

Qinchuan 2 0.871

Luxi 2 0.869

Guanling 2 0.837

Dengchuan 2 0.832

Wenling 2 0.808

Dehong 2 0.805

Dabieshan 2 0.802

Fujian 2 0.802

Liping 2 0.789

Nanyang 2 0.768

Imputation accuracy was measured using genotype concordance (Acc). This imputation

was performed from 150 K to WGS with ref1555 using Beagle 5.2 with Ne = 1,00,000.
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(Supplementary Figure S4), which may be the reason why only

DR2, and no AR2, output was observed after subsequent

Beagle 5.0 version analysis.

3.6 The relationship between target and
reference individuals on the imputation
accuracy

To better understand the relationship between the target and

the reference individuals, 27 Chinese yellow cattle were used as

the target panel for imputation, which had a complex history

between B. taurus and indicus. The imputation accuracy varies

across individuals, as shown in Figure 6. The variance among

Chinese yellow cattle was much larger than that among the

Holstein target individuals. Taking the imputation from 150 K to

WGS, with ref1555, as an example, the imputation accuracies

ranged from 0.768 to 0.953, and Mongolian cattle achieved the

highest imputation accuracy, followed by Yanbian, Hasake, and

Xizang cattle, which were 0.953, 0.941, 0.919, and 0.888,

respectively. Nanyang cattle achieved the lowest imputation

accuracy, followed by Liping, which was 0.768 and 0.789,

respectively, as shown in Table 4. Other breeds such as

Qinchuan, Luxi, Guanling, Dengchuan, Wenling, Dabieshan,

and Fujian ranged from 0.802 to 0.871.

3.7 Running time

All analyses were run on a 22-core 2.10 GHz Linux

computer, with Intel(R) Xeon(R) Gold 6,238 processors, and

1,007 GB of memory. Beagle was run on 24 threads. Figure 7

shows the computation time for each panel of cattle. In all cases,

Beagle 5 is significantly faster than Beagle 4.1, and Beagle 5.0 is

comparable to Beagle 5.4. In many reference panels, the obvious

advantages of Beagle 5 can be obtained at 4.6-fold, 5.0-fold, and

13.2-fold, faster than Beagle 4.1 for the imputation of 50, 150, and

777 K, respectively.

4 Discussion

Imputation has been widely adopted, in the genomic era, as

an important approach to boost the power of genetic studies of

animal and human traits. By using the genotypes obtained from

the 1000 Bull Genomes Project as the benchmark, with the

incorporation of pig datasets from the GVM database, as well

as the chicken datasets (Yuan et al., 2018), we systematically

assessed the imputation performance of three representative

versions of Beagle software with sets of effective population

size across the three livestock and poultry. We also identified

the influence of several key factors on imputation accuracy, such

as chip density, the size of the reference panel, the relationship

between the target panel and the reference panel, and the

correlation between the measures of accuracy and the MAF.

Overall, these key factors must be considered before performing

an imputation.

With the continuous update of Beagle versions, various

versions of the Beagle software were used in the published

research, and the vast majority of studies used the default

parameters (Li et al., 2020b; Li et al., 2022). However, in our

study, we discovered that it is not suitable to use the default

parameter Ne (default Ne = 1,000,000 for Beagle4.1 and

Beagle5.0) when the number of reference panels is small or

the chip density of the target panel is low, which will drop

sharply, with drops ranging from 2.47% to 10.45% under our

FIGURE 7
Time utilized for each imputation.
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imputation cases (Figure 3). A similar result was reported by

Pook et al. (2020) for the maize population, the imputation error

rate increased when using default parameters in Beagle. It is

worth noting that the default size of Ne in Beagle’s latest version,

5.4, is 100,000; in this case, all three versions of Beagle can obtain

high imputation accuracy. This reminds us that it is more

appropriate to set Ne to 100,000 to obtain higher accuracy

because there is no reference panel as large as cattle, in other

livestock and poultry (Supplementary Figures S1, S2). All these

results indicate that the default Ne parameters are better changed

when using earlier Beagle versions. Furthermore, there is little

difference in imputation accuracy among the three versions (only

thousandths of the change), but Beagle 5 can significantly sped up

the computation, especially with large reference panels (13.24-

fold faster in our cases) (Figure 7).

Our results showed that using a large mixed-breed

reference population attained a much higher imputation

accuracy than using a small single-breed reference

population of the same breed as the target population,

which is in agreement with the studies of Brøndum et al.

(2014), Pausch et al. (2017). The reason for this high

imputation accuracy for large mixed reference panels may

be the variety of haplotypes in the reference panel, and their

ability to facilitate the identification of long-shared

haplotypes. With the development of next-generation

sequencing technology, sequencing has decreased by five

orders of magnitude (Smith, 1993), and the size of data sets

used as reference panels for genotype imputation has

increased rapidly. Especially for the genome projects

implemented, such as the Human Project (Michael, 2005;

Adam et al., 2015), the 1000 Bull Genomes Project

(Daetwyler et al., 2014), and the dog genome projects

(https://www.broadinstitute.org/scientific-community/

science/projects/mammals-models/dog/dog-genome-links),

which greatly facilitated imputation.

Previous studies have suggested that a low allele frequency

may play an important role in complex traits (Manolio et al.,

2009). However, it is challenging to correct the imputation of

variants at lowMAF and rare variants. Similar to previous studies

(Teng et al., 2022), we also found that the accuracy dropped

sharply for variants with MAF less than 0.05. In agreement with

published research (Brøndum et al., 2014; Pausch et al., 2017), a

multibreed combined reference panel increased imputation

accuracy at low MAF variants. In addition, we found that the

increase in chip density and imputation accuracy could also be

improved at low MAF variants (Figure 4).

Across studies, there are different measures to evaluate the

accuracy of imputation (Pausch et al., 2017; Yan et al., 2017;

Song et al., 2019), including the genotype concordance, which

counts the proportion of the correctly imputed sites to all

imputed sites (Acc) and it is equal to 1 minus imputation error

rates (the number of incorrectly imputed sites), the Pearson

correlation between true and imputed genotypes (Cor), allelic

R-squared (AR2, estimated squared correlation between the

most probable REF dose and true REF dose), and Dosage

R-Squared (DR2, estimated squared correlation between

estimated REF dose and true REF dose) proposed in

Beagle. The calculation of Acc and Cor requires the true

genotype value, which is generally used to compare

imputation methods. AR2 and DR2 are output by Beagle

and are proposed as useful measures of imputation

accuracy, usually used without knowledge of the true

genotype information of the individuals belonging to the

target panel. Our results indicated a significantly high

correlation between AR2 and DR2 (Supplementary Figure

S4), which may explain why only DR2 was the output after

the Beagle 5 version. After removing the variants with MAF

less than 0.05, a significantly high correlation was observed

among the measures of accuracy, as well as a low correlation

between MAF. This suggests that one of the metrics may be

sufficient to measure the imputation accuracy.

For the imputation from low-density Beadchip to whole

genome sequence variants, there are two approaches, one is

the one-step imputation, referred direct imputed from low-

density chip to WGS, the other is two-step imputation

approach, referred imputed from low-density Beadchip to

high-density Beadchip at first, and then impute to WGS. Part

of the previous studies showed that the two-step imputation

suggested to be advantageous in comparison to the one-step

imputation approach with regard to imputation accuracy

(Binsbergen et al., 2014). However, it had also been shown

that the one-step imputation method yields higher

imputation accuracy compared to the two-step imputation

when fewer animals are available in the intermediate

imputation steps (Korkuć et al., 2019). And the two-step

imputation is difficult to implement in animals other than

cattle since the need for high-density chip populations in

large number individuals, and can be affected by the

population structure of the high density mediated

population. Thus, only one-step imputation was concerned

in this study.

5 Conclusion

In summary, this study investigated the performance of three

representative versions of Beagle (Beagle 4.1, Beagle 5.0, and

Beagle 5.4) and the effects of parameter settings on three livestock

and poultry (cattle, pig, and chicken) breeds. We found that the

default parameter Ne, for the earlier version of Beagle, is not

suitable for livestock and poultry in small reference panels or

low-density BeadChip chips of target panels. Beagle

5 significantly reduced the computation time without a loss of

accuracy, especially for large reference panels. Overall, a large,

combined reference panel, or high-density chip, provided greater

imputation accuracy, particularly for low minor allele frequency
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variants. Furthermore, AR2 or DR2 can be used to measure

imputation accuracy in the absence of a true genotype. Our

findings provide insights into the imputation from BeadChip

data to whole-genome sequence variants of livestock and poultry,

as well as other non-human species.
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