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Abstract 

Background:  The 3D U-Net model has been proved to perform well in the automatic organ segmentation. The aim 
of this study is to evaluate the feasibility of the 3D U-Net algorithm for the automated detection and segmentation of 
lymph nodes (LNs) on pelvic diffusion-weighted imaging (DWI) images.

Methods:  A total of 393 DWI images of patients suspected of having prostate cancer (PCa) between January 2019 
and December 2020 were collected for model development. Seventy-seven DWI images from another group of PCa 
patients imaged between January 2021 and April 2021 were collected for temporal validation. Segmentation per-
formance was assessed using the Dice score, positive predictive value (PPV), true positive rate (TPR), and volumetric 
similarity (VS), Hausdorff distance (HD), the Average distance (AVD), and the Mahalanobis distance (MHD) with manual 
annotation of pelvic LNs as the reference. The accuracy with which the suspicious metastatic LNs (short diame-
ter > 0.8 cm) were detected was evaluated using the area under the curve (AUC) at the patient level, and the precision, 
recall, and F1-score were determined at the lesion level. The consistency of LN staging on an hold-out test dataset 
between the model and radiologist was assessed using Cohen’s kappa coefficient.

Results:  In the testing set used for model development, the Dice score, TPR, PPV, VS, HD, AVD and MHD values for the 
segmentation of suspicious LNs were 0.85, 0.82, 0.80, 0.86, 2.02 (mm), 2.01 (mm), and 1.54 (mm) respectively. The pre-
cision, recall, and F1-score for the detection of suspicious LNs were 0.97, 0.98 and 0.97, respectively. In the temporal 
validation dataset, the AUC of the model for identifying PCa patients with suspicious LNs was 0.963 (95% CI: 0.892–
0.993). High consistency of LN staging (Kappa = 0.922) was achieved between the model and expert radiologist.

Conclusion:  The 3D U-Net algorithm can accurately detect and segment pelvic LNs based on DWI images.
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U-Net
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Background
More than 15% of prostate cancer (PCa) patients were 
confirmed to have lymph node (LN) invasion during rad-
ical prostatectomy [1]. Patients with regional pelvic LN 
metastases face an increasing risk of mortality and should 
be treated aggressively [2]. Therefore, the detection 
of metastatic LNs is crucial for appropriate treatment 
selection and management. Precise LN staging allows 
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urologists to determine which patients may benefit from 
a pelvic LN dissection (PLND) during radical prostatec-
tomy and which patients may safely avoid it [3–5].

Multiparametric MRI (mpMRI) has been reported 
to play a central role in detecting and staging PCa [6, 
7]. Diffusion-weighted imaging (DWI) is characterized 
by a high contrast between the metastatic lesion and 
healthy tissue, thus yielding excellent efficiency in pri-
mary tumour evaluation and LN identification [8]. Radi-
ologists usually regard LNs with a short diameter above 
0.8 cm on DWI images as suspicious for metastatic LNs, 
and this should be highlighted in the radiology report [9, 
10]. However, the detection of metastatic LNs on DWI 
images by radiologists is time-consuming and demands 
experience.

Recently, convolutional neural networks (CNNs) have 
emerged as a revolution in the field of image analysis. 
CNN is based on the concept that deep learning-based 
methods can provide an automated diagnosis and quanti-
tative assessment with high reproducibility, thus allowing 
more objective reporting [11, 12].

Cuocolo et  al. [13] compared different deep learn-
ing methods (U-Net, efficient neural network (ENet), 
and efficient residual factorized ConvNet (ERFNet)) for 
whole-gland and zonal prostate segmentation on T2WI 
images. Their results showed that ENet achieved the best 
Dice similarity score and U-Net for the second place. 
Comelli et  al. [14] compared the performance of the 
U-Net and E-Net for lung segmentation on high-resolu-
tion computerized tomography images. The dice similar-
ity coefficient showed no statistical differences between 
segmentation methods (95.9% vs. 95.61%, P = 0.68). Mul-
tiple studies have been published on the development of 
U-Net-based LN segmentation methods, most of which 
use CT [15, 16], PET/CT [17, 18], or MR lymphography 
images [19] rather than DWI images.

In this study, we introduced the 3D U-Net frame-
work for automatically detecting and segmenting suspi-
cious pelvic LNs in DWI images and then evaluated the 
framework on an hold-out test dataset. We hope that the 
automated detection and segmentation of LNs will lay a 
foundation for the comprehensive automated analysis of 
tumour burden in PCa patients.

Materials and methods
This retrospective study was performed with permission 
from the local institutional ethics committee. The need 
for written informed consent was waived.

Study subjects
A dataset of 425 patients suspected of having PCa 
between January 2019 and December 2020 was acquired 
from the local picture archiving and communication 

system (PACS) for algorithm development. The inclu-
sion criteria were as follows: (1) patients with clinically 
suspected PCa (elevated PSA); (2) patients without any 
prior treatment of PCa (such as androgen deprivation, 
radical prostatectomy, or radiation therapy); and (3) 
patients whose high b-value (1000 or 800  s/mm2) DWI 
images were available. Fifteen patients were excluded 
due to unqualified MRI quality, 6 patients were excluded 
for obvious and massive metastatic involvement (e.g., 
obvious destruction of pelvic or bony structures), and 
11 patients with a history of pelvic surgery were not 
included in the analysis. A total of 393 patients were 
finally recruited for 3D U-Net algorithm development, 
including 56 patients with PI-RADS scores of 1–2, 14 
patients with PI-RADS scores of 3, and 323 patients with 
PI-RADS scores of 4–5.

Another dataset of 77 patients with clinically suspected 
PCa seen between January 2021 and April 2021 was 
enrolled to externally evaluate the proposed algorithm. 
Among them, 37 patients had at least one suspicious 
metastatic LN (above 0.8  cm in the short-axis dimen-
sion and high signal intensity on DWI), and 40 patients 
did not have visible suspicious LNs. All mpMRI data 
were deidentified before inclusion, and the clinical infor-
mation, such as age and prostate-specific antigen (PSA) 
level, of each enrolled patient was recorded.

Pelvic mpMRI
The mpMRI examinations were performed with three 
3.0-Tesla scanners (Achieva, Philips Healthcare; Discov-
ery, GE Healthcare; Interia, Philips Healthcare) using 
a phased-array coil. The standard mpMRI protocol at 
our institution included a combination of T2WI, T1WI, 
DWI, and dynamic contrast-enhanced imaging. Details 
of the imaging parameters of the DWI sequence are sum-
marized in Table 1.

Manual annotations
Before annotation, all the Digital Imaging and Commu-
nication in Medicine (DICOM) format images were con-
verted to NIFTI format. Images were manually annotated 
with ITK-SNAP (version 3.6; Penn Image Computing and 
Science Laboratory, Philadelphia, PA).

In the algorithm development dataset, all discernible 
LNs on DWI images were manually annotated by two 
junior radiologists (both with 4 years of reading experi-
ence) within the pelvic region (namely, Mask 1 and Mask 
2). An expert radiologist (with more than 15  years of 
reading experience) subsequently modified the two sets 
of manual annotations (Mask 3 and Mask 4, respectively). 
The Dice score was used to evaluate the reliability of the 
manual annotations between different masks.
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Ground truth
For model development, the manual annotations of the 
pelvic LNs were regarded as ground truth for the assess-
ment of segmentation (Mask 4). LNs with short diame-
ters > 0.8 cm were regarded as suspicious metastatic LNs, 
and their annotations were taken as ground truth for the 
assessment of LN detection (Fig. 1). For temporal valida-
tion, the manual annotations of the suspicious metastatic 
LNs, edited by one of the junior radiologists under the 
supervision of the expert radiologist, were regarded as 

ground truth for the segmentation and detection assess-
ment. The LN staging performed by the expert radi-
ologist was considered ground truth for the consistency 
evaluation of the N-staging between the model and the 
radiologist.

Model development
The CNN developed for the segmentation of pelvic LNs 
on DWI images is the 3D U-Net [20], which replaced all 
2D operations (convolution kernels, pooling layers, and 

Table 1  Imaging protocols of the pelvis DWI sequences

TR  Repetition time, TE Echo time

Protocols 3.0 T Achieva
(Philips Healthcare, the Netherlands)

3.0 T Discovery
(Ge healthcare, Milwaukee, WI)

3.0 T Interia
(Philips 
Healthcare, the 
Netherlands)

B-values (s/mm2) 0, 800 0, 800 0, 1000

TR/TE (ms) 3400/54 3000/60 4959/78

Imaging matrix 224 × 224 256 × 256 240 × 240

Field of view (mm2) 375 × 375 360 × 400 360 × 400

Slice thickness (mm) 6 8 7

Number of slices 24 25 28

Intersection gap No No No

Fig. 1  Ground truth for model evaluation. The first row shows the ground truth for segmentation of the model, and the second row shows the 
ground truth for detection assessment of the model
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upconvolution kernels) of the U-Net architecture with 3D 
counterparts. By taking full advantage of the 3D spatial infor-
mation, the algorithm can learn typical features with higher 
discrimination capability than those learned from 2D CNNs.

The 3D U-Net was trained with DWI images and their 
corresponding manual annotations. The 393 patients 
were randomly divided into the training (n = 309), valida-
tion (n = 43) or testing (n = 41) set at a ratio of 8:1:1. The 
hold-out test dataset (n = 77) was used to further evalu-
ate the detection and segmentation accuracy of the 3D 
U-Net model (Fig. 2).

All input images were resized to 64 × 256 × 256 (z, y, x) 
before training to maintain the optimal image features. To 
train the 3D U-Net segmentation models, we exploited 
the ADAM optimizer with an initial learning rate of 10−4 
and a fixed batch size of 10 images. Skewing (angel: 0–5), 
shearing (angel: 0–5) and translation (scale: − 0.1, 0.1) of 
the images were applied for data augmentation. U-Net was 
trained for 300 epochs until the validation loss function 
failed to rise. The network was written in Python (version 
3.6). The PyTorch (version 0.4.1) deep learning platform 
was employed for training and validation. All experiments 

Fig. 2  The flowchart of the algorithm development and result output
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were performed using an NVIDIA Tesla P100 16G, run-
ning on Ubuntu.

Quantitative measurement of LNs and output 
to the radiology report
A cluster of contiguous voxels predicted by the algorithm 
was designated as an individual LN. After receiving the 
segmentation result of the CNN, the volume and short 
diameter of each segmented LN were automatically calcu-
lated via the minimum-volume bounding box method. The 
number of suspicious LNs (short diameter > 0.8 cm), as well 
as the volume and short diameter of the largest LN, were 
automatically sent to the structured report (Fig.  2). If at 
least one suspicious LN was detected by the model, then 
the N-staging was automatically inputted as N1 to the radi-
ology report. In contrast, if no suspicious LN was detected, 
the N-staging was automatically inputted as N0 to the radi-
ology report.

Model performance evaluation
Two datasets were collected in this study—the algorithm 
development dataset with manual annotations for all LNs 
and the hold-out test dataset with manual annotations only 
for suspicious LNs. Consequently, two sets of evaluation 
metrics were formulated to evaluate the algorithm.

Evaluation using the model development dataset
The ability of the 3D U-Net algorithm to segment and 
detect individual LNs was evaluated by comparison of the 
automated annotation with manual annotation. According 
to the overlap between manual annotation and automated 
segmentation, the voxels of the image can be defined as 
true positives (TPs), false positives (FPs), true negatives 
(TNs), and false negatives (FNs). The segmentation per-
formance of the model was assessed using Dice, positive 
predictive value (PPV), true positive rate (TPR), volumetric 
similarity (VS), Hausdorff distance (HD), the Average dis-
tance (AVD), and the Mahalanobis distance (MHD) [21], 
which were defined by:

Dice =
2TP

2TP + FP + FN

PPV =
TP

TP + FP

TPR =
TP

TP + FN

VS = 1−
|FN − FP|

2TP + FP + FN

HD(A,B) = max(h(A,B), h(B,A))

AVD(A,B) = max(d(A,B), d(B,A))

MHD(X ,Y ) =
√

(µx − µy)TS − 1(µx − µy)

where h(A, B) is called the directed Hausdorff distance 
between two finite point sets A and B, d(A, B) is the 
directed Average Hausdorff distance between A and B, μx 
and μy are the means of the point sets.

The average short diameter and volume of LNs in 
manual segmentation and automated segmentation 
were calculated to further quantitatively estimate the 
segmentation efficacy of the 3D U-Net algorithm.

Based on the segmentation results, we proposed a 
detection approach for suspicious LNs. A suspicious 
LN was considered to be correctly detected when 
overlap existed between automated segmentation and 
manual annotation. The precision, recall and F1-score 
(harmonic mean of precision and recall) were then 
calculated to evaluate the detection accuracy of the 
model. The precision and recall values reflected the 
percentage of correctly segmented LNs out of all the 
identified LNs [TP/(TP + FP)] and the percentage of 
correctly segmented LNs out of all the annotated LNs 
[TP/(TP + FN)], respectively. The segmentation perfor-
mance (all LNs, suspicious LNs, and largest LNs) and 
detection performance (suspicious LNs and largest 
LNs) of the 3D U-Net were assessed in the testing set.

Evaluation using the hold‑out test dataset
The hold-out test dataset was used to evaluate the abil-
ity of the model to discriminate between 37 patients 
with suspicious LNs and 40 patients without suspicious 
LNs. Sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUC) were used to 
assess the performance of the algorithm at the patient 
level. Then, the segmentation performance (Dice, PPV, 
and TPR) and detection performance (precision, recall, 
and F1-score) of the model of suspicious LNs and larg-
est LNs were assessed at the lesion level.

To further evaluate the clinical application value of 
the model of suspicious LN evaluation, the LN staging 
(N0 or N1) of the model was compared with the inter-
pretation of the radiologists (one resident with less than 
2 years of reading experience and one expert radiologist 
with more than 15 years of reading experience).

Statistical analysis
MedCalc (version 14.8; MedCalc Software, Ostend, Bel-
gium) and SPSS (version 22.0, IBM Corp., Armonk, NY, 
USA) were used for the statistical analyses. Numeri-
cal data were averaged over all patients and reported 
as the mean ± standard deviation (SD). One-way analy-
sis of variance (ANOVA) was used to compare patient 
characteristics (age, PSA level, LN volume, and short 
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diameter) and the segmentation performance of the 
algorithm (Dice, TPR, PPV, VS, HD, AVD and MHD) 
among different groups, and the least significant differ-
ence (LSD) was used for post hoc multiple comparisons. 
Paired  t-tests, Pearson correlation, and Bland–Altman 
analyses were performed to compare the manual versus 
automated determination of the short diameter and vol-
ume of the LNs. Cohen’s kappa coefficient was used to 
assess the consistency of LN staging between the model 
and the radiologists in the hold-out test dataset. P < 0.05 
was considered indicative of a statistically significant 
difference.

Results
Patient and LN characteristics
The patients’ characteristics are presented in Table  2. 
In the model development dataset, a total of 10,507 vis-
ible LNs were annotated: 8139 in the training set (27 per 
patient on average), 1258 in the validation set (29 per 
patient on average), and 1110 in the testing set (27 per 
patient on average). A total of 201 suspicious metastatic 
LNs were annotated in the hold-out test dataset of 37 
PCa patients.

There was no significant difference in age or PSA level 
between the model development dataset and the hold-
out test dataset (P = 0.990 and 0.088, respectively). The 
PSA level between patients with or without suspicious 
LNs showed a significant difference (P = 0.031) in the 
hold-out test dataset. There was no significant differ-
ence in the number of annotated LNs, short diameter of 

the largest LNs, or volume of the largest LNs among the 
three sets in the model development dataset (P = 0.537, 
0.145, and 0.628, respectively).

Reliability of the manual annotations
The inter- and intrareader reliabilities of the manual 
annotations were assessed based on the Dice score. The 
Dice scores between different masks are as follows: Mask 
1 vs. Mask 2: 0.75 ± 0.03; Mask 1 vs. Mask 3: 0.78 ± 0.05; 
Mask 2 vs. Mask 4: 0.80 ± 0.09; and Mask 3 vs. Mask 
4: 0.88 ± 0.06. The high Dice scores between Mask 3 
and Mask 4 confirmed the reliability of the manual 
annotations.

Segmentation performance of the model
The LN segmentation accuracy was evaluated in the 
testing set. As shown in Table  3, the model achieved 
optimal segmentation performance for the largest LNs 
with the highest Dice, TPR, PPV, VS, HD, AVD and 
MHD values of 0.88 ± 0.15, 0.89 ± 0.21, 0.83 ± 0.16, 
0.88 ± 0.20, 2.02 ± 0.09 (mm), 2.01 ± 0.07 (mm), 
1.54 ± 0.12 (mm) respectively. The metrics of the seg-
mentation accuracy of all LNs were significantly lower 
than those of the suspicious LNs and the largest LNs (all 
with P < 0.05). There was no significant difference in the 
metrics between the suspicious and largest LNs (all with 
P > 0.05). There was no significant difference among dif-
ferent scanners concerning the segmentation accuracy 
of all LNs (all with P > 0.05). Exemplary cases of seg-
mentation of LNs with different Dice scores are shown 
in Fig. 3.

Table 2  The characteristics of patients and lymph nodes

PSA prostate-specific antigen, LN lymph node

Characteristics Model development dataset Hold-out test dataset P value

Training set Validation set Testing set P value Patients with 
suspicious 
LNs

Patients 
without 
suspicious LNs

P value

No. of patients 309 43 41 – 37 40 – –

Age, mean ± SD (years) 70.3 ± 9.6 71.2 ± 7.3 70.8 ± 8.8 0.785 69.4 ± 8.8 71.4 ± 8.4 0.305 0.990

PSA, median (ng/ml) 13.00 (7.13,23.43) 14.21
(8.20, 26.73)

12.20
(7.42, 21.30)

0.552 15.49
(9.25, 26.65)

10.69
(7.10, 18.82)

0.031 0.088

No. of annotated LNs 8139 1258 1110 – – – – –

Average LNs per patient 27 (5, 30) 29 (6, 33) 27 (3, 35) 0.537 – – – –

No. of suspicious LNs 1374 186 230 – 201 –

Short diameter of largest LNs (cm) 0.83 ± 0.30 0.93 ± 0.33 0.83 ± 0.29 0.145 – – – –

Volume of largest LNs (cm3) 9.03
(4.60, 17.32)

10.93
(5.30, 17.40)

7.09
(5.37, 14.08)

0.628 – – – –

Scanners

3.0 T Achieva 96 16 12 – 12 15 – –

3.0 T Discovery 113 13 15 – 14 13 – –

3.0 T Interia 100 14 14 – 11 12 – –
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Quantitative evaluation of segmentation performance
The average short diameter and volume measurements 
for all LNs, suspicious LNs, and largest LNs are sum-
marized in Table  4. Quantitative comparisons between 
automated and manual segmentation are shown in Fig. 4. 
Both the short diameter and volume of the automati-
cally segmented LNs showed a close correlation (all with 
R > 0.80) with manually annotated LNs. The Bland–Alt-
man analysis of short diameter and volume showed good 
consistency between the automated segmentation and 
manual annotation of all LNs, suspicious LNs, and larg-
est LNs, and most values were within the consistency 
interval.

LN detection based on segmentation
Detection of suspicious LNs and the largest LNs in the 
testing set are shown in Table 5. The developed method 
achieved good performance in the detection of suspi-
cious LNs with a precision of 0.97 (226/231), recall of 
0.98 (226/230), and F1-score of 0.97. Moreover, all 41 
of the largest LNs from 41 PCa patients were correctly 
detected by the algorithm.

Figure  5 illustrates examples of the detection results 
obtained with the developed method for LNs, which 
shows the TP (Fig.  5a), FP (Fig.  5b), and FN detections 
(Fig.  5c). Typically, FPs occur due to nonspecific high 
intensity; FNs usually occur with misattribution of 

small lesions and insufficient contrast compared with 
background.

Segmentation and detection performance in the hold‑out 
test dataset
The hold-out test dataset was collected from a different 
reference period and there is no cross-contamination 
between model development dataset and hold-out test 
dataset. The segmentation and detection accuracy of the 
model in the hold-out test dataset were assessed at the 
patient and lesion levels. The sensitivity of the model in 
identifying PCa patients with or without a suspicious LN 
was 100% (37/37, 95% CI: 90.5–100%), and the specificity 
reached 92.5% (37/40, 95% CI: 79.6–98.4%), with an AUC 
of 0.963 (95% CI: 0.892–0.993).

At the lesion level, the model’s segmentation accu-
racy for suspicious LNs achieved an average Dice 
score, TPR, PPV, and VS of 0.83 ± 0.15, 0.80 ± 0.04, 
0.81 ± 0.07, and 0.85 ± 0.12, respectively. Based on the 
segmentation result, the 3D U-Net achieved a detec-
tion precision of 0.96, recall of 0.98, and F1-score of 
0.97 for suspicious LNs.

Cohen’s kappa coefficients of the LN staging for the 
model and the resident and expert radiologist were 
as follows: model vs. expert radiologist: 0.922; model 
vs. resident: 0.766; and resident vs. expert radiologist: 
0.844. The consistency between the model and the 

Fig. 3  Examples of the segmentation results of the 3D U-Net for the lymph nodes. a The automated segmentation of LNs with a Dice score of 0.78; 
b The automated segmentation of LNs with a Dice score of 0.85; c The automated segmentation of LNs with a Dice score of 0.93 (red label: manual 
annotation; green label: automated segmentation)

Table 4  Quantitative measurements between automated segmentation and manual annotation in the testing set (n = 41)

LN lymph node

Quantitative 
metrics

All LNs Suspicious LNs Largest LNs

Automated 
segmentation

Manual 
annotation

P value Automated 
segmentation

Manual 
annotation

P value Automated 
segmentation

Manual 
annotation

P value

Volume (cm3) 5.35 ± 3.71 5.45 ± 2.79 0.829 9.54 ± 3.88 10.09 ± 2.66 0.709 11.78 ± 5.25 11.67 ± 6.04 0.887

Short diameter 
(cm)

0.46 ± 0.30 0.51 ± 0.31 0.482 0.95 ± 0.29 0.99 ± 0.20 0.492 1.12 ± 0.50 1.22 ± 0.53 0.810
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expert radiologist was higher than that between the 
resident and expert radiologist.

Discussion
In this study, we proposed to develop a 3D U-Net 
algorithm to achieve automated detection and seg-
mentation of pelvic LNs on DWI images for clinically 
suspected PCa patients. The results in the testing set 
and hold-out test dataset confirmed the feasibility of 
automated LN detection and segmentation, which 

may aid in LN staging, quantitative measurements of 
tumour burden and image-guided treatment of PCa 
patients.

The U-Net algorithm has been widely used for organ 
and lesion segmentation on MRI images, such as prostate 
[22, 23] and prostate lesions [24]. However, this method 
is not easily applied to LN lesions. There is great het-
erogeneity in the shape and size of lymphadenopathies 
in the pelvis, making it difficult to discriminate true LN 
regions from other regions. Compared with that of the 
background, LN lesions usually account for a small part 
of the image volume, and this imbalance makes segmen-
tation more difficult. Additionally, the number of FPs that 
contain nonspecific high-intensity mimics is consider-
ably large, which usually results in lower specificity. Last 
but not least, the inter- and intraoperator variability of 
manual annotation remains a longstanding bottleneck 
for automated image segmentation [25], and there is cur-
rently no reliable substitute for manual labelling.

To overcome the imbalanced data problem, several loss 
functions have been implemented in other studies. For 
example, the Tversky loss function has been successfully 
used for the segmentation aneurysmal of the ascending 

Fig. 4  Quantitative comparisons of the LNs’ short diameter and volume. Correlation and Bland–Altman plots of LNs’ short diameter and volume 
between automated segmentation and manual segmentation for all LNs (a–d), suspicious LNs (e–h), and largest LNs (i–l)

Table 5  Detection accuracy of lymph nodes in the testing set 
(n = 41)

LN lymph node

Suspicious LNs Largest LNs

True positive 226 41

False Positive 5 0

False Negative 4 0

Precision 0.97 1.00

Recall 0.98 1.00

F1-score 0.97 1.00
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aorta where the anatomy of interest may be very small 
compared to the background consisting of connective tis-
sue with a wide range of intensity grey values [26]. In this 
study, we used Dice as the loss function of the 3D U-Net 
algorithm and manually annotated all visible LNs in the 
algorithm development dataset, to obtain the specified 
voxel of the LNs as much as possible. Moreover, consid-
ering that LNs are nodular structures for which 3D infor-
mation is helpful in distinguishing them from tubular 
structures, because both may show a blob-like structure 
in 2D images, the 3D U-Net model was selected for seg-
mentation algorithm development [27]. To improve the 
efficiency and interoperator reliability of data annotation 
in this study, annotations performed by the two junior 
radiologists were corrected by an expert radiologist, and 
the two sets of annotations after modification achieved 
high Dice scores (Mask 3 vs. Mask 4: 0.88 ± 0.06) com-
pared with those before correction (Mask 1 vs. Mask 2: 
0.75 ± 0.03). The results confirmed the reliability of man-
ual annotation as ground truth for LN segmentation. It 
is fine to select either Mask 3 or Mask 4 as the ground 

truth. In this study, we choose Mask 4 as ground truth for 
the assessment of segmentation for which was performed 
later than Mask 3.

The algorithm in this study was trained for segmenting 
all visible LNs on DWI images, whether healthy or meta-
static. Given that LNs with a short diameter of more than 
0.8  cm were considered to be suspicious for metastasis 
and of more clinical significance, a cut-off threshold was 
set to filter out contiguous structures with a short diam-
eter of less than 0.8  cm. These selected LNs were used 
for the performance assessment of suspicious metastatic 
LNs. In clinical practice, radiologists usually measure and 
record the short diameter and volume of the largest LN 
instead of all metastatic LNs. Therefore, in this study, we 
also analysed the detection and segmentation perfor-
mance of the model for the largest LNs. The N-staging 
was automatically generated based on the quantitative 
measurements (short diameter and volume) of the largest 
LN and was sent to the structured report of PCa.

Our results showed that the model achieved good seg-
mentation accuracy of pelvic LNs with an average Dice 

Fig. 5  Examples of the detection results of the 3D U-Net for the lymph nodes. The first column represents the DWI images; the second column 
represents the manual annotations, and the third column represents the automated segmentations. a The true positive LNs detected by the model 
(Green label in automated segmentation); b The false positive detection that was a part of the colon (Green label in automated segmentation); c 
The false negative detection that was missed by the model (Arrow points in the automated segmentation)
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score and VS of 0.76 ± 0.15 and 0.82 ± 0.14, respectively, 
in the testing set. Furthermore, the segmentation accu-
racy of suspicious LNs was significantly higher than that 
of all LNs (Dice score: 0.85 vs. 0.76, P = 0.009; VS: 0.82 
vs. 0.86, P = 0.046), which indicated that the segmenta-
tion model performed better with large LNs. The average 
short diameter and volume of the LNs were also meas-
ured to quantitively evaluate the segmentation perfor-
mance. A short diameter is regarded as the reference 
value to determine the existence of suspicious metastatic 
LNs, and volume is of high significance for the evaluation 
of tumour load and response treatment. In our results, 
both the short diameter and volume of the automated 
segmentations showed a close correlation with manual 
annotations on all LNs, suspicious LNs and the largest 
LNs (all with R > 0.80).

To evaluate the segmentation performance of the 
model, except for the commonly used overlap-based met-
rics (Dice, TPR and PPV), the volume-based metric (VS), 
Spatial distance based metrics (HD, AVD, and MHD) 
were also defined to assess the segmentation accuracy of 
the 3D U-Net model. The Dice coefficient, which directly 
compares the overlap between automated segmenta-
tion and manual annotation, is the most commonly used 
metric for evaluating medical image segmentation [28]. 
The TPR measures the portion of positive voxels in the 
manual annotations that are also identified as positive by 
the automated segmentation, and the PPV indicates the 
proportion of positive voxels in the manual annotation 
to the positive voxels in the automated segmentation. VS 
is a measurement that indicates similarity and considers 
the volumes of manual segmentation and automated seg-
mentation [21, 29]. With a high VS, the model might be 
an accurate and convenient tool to assess tumour burden 
in LNs. The HD and AVD are usually used for contour 
evaluation. Besides, the AVD is thought to be more sta-
ble and less sensitive to outliers than the HD. MHD is a 
metric for the evaluation of general shape and alignment, 
which takes into account the correlation of all points in 
the LNs[21].

The lesion detection approach is proposed based on the 
segmentation result obtained with the 3D U-Net model. 
Unlike the segmentation assessment, the detection 
assessment of LNs was focused on the suspicious LNs in 
the testing set and hold-out test dataset. This is because 
the detection of small LNs (short diameter < 0.8 cm) is of 
little clinical significance. In the hold-out test dataset, in 
addition to the detection and segmentation assessment 
of 3D U-Net, we evaluated the clinical application value 
of the model in the evaluation of suspicious LNs by com-
paring the consistency of LN staging (N0 or N1) between 
different readers. Cohen’s kappa coefficient between the 
model and expert radiologist was significantly higher 

than that between the resident and expert radiologist 
(0.922 vs. 0.844), which confirmed the feasibility of its 
clinical application and the possibility of becoming a 
promising tool for improving the diagnostic accuracy of 
LN staging for less experienced residents.

Hitesh et  al. conducted similar research using U-Net 
for mediastinal and cervical LNs in CT images. Further, 
they achieved the differential diagnosis of malignant 
and benign mediastinal LNs with a fully convolutional 
network [30] and improved the performance using gen-
erative adversarial network and Inception network [31]. 
Their proposed FCN model has achieved an average sen-
sitivity for the diagnosis of malignant LNs of 90.63% and 
was then increased to 94.95% by the GAN and Incep-
tion network. In our study, we used a fairly large data-
set to train a 3D U-Net model and validated the model 
in a hold-out dataset, the model achieved a high recall 
(0.98) value in the detection of the suspicious LNs. Our 
results confirmed the feasibility of the 3D U-Net on auto-
mated detection and segmentation of pelvic LNs on DWI 
images. While some other deep learning approaches (e.g., 
ENet) [13, 32] may perform better than U-Net. In the 
future, we would compare the efficiency of these meth-
ods regarding the segmentation and detection of LNs.

Serval limitations need to be pointed out in this 
study. First, the current algorithm cannot provide the 
exact anatomical location of a particular LN, and a 
future CNN trained with multiclass annotations of 
different regional LNs (obturator nodes, external iliac 
nodes, internal iliac nodes, and common iliac nodes) 
may be helpful for anatomical location. Second, the 3D 
U-Net detects, segments and measures LNs larger than 
0.8 cm in the short axis but does not render a diagnosis 
of metastatic LNs. Here, LNs suspicious of metastasis 
were diagnosed based on their short diameter, which is 
of reference value to some extent but cannot represent 
true metastatic LNs. More LN information from PET/
CT, MR lymphography or pelvic LN dissection may be 
necessary for reliable metastatic LN diagnosis. Third, 
we confined our proof-of-concept study to the pelvic 
area, but it should be extended to the whole body in the 
future. A further step towards a faster and comprehen-
sive automated analysis that provides a global tumour 
burden in PCa patients is the detection and quantifica-
tion of PCa lesions and skeletal metastases. In addition, 
although the high Dice score between Mask 3 and Mask 
4 indicates that either Mask3 or Mask 4 is acceptable to 
be the ground truth for the assessment of segmentation, 
a STAPLE tool may be more convincing to establish the 
simultaneous ground truth by combining the differ-
ent segmentations from the clinical experts in a con-
solidated reference [33]. In the future, we will consider 
applying the STAPLE tool for ground truth estimation 
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on other segmentation tasks. Last, more data inclusion 
is necessary for construction of a more robust segmen-
tation model, and multicentre data should be collected 
to further consolidate the generalization ability of our 
model. Only patients with PCa were included here, 
which potentially limits the transferability of our CNN 
to a broad range of bone metastases of other primary 
tumors (rectal cancer, bladder cancer, etc.). The appli-
cation of this method for other types of LNs is needed 
in the scope of future work.

In conclusion, this study confirmed the feasibility of 
the 3D U-Net CNN for automated detection and seg-
mentation of LNs on pelvic DWI images. This may pre-
sent a promising step towards a clinically helpful deep 
learning-based tool that can provide a comprehensive 
and objective assessment of tumour burden in PCa 
patients.
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