
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15465  | https://doi.org/10.1038/s41598-020-72455-z

www.nature.com/scientificreports

Melt crystallization mechanism 
analyzed with dimensional 
reduction of high‑dimensional data 
representing distribution function 
geometries
Hiroki nada

Melt crystallization is essential to many industrial processes, including semiconductor, ice, and food 
manufacturing. nevertheless, our understanding of the melt crystallization mechanism remains poor. 
This is because the molecular-scale structures of melts are difficult to clarify experimentally. Computer 
simulations, such as molecular dynamics (MD), are often used to investigate melt structures. However, 
the time evolution of the structural order in a melt during crystallization must be analyzed properly. 
in this study, dimensional reduction (DR), which is an unsupervised machine learning technique, is 
used to evaluate the time evolution of structural order. the DR is performed for high‑dimensional 
data representing an atom–atom pair distribution function and the distribution function of the angle 
formed by three nearest neighboring atoms at each period during crystallization, which are obtained 
by an MD simulation of a supercooled Lennard–Jones melt. the results indicate that crystallization 
occurs via the following activation processes: nucleation of a crystal with a distorted structure and 
reconstruction of the crystal to a more stable structure. the time evolution of the local structures 
during crystallization is also evaluated with this method. the present method can be applied to studies 
of the mechanism of crystallization from a disordered system for real materials, even for complicated 
multicomponent materials.

Controlling melt crystallization is fundamental in industrial processes, including semiconductor, ice, and food 
 manufacturing1,2, and thus the crystallization mechanism is an important research subject. Melt crystallization 
is accompanied by an increase in the structural order over time. Therefore, understanding the time evolution 
of the structural order in a melt during crystallization is essential to elucidating the crystallization mechanism, 
although this is difficult to clarify experimentally.

Computer simulations, such as molecular dynamics (MD)3, are helpful tools for investigating the structure 
of condensed systems. MD simulations have been used to investigate crystallization  mechanisms4–9 and the 
structure of a melt and its relationship to  crystallization10–12. These MD simulation studies suggested that the 
short-range structure in a melt has a crystal-like order, which may be important in crystallization.

The structure of a crystal has long-range order, and thus to elucidate the crystallization mechanism, it is 
crucial to investigate the time evolution of the long-range order in the structure of a melt in addition to the short-
range  order13. The long- and short-range orders should be evaluated quantitatively to elucidate the mechanism 
in  detail14. Moreover, it is desirable to use simple, generally used measurements to evaluate the long- and short-
range orders to enable experimental verification of the crystallization mechanism.

Distribution functions, such as the pair distribution function (PDF), which shows the distribution of the 
distance between a pair of particles, r, have been used tentatively to represent the structural order in the struc-
ture of a melt. PDF provides a measure of the long- and short-range  orders15. The short-range order can also be 
represented by the angular distribution function (ADF), which shows the distribution of the angle formed at a 
particle by its two nearest-neighbor particles, θ15. ADF provides features of the arrangement of nearest-neighbor 
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particles, which corresponds to features of the short-range order. However, it is difficult to quantify the structural 
order represented by the PDF or ADF properly, and this cannot be done by visual inspection. Errington and 
Debenedetti quantified the PDF by integrating it for a certain interval of  integration13, although it is preferable 
to quantify the PDF without introducing a parameter that can be defined arbitrarily.

Recently, a method for evaluating the structural similarity between different phases using a dimensional 
reduction (DR) technique, which was developed for machine learning and statistics, has been  proposed16. In 
this method, high-dimensional data representing the geometry of the PDF or ADF for each phase is transformed 
into a two-dimensional (2D) data point by DR. The structural similarity between different phases is evaluated by 
the distance between 2D data points for those phases assuming that the structural similarity can be regarded as 
the geometrical similarity of the PDF or ADF. This method provided a reasonable description of the structural 
similarity for different crystal polymorphs and the amorphous phase of calcium  carbonate16. Thus, we expect that 
the time evolution of the long- and short-range orders during crystallization can be evaluated quantitatively by 
applying this method to the geometry of the PDF or ADF at each moment during crystallization.

In this study, we demonstrate that the method based on the DR of high-dimensional data to a 2D data point 
has great potential for elucidating the mechanism of crystallization from a melt. The method was used to ana-
lyze the crystallization mechanism of a supercooled Lennard–Jones (LJ) melt, which was obtained with an MD 
simulation. The time evolution of the long- and short-range orders was evaluated by the DR of the geometries 
of PDF and ADF during crystallization. In addition, the time evolution of the distribution of local structures 
was evaluated by the DR of the geometry of the ADF created with each particle and its two nearest neighbors 
during crystallization. Based on these results, we discussed the applicability of our method for revealing the 
crystallization mechanism.

Results and discussion
Dimensional reduction. DR has been developed in machine learning and  statistics17–21 for transforming 
original high-dimensional data into low-dimensional (usually 2D) data without significant loss of  information17,18. 
When the 2D data obtained by DR of the original high-dimensional data are mapped onto a 2D plane, the 2D 
data points for similar original data are placed near to each other, and the 2D data points for different original 
data are placed far away from each other. Therefore, the similarities and dissimilarities among different high-
dimensional data can be evaluated. So far, DR has been used to evaluate geometrical similarities or dissimilari-
ties between different objects, such as surface  recognition22, face  recognition23, and surface  matching24, in which 
DR was performed for high-dimensional data representing the geometry of each object. Recently, DR was used 
to evaluate the geometrical similarity of the PDF and ADF between different phases of calcium carbonate, and 
the results represented the structural similarity among those phases in real  systems16.

Figure 1 shows the outline of the procedure for evaluating the crystallization mechanism. The geometry of 
PDF (or ADF) was generated with an MD simulation of the crystallization of a supercooled LJ melt at each period 
in the simulation run and was transformed into a 2D data point using principal component analysis (PCA)20, 
which is a common DR algorithm. PCA requires a shorter computation time than other DR algorithms, such as 
multidimensional  scaling19. All the 2D data points obtained with PCA during crystallization were mapped onto 
a 2D sheet. The structural similarity among different periods was evaluated by the distance between the 2D data 
points on the sheet; the shorter the distance was, the higher the similarity. In a previous  study16, it was confirmed 
that the transformation of the PDF and ADF geometries into 2D data points with PCA provided qualitatively 
the same results as the transformation of them into three-dimensional data points with PCA. This result of the 
previous study suggests that the exactness of the features of the PDF and ADF geometries represented by 2D data 
points with PCA is sufficiently high. Mathematically, PCA performs an eigen decomposition for a covariance 
matrix produced by the original data points. The original data points are projected onto a 2D sheet formed by two 
principal eigen vectors, which correspond to the vectors in which the variance of the data points are the largest 
and second largest (PCA-1 and PCA-2, respectively)20. An explanation of the procedure for the transformation 
of a high-dimensional data into a lower-dimensional data point with PCA is shown in the Supplementary Infor-
mation (Figure S1). PCA can extract important features of high-dimensional data having a linear data structure, 
whereas other DR methods, such as Sketch  Map25, should be used if nonlinear data is examined.

Notably, a method of machine learning has also been used for earlier simulation studies on the local 
 structure26–28, chemical  reactions29, and cluster  formation30 of condensed systems. However, to my knowledge, 
this study is the first to utilize DR for evaluating the crystallization mechanism.

crystallization mechanism. Figure 2a shows 2D sheets onto which 2D data points created by the DR of 
the PDF and ADF geometries during crystallization are mapped. The 2D data points at the beginning and end of 
the simulation are located at the left and right edges of the sheet, respectively. That is, the structural change from 
the initial melt to its crystalline form is represented as the arrangement of the 2D data points from the left- to 
right-hand side on the 2D sheets. The 2D data points were divided into at least three groups, indicated by the 
colors, as a result of clustering of the data points using the density-based spatial clustering of applications with 
noise (DBSCAN)31. This result suggests that three different structural states appeared during crystallization.

The rough structure of the system in each state was determined based on the PDF, ADF, and snapshots of 
particles in the system. Figure 2b shows the PDF and ADF for each data point A‒J shown in Fig. 2a, and Fig. 2c 
shows the corresponding snapshots. Point A corresponded to the melt, points D‒J to the crystal, and points 
B and C to the intermediate state between the melt and the crystal. Although points B and C on the 2D sheet 
for PDF were included in the first group by the clustering, they were included in a separate island of 2D data 
points adjacent to the main island of the 2D data points for the first group. These results show that the structural 
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change represented by the abrupt shift of the 2D data points from the first to second groups corresponded to the 
nucleation of a crystal from the melt.

Because the supercooling was large, the subsequent growth of the crystal after nucleation occurred so quickly 
that the crystal grown could not ideally fit the system. Hence, the crystal had a partly distorted lattice struc-
ture (regions enclosed by dotted lines in the snapshot for point E). Therefore, the reconstruction subsequently 
occurred from the crystal with a distorted lattice structure to that with an energetically more stable structure in 
which the distortion was partly relaxed (regions enclosed by dotted lines in the snapshot for point F). The shift 
of the data points from the second and third groups corresponded to this reconstruction. The continuous shift of 
the data points in the third group toward the right edge of the sheet corresponded to the relaxation of the crystal 
structure after the reconstruction. The present method detected the crystal nucleation and the reconstruction, 
both of which are essential activation processes representing the crystallization mechanism.

The appearance of the 2D data points for the first group in a wide region along the PCA-1 axis suggests that 
the structure of melt varied continuously toward that of the crystal, and the crystal nucleation occurred when the 
melt structure approached as close as possible that of the crystal. The space between the 2D data point regions 
for the first and second groups was narrower for the PDF than for the ADF, indicating that the long-range order 
in the melt structure approached that in the crystal structure more closely than the short-range order did. Thus, 
the present method suggests that the increase in the long-range order associated with crystallization is quanti-
tatively not the same as that for the short-range order. Notably, Russo and Tanaka suggested that time evolution 
of translational order was not the same as that of orientational order during  crystallization32,33, which seems to 
be qualitatively consistent with the above suggestion by the present method. They also suggested that an increase 
in the orientational order was a trigger of crystallization rather than that in the translational  order33.

To verify the crystallization mechanism suggested by the present method, the simulation and data analysis 
were also performed for a system consisting of 4,000 particles (the “large system”). The results are shown in Fig. 3. 
As in the small system consisting of 500 particles, the 2D data points were divided into groups for the melt, the 
crystal with a distorted structure, and the crystal with a more stable structure. The space between the 2D data 
point groups for the melt and the crystal with a distorted structure for the large system was also narrower for the 

Figure 1.  Outline of the procedure for evaluating the crystallization mechanism. (1) An MD simulation for 
crystallization of a supercooled LJ melt was performed. (2) Using the coordinates of LJ particles obtained 
during the MD simulation, the PDF and ADF were analyzed every 1 ps. Then, the time-averaged geometry of 
20 consecutive PDFs (or ADFs) was created for every 20 ps. (3) Each time-averaged geometry of PDF (or ADF) 
was transformed into a 2D data point with PCA, and the 2D data point was mapped onto a 2D sheet formed by 
two principal eigen vectors (see text).
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PDF than for the ADF. Therefore, the results confirmed the validity of the crystallization mechanism obtained 
with the present method, which was qualitatively independent of the size of the system.

The change in the structure of the melt during crystallization was not identical in the two systems. Specifically, 
the 2D data point region for the first group was much narrower for the large system than for the small system, 
and the space between the 2D data point regions between the first and second groups was much wider for the 
large system than for the small system. These differences might originate from the difference in the structure of 
the melt, which could be affected by the system size. Strictly, the sizes of the present systems were not enough 
large to neglect the effect of the system size on the crystallization mechanism. However, the purpose of this study 
was to demonstrate the applicability of the present method to studies on the crystallization mechanism, but not 
to reproduce a crystallization process in real systems. It should be noted that even if the simulation results were 
affected by the size of the system and the periodic boundary conditions, the crystallization mechanism presented 
here is expected to apply to some crystallization phenomena in real systems, for example, poly-crystallization.

Figure 4 shows the potential energy, U, and ρ as functions of time, t, for both the small and large systems. 
Abrupt changes in U and ρ associated with crystallization are seen around t = 25.8 ns for the small system and 

Figure 2.  Results analyzed for the system with 500 particles. (a) 2D sheets onto which 2D data points of PDFs 
and ADFs, which were created with PCA, in different periods of the simulation are mapped. PCA-1 and PCA-2 
are principal eigen vectors (see text). Colors indicate the clustering of the 2D data points using  DBSCAN31 
with epsilon, ε, of 0.4 and a minimum sample number, Nmin, of 15. The orange data points shown on the 2D 
sheet for the ADF are not included in any of the three groups. (b) PDF, g, as a function of r and ADF, P, as a 
function of θ for data points A‒J. The functions for points A‒J were obtained as the average of 20 functions 
for periods of (A) 25.488‒25.490 ns, (B) 25.510‒25.512 ns, (C) 25.516‒25.518 ns, (D) 25.768‒25.770 ns, (E) 
25.976‒25.978 ns, (F) 25.998‒26.000 ns, (G) 26.198‒26.200 ns, (H) 27.198‒27.200 ns, (I) 29.198‒29.200 ns, 
and (J) 31.198‒31.200 ns. (c) Snapshots of the particles in the system at the end of the periods for points A‒J.
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around t = 18.2 ns for the large system. However, the crystal nucleation and the reconstruction are barely vis-
ible in those functions. This difficulty in recognizing detailed structural evolution by visual inspection of those 
functions supports the great potential of the present method for evaluating complicated structural evolution 
processes that are hard to detect by conventional analytical methods.

In the lower panels of Fig. 4, one-dimensional (1D) data points into which were obtained by the transforma-
tion of PDFs and ADFs with PCA are also shown as functions of t. Abrupt changes, which corresponded to the 
nucleation (open arrows) and reconstruction (solid arrows), are seen even in those functions for the 1D data 
points. This result also supports the great potential of the present method for elucidating the crystallization 
mechanism.

time evolution of local structure distribution during crystallization. In principle, the ADF can be 
defined independently for each particle with its two nearest neighbors. The ADF defined for each particle with 
its two nearest neighbors (the “local ADF”) represents the local structural order. Therefore, the time evolution of 

Figure 3.  Results analyzed for the system with 4,000 particles. (a) 2D sheets onto which 2D data points of PDFs 
and ADFs, which were created with PCA, in different periods of the simulation are mapped. PCA-1 and PCA-2 
are principal eigen vectors (see text). Colors indicate the clustering by  DBSCAN31 with ε = 0.4 and Nmin = 15. 
Orange data points in the 2D sheets are not included in any of the three groups. (b) PDF, g, as a function 
of r and ADF, P, as a function of θ for data points A‒J. The functions for points A‒J were obtained as the 
average of 20 functions for periods of (A) 18.209‒18.211 ns, (B) 18.243‒18.245 ns, (C) 18.245‒18.247 ns, (D) 
18.247‒18.249 ns, (E) 18.255‒18.257 ns, (F) 18.258‒18.260 ns, (G) 18.277‒18.279 ns, (H) 18.442‒18.444 ns, 
(I) 18.570‒18.572 ns, and (J) 18.700‒18.702 ns. (c) Snapshots of particles in the system at the end of the period 
corresponding to points A‒J. The simulation for the large system was performed at 74 K.
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the distribution of local structural orders during crystallization can be evaluated, which provides more detailed 
information on the crystallization mechanism, by creating a 2D sheet onto which the 2D data points for all local 
ADFs in each period are mapped.

Figure 5 shows 2D sheets onto which the 2D data points for the local ADFs in the small system for the initial 
state of the simulation (that is, the melt) and points A‒J are mapped. The 2D data points for the final state of 
the simulation (the crystal) are also shown as gray dots on all the 2D sheets. The 2D data points for points A and 
B are distributed not only in the melt region, but also in an intermediate region between the melt and crystal, 
suggesting that the melt for points A and B contained local structures with an intermediate structural order 
between the melt and crystal. For points C‒H, the 2D data points are distributed over the regions for the melt 
and crystal, and the intermediate region between them. These results strongly suggest that the increase in the 
local structural order associated with crystallization was spatially nonuniform.

The geometries of the local ADFs for four selected 2D data points on each of the 2D sheets for points A, D, 
and H in Fig. 5 (A1, A2, D1, D2, H1, and H2 are in the melt region, A3, D3, H3 are in the intermediate region, 
and cryst., D4, and H4 are in the crystal region) are shown in the upper panels of Fig. 6. The local ADFs in the 
crystal region had sharp peaks around θ = 60, 90, and 120°, whereas those in the melt region had a sharp peak 
around θ = 60° only. The local ADFs in the intermediate region had sharp peaks around both θ = 60 and 120°, 
whereas the peaks around θ = 90° were broad. The spatial distributions of the particles creating the local ADFs for 
the melt, crystal, and intermediate regions in the system are shown by the colors in the snapshots of the particles 
in the lower panels in Fig. 6. The local structures for those three regions can hardly be distinguished by visual 
inspection of the snapshots. Thus, the present method has great potential for evaluating the time evolution of 
the local structure distribution during crystallization.

conclusions
A method of visualizing high-dimensional data using DR, which was recently proposed for evaluating the struc-
tural similarity between different  phases16, was used to investigate the mechanism of melt crystallization. The 
time sequence of the 2D data points created by the DR of the geometry of the PDF or ADF, which were obtained 
with an MD simulation of a supercooled LJ melt, was mapped onto a 2D sheet. The distribution of the 2D data 
points on the sheet suggested that crystallization occurred via the following activation processes: the nucleation 
of a crystal with a distorted structure and the reconstruction of the distorted crystal to a crystal with a more 
energetically stable structure. These activation processes were difficult to detect by visual inspection of the time 
evolution of the PDF, ADF, particle snapshots, U, and ρ.

The time evolution of the local structures in the melt during crystallization was also investigated by creating 
a 2D sheet onto which the 2D data points generated by DR of the local ADFs at each moment during crystalliza-
tion were mapped to obtain more detailed information on the crystallization mechanism. The results showed 
that the increase in the local structural order associated with crystallization was spatially nonuniform, although 

Figure 4.  U and ρ as functions of t for the small (500 particles) and large (4,000 particles) systems. The lower 
panels show the values of PDFs and ADFs represented by one-dimensional (1D) data points as functions of t. 
The values were obtained by the transformation of the PDFs and ADFs into 1D data points along the principle 
eigen vector, PCA-1, with PCA.
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it was impossible to distinguish the local structures with different structural order by visual inspection of the 
snapshots of the particles.

In summary, the application of the present method to simple, generally used measurements, such as the PDF 
and ADF, helped greatly to elucidate the mechanism of crystallization from a melt. We expect that the method 
will contribute to elucidating the crystallization mechanisms not only for a simple single-component system, 
but also for complicated multicomponent systems, such as for the crystallization of  minerals16,34–38, clathrate 
 hydrates39–41, and materials for  devices1,42–44.

Simulation methods. MD simulations were performed using a leapfrog algorithm with a time step of 10 fs 
for the small system and that of 2.5 fs for the large  system45. The time step of 10 fs has been used in conventional 
MD simulations for LJ  systems46. The fact that both simulations for the large and small systems provided quali-
tatively the same crystallization mechanism supports that the time step of 10 fs was sufficient for the purpose 
of this study. The values of parameters ε and σ in the LJ potential acting on each particle were set to those for 
Ar of 0.9961 kJ/mol and 0.3405 nm,  respectively47. The temperature was maintained at 73 K and the pressure 
was maintained at 1 atm by a method proposed by Berendsen et al.48. The thermal and pressure bath constants 
were set to 0.1 and 2.0 ps, respectively. According to Golo and  Shaitan49, the Berendsen thermostat may lead to a 
wrong kinetic energy distribution. However, it is known that the Berendsen thermostat provides collect dynam-
ics of a  system50. It was checked that the simulation with the Nosé-Hoover  thermostat51 also showed the nuclea-
tion of a crystal with a distorted lattice structure and subsequent reconstruction of it to a more stable structure, 
which suggested qualitatively the same crystallization mechanism as described in this paper (Figure S2). The 
melting point, Tm, of an Ar crystal at 1 atm in the LJ potential was 81.5 K52. The simulations were performed 
using DL_POLY 2.2053.

The simulation system was a cube consisting of 500 particles. Periodic boundary conditions were imposed in 
all three directions in the system. The structure of the melt was created as follows. All particles in the system were 
arranged into the lattice sites of a face-centered cubic crystal with the equilibrium density, ρ, at Tm and 1 atm. 
The system was heated at 500 K by a constant-volume 1 ns MD simulation to create a random arrangement of 
particles. The system was cooled to 100 K, which was higher by 23% than the melting point of 81.5 K, to create 

Figure 5.  2D sheets onto which the distribution of the 2D data points for the local ADFs in the small system 
are mapped for the initial state and points A‒J. The 2D data points in the final state are also shown as gray dots 
on each 2D sheet.
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a melt structure with a constant-volume 10 ns MD simulation. The final configuration obtained by this MD 
simulation was used as the initial structure of the system for the crystallization simulation.

The simulation temperature of 73 K was lower than Tm by 10%. When the supercooling is large, crystallization 
may proceed via complicated multistage processes, starting with the formation of crystals with an incomplete 
structure in which distorted lattice and/or grain boundaries and/or point defects are created. The crystallization 
mechanism for such cases must be elucidated with a method that can evaluate the time evolution of the structural 
order in an impartial manner efficiently. Thus, we expect that the potential of the present method for elucidating 
the crystallization mechanism can be verified by examining crystallization during large supercooling.

The geometry of PDF was created using 500 data points at intervals of 0.002 nm from r of 0‒1 nm, and that 
of ADF using 200 data points at intervals of 0.9° from θ of 0°‒180°. For the calculation of θ, a selected pair of 
particles were judged to be the nearest-neighbor pair if the distance between the particles was less than 0.45 nm, 
which corresponded to r at which the first minimum of g for the melt appeared. DR of those functions and the 
creation of the 2D sheet were performed using Python 3.654 and scikit-learn55, which is a set of Python modules 
for machine learning and data mining.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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