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Quantum computing formulation 
of some classical Hadamard 
matrix searching methods and its 
implementation on a quantum 
computer
Andriyan Bayu Suksmono  1* & Yuichiro Minato2

Finding a Hadamard matrix (H-matrix) among all possible binary matrices of corresponding order is 
a hard problem that can be solved by a quantum computer. Due to the limitation on the number of 
qubits and connections in current quantum processors, only low order H-matrix search of orders 2 and 
4 were implementable by previous method. In this paper, we show that by adopting classical searching 
techniques of the H-matrices, we can formulate new quantum computing methods for finding higher 
order ones. We present some results of finding H-matrices of order up to more than one hundred and 
a prototypical experiment of the classical-quantum resource balancing method that yields a 92-order 
H-matrix previously found by Jet Propulsion Laboratory researchers in 1961 using a mainframe 
computer. Since the exactness of the solutions can be verified by an orthogonality test performed 
in polynomial time; which is untypical for optimization of hard problems, the proposed method can 
potentially be used for demonstrating practical quantum supremacy in the near future.

Background.  A Hadamard matrix (H-matrix) is a binary orthogonal matrix with {−1,+1} elements whose 
any distinct pair of its columns (or rows) are orthogonal to each other. Such a matrix only exists when it is square 
and the length of its column (row) is equal to 1, 2 or a multiple of four; i.e., for an M ×M dimension H-matrix, 
then M = 1, 2 or M = 4k for a positive integer k. The reversed statement that for any positive integer k there is a 
H-matrix is also believed to be true, although neither a mathematical proof nor disproof yet exists. This is a long 
standing problem of the Hadamard Matrix Conjecture.

The H-matrix has been a subject of scientific and practical interests. First discovered and described by Sylver-
ster in 18671, it is further studied by Hadamard concerning its relationship with the determinant problem2. The 
orthogonal property and binaryness of its elements make it widely used in information processing and digital 
communications. The CDMA (Code Division Multiple Access) system employs Hadamard-Walsh code to reduce 
interference among their users, so that the capacity of the communication system is not badly deteriorated by 
the increasing number of its users3,4. The H-matrix was also used by Mariner 9 space-craft as its ECC (Error 
Correcting Code) for sending images of Mars to a receiving station located on Earth, thanks to its capability for 
long error correction4,5.

Some particular kinds of H-matrices can be found (constructed) easily, while others need huge computational 
resource to do. An H-matrix of size M ×M is also called an M-order H-matrix. When M follows a particular 
pattern of M = 2n , where n is a positive integer, the matrix can be easily constructed by the Sylvester’s method 
of tensor product. Hadamard2 constructed the H-matrices of order 12 and 20, whose orders do not follow the 
2n pattern. It indicates that other orders than prescribed by the Sylvester’s method do exist. Paley showed the 
construction of H-matrix of order M = 4k where k ≡ 1 mod 4 and k ≡ 3 mod 4 , which are known as the Paley 
Type I and Type II H-matrices, respectively6. In the formulation, he employed the method of quadratic residues 
in a Galois field GF(q), where q is a power of an odd prime number.

Various kinds of construction methods have also been proposed. A cocyclic technique, which is based on 
a group development over a finite group G modified by the action of a cocycle defined on G × G , has been 
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introduced by De Launey and Horadam7,8. The Hadamard matrices can be generated by this scheme when it is 
applied to binary matrices. A general introduction on the cocyclic methods are described by Horadam9 and recent 
progress are presented; among others by Alvarez et al.10,11. In developing a quantum computing based H-matrix 
searching method, we found that a simple and straight forward method will be a good starting point. Our meth-
ods described in this paper have been based on earlier techniques proposed by Williamson12, Baumert–Hall13, and 
Turyn14, which is suitable for this purpose. These three methods involve searching of particular binary sequences 
as an essential stage. In this paper, we will refer these methods to as classical H-matrix searching methods.

Although at a glance it looks simple, finding a H-matrix is actually a challenging task. To find a H-matrix of 
order 92, in 1961 three JPL (Jet Propulsion Laboratory) researchers employed a state-of -the-art computer at that 
time, i.e. the IBM/7090 Mainframe15. For matrix order under 1000, the most recent unknown H-matrix success-
fully found is the one with order 428, which was discovered in 2005 by using computer search of particular binary 
sequences16. The method described in the paper is of particular interest because the next unknown H-matrices, 
such as the one with order 668, possibly can be found by using the same method. The main reason they have 
not been found at this time is because of the huge computational resource needed to find such matrices, which 
grows exponentially by the order of the matrix.

Finding a H-matrix of order M among all of O(2M2

) binary matrices, which we refer to as H-SEARCH, is a 
hard problem. We have proposed to find such a matrix by using a quantum computer considering its capability 
in solving hard problems17. Theoretically, a quantum computer will need O(M2) qubits in superposition to solve 
such a problem. However, in the existing quantum annealing processor, we need O(M3) due to extra ancillary 
qubits required to translate k-body terms into 2-body Ising Hamiltonian model. In this paper, we show that by 
adopting the classical searching methods, we can reduce the required computing resource, which for a quantum 
annealing processor implementing the Ising model, will become O(M2) . We describe how to formulate the cor-
responding Hamiltonians related to the classical methods and show some results of order up to more than one 
hundred. We also describe how to further develop this technique to find higher order matrices, by managing 
the classical and quantum computing resources. In such a classical-quantum hybridized algorithm, the com-
plexity of the classical part still grows exponentially, but the quantum part grows polynomially. We shows that 
this algorithm extends the capability of a pure quantum method with limited number of qubits, so that a few 
higher order of H-matrices can be found, compared to the pure quantum method that cannot be implemented 
on present days quantum computer.

Usually, solving an optimization problem by annealing or heuristic methods yields only an approximate 
solution, i.e., we can not sure that it is actually the optimal point, unless all of possible solutions are enumerated. 
However, enumeration of all possible solutions of a hard problem is an extremely laborious task. In contrast, 
the correctness of a solution in H-SEARCH can be verified easily in polynomial time; i.e., by evaluating the 
orthogonality of the found matrix (solution). If we consider the solution as a certificate, H-SEARCH behaves 
like an NP-complete problem because finding the solution is hard, but checking its correctness is easy. In this 
particular point of view, H-SEARCH is an interesting hard problem worth to consider in addressing practical 
quantum supremacy.

A brief on quantum computing and finding H‑matrices using quantum computers.  Quantum 
computers are expected to have computational capability beyond their classical counterparts; a feature which is 
well known as quantum speedup18 or even quantum supremacy19. An important progress regarding this issue is 
the achievement of the Google researchers in 2019, who claimed that their Sycamore quantum processor needs 
only about 200 s to do a particular computational task; which is sampling random quantum circuits in this case, 
where a classical supercomputer would take about 10,000 years to perform20. In the next step, a capability of solv-
ing a real-life problems, where classical computers cannot do in a reasonable time, is desired. Creative thinking 
of building algorithms that can demonstrate such practical supremacy are needed.

The working principle of QAM computers are based on quantum annealing (QA)22,23, which is a quantum 
analog to the classical (thermal) annealing (CA). Whereas the CA works by gradually decreasing temperature 
with sometimes allowing the system to jump over higher energy, the QA seeks for the solution by quantum tun-
neling through the energy barrier. Energy landscape of the H-SEARCH problem’s Hamiltonian are degenerates; 
i.e., there are many equivalent binary matrices that have identical energy. Illustration of the potential energy 
landscapes (PEL) for 2-order and 4-order binary matrices are given in Fig. 1. Considering the PELs, quantum 
annealing approach is suitable to find the solution. We expect that the speed-up comes from the process of find-
ing the minimum energy by quantum tunneling. Further analysis on how quantum computing can speed up 
a search algorithm is described by Farhi and Gutmann24. A comprehensive review on quantum annealing and 
analog quantum computation has been given by Das and Chakrabarti25.

In general, existing quantum computers can be categorized into the universal quantum gate (QGM-Quantum 
Gate Machine) and quantum annealer (QAM-Quantum Annealing Machine). Regardless some issues related 
to noise and other non-ideal conditions, both of these types of quantum processors have been built and are 
accessible by public users through the Internet. The implementation scheme of the proposed methods for both 
of these kinds of quantum computers are illustrated in Fig. 2. The direct method; which works for QAM that has 
been described in our previous paper17, will be used as a reference. Three main proposed quantum computing 
methods are derived from non-quantum computing/classical H-matrix construction/searching methods, which 
we will referred to as the Williamson, Baumert–Hall, and Turyn methods.

The QAM processor, such as the D-Wave, only accepts problems in the form of a 2-body Hamiltonian that 
generally can be expressed by
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which is a Hamiltonian of an Ising system, where Jij is a coupling constant or interaction strength between a spin 
at site i with a spin at site j, hj is magnetic strength at site j, and {σ̂ α

i } are Pauli’s matrices of directions α = {x, y, z} 
at site-i. The processor performs quantum annealing by introducing a transverse field given by

which is evolved over time according to the following equation

where t ∈ [0, τ ] denotes time22,26. The problem to solve should be encoded in Ĥpot , which is represented by the 
Ising’s coefficient Jij and hi for each of the problem. Some optimization problems have been solved by the quantum 
annealing methods; among others are: graph isomorphism27, wireless network optimization28, nurse scheduling 
problem29, hand written digit recognition30, computational biology31, and hydrologic inverse analysis32.

In a QAM, the formulation of the H-SEARCH is started by calculation of its energy function E(s) as a function 
of binary variables s ∈ {−1,+1} . For conciseness, we will represent the value of s by its signs {−,+} . In general, 
E(s) might contain high order k-body interaction terms so that we will denote it by Ek(s) , whereas the Ising model 
allows only up to 2-body terms in E2(s) . To obtain the 2-body expression, and eventually a 2-body quantum 
Hamiltonian Ĥ2

(

σ̂
)

 , a sequence of transforms given by the following construction diagram should be conducted17,

where q ∈ {0, 1} is a Boolean variable. Actually both of s and q are binary variables, but with different values. For 
now on, we will refer s ∈ {−1,+1} as spin variable and q ∈ {0, 1} as Boolean variable.

In the previous paper17, implementation of an M-order H-matrix on a QAM needs M2 number of logical 
(binary) variables and additional M2 × (M − 1)/2 ancillary variables (ancillas) so that the overall complexity is 
O(M3) . In this paper, by adopting classical H-matrix construction/searching methods, we can reduce the required 
number of variables significantly into O(M2) which enables the search of higher order H-matrices than before. 
In the followings, we will address three quantum H-SEARCH methods, which are derived from the classical 
methods of Williamson, Baumert–Hall, and Turyn. For each of these methods, we derive their corresponding 
Hamiltonians based on some criteria that are specifics for each of the cases. Low order cases can be calculated 
by hand, while higher order ones should be calculated by a computer through symbolic computing due to the 
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Ĥpot

(

σ̂
)

(4)Ek(s) → Ek(q) → E2(q) → E2(s) → Ĥ2
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Figure 1.   Potential Energy Landscape (PEL) of 2-order and 4-order binary matrices. The energy of the 
binary matrix B is calculated from sum of the squared off-diagonal of the D matrix, where D = B

T
B , similar to 

Eq. (8) in our previous paper21. In (a), the 2-order binary matrices are generated and their energies are plotted 
against their indices. The indices are converted to the matrices after a binary to spin variable transform. As an 
example, for the second matrix with index 1, then the process is as follows: 

1 → 0001 → [1, 1, 1,−1] →

(

1 1

1 − 1

)

 . Zero energies matrices, such as ones with indices 1, 2, 4, . . . indicates 

orthogonal/Hadamard matrices. In (b) a few number of 4-order binary matrices neighboring (in term of 
Hamming distance) to an orthogonal matrix are plotted. Matrices with index 6 and 10 are Hadamard and 
therefore they are in global minima, while other matrices are not. An example of local minimum is given in the 
matrix with index 3. We can observe degeneration of energies in both of these 2 and 4 binary matrices.
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large number of terms and variables which are involved. The complete lists and expressions of the Hamiltonians 
are provided in the Supplementary Information section.

In the QGM quantum computing, we can employ QAOA (Quantum Approximate Optimization Algorithm)33, 
which is well-suited for solving an optimization problem on NISQ (Noisy Intermediate-Scale Quantum) pro-
cessors. In principle, the general k-body Hamiltonian can directly be implemented on a QGM. Therefore, the 
required number of physical qubits will be about the same as the number of logical qubits. However, since the 
implementation needs direct connection to the actual machine, which is not available for us at this time, we will 
not address it in the current paper.

Results
Williamson based quantum computing method.  The Williamson’s method builds a matrix W of size 
4k × 4k from four sub-matrices A, B, C, D each of size k × k4,12,34. Any pair of these sub-matrices are commuta-
tive. The orthogonality property of W will be satisfied when

where V = Ik is a k × k identity matrix. Then, the problem becomes choosing the elements of si ∈ {−1,+1} in the 
sub-matrices that makes the orthogonality condition in Eq. (5) is satisfied. Further simplification and efficiency 
of the number of variables can be achieved when we choose the sub-matrices which are symmetric and circular.

By imposing the orthogonality conditions, the commutativity among the sub-matrices, and the non-negativity 
of the energy, we arrive to the following s-dependent energy function

where vi,j denotes the element at row i and column j of the matrix V that consists of products of spin/binary 
variables si given by Eq. (5) and δi,j is the Kronecker delta function. The orthogonality requirement of W will be 
satisfied when Ek(s) = 0 , which is the lowest value of the energy function of Eq. (6). For k = 3 and a particular 

(5)V ≡ ATA+ BTB+ CTC + DTD = 4kIk

(6)Ek(s) =

k−1
∑

i=0

k−1
∑

j=0

(

vi,j(s)− 4kδi,j
)2

Figure 2.   Quantum computing methods for solving the problem of finding H-matrix developed from classical 
methods. In the previous direct method17, we represent an M-order H-matrix to be found by an M ×M binary 
variables, which becomes O(M2

) logical qubits and O(M3
) physical qubits including the ancillas, to be implemented 

on a quantum processor with Ising model. In this paper, we adopt three classical methods; i.e., the Williamson, 
Baumert–Hall, and Turyn, into quantum computing algorithms by formulating their corresponding quantum 
Hamiltonians. Each of the corresponding quantum computing methods developed in this paper needs O(M) logical 
qubits, which translates into  O(M2

) physical qubits when they are implemented on a QAM (Quantum Annealing 
Machine) type processor. In a QGM (Quantum Gate Machine) processor, the number of required qubits will be 
proportional to the number of logical qubits in the Hamiltonians, i.e. O(M). We can employ QAOA (Quantum 
Approximate Optimization Algorithm) to implement the proposed methods in the QGM processor.
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value of Boolean reduction factor δ (note that it was written as δij in17), by expanding this equation and then fol-
lowing the construction diagram in Eq. (4), we will arrive to the following 2-body Hamiltonian

which can be encoded into a quantum annealing processor.
In the experiment, we extract the Ising coefficients {Jij , hi} then submit them to the D-Wave. We observe 

that the magnitude of the coefficients in the Hamiltonian’s terms are quite large, however they will be normal-
ized by the D-Wave system. Additionally, the constant term, such as 162, 720 in Ĥ2(σ̂

z) of Eq. (7), will also be 
removed. Consequently, instead of zero, the minimum of the energy will be a negative value. We have set the 
number of reads to 10,000 and obtain some solutions at minimum energy values. For k = 3 , which corresponds 
to H-matrix of order 12, the required number of logical qubits was 8 which translates into 36 physical qubits. We 
obtained the minimum energy at −45.988 . The experimental results are displayed in Fig. 3a, where the bottom 
part shows the found H-matrix H on the left side and its indicator matrix D ≡ HTH on the right side, whereas 
the top parts show energy distribution of the solutions. Higher orders matrices, up to order 36 that needs 49 
physical qubits to implement, have also been found successfully using the D-Wave. They are listed in the Sup-
plementary Information section.

Baumert–Hall based quantum computing method.  The Baumert–Hall method works in a similar 
manner as the Williamson’s by first finding the A, B, C, D block matrices, except that the construction of the 
H-matrix is given by a 12× 12 structure of block matrix13,34, which yields a 12k × 12k matrix for particular val-
ues of positive integers k.

Experiments on finding Baumert–Hall matrices using D-Wave quantum processor indicates that the capabil-
ity of the method is limited by the available number of qubits, the number of couplers, and the capability of the 
embedding tool35. We have successfully found a few of Hadamard matrices up to order 108 using this method. 
For the 108-order case; which corresponds to k = 9 , by following the construction diagram with particular value 
of the Boolean reduction factor δ , we will obtain a 2-body Hamiltonian given by,

After extracting the Ising parameters and submitting to the D-Wave, we obtain the solutions containing cor-
rect values of si for building the H-matrices. Figure 3b shows a 108 order H-matrix, which was found by the 
Baumert–Hall based method and its corresponding energy statistics as output of the quantum computer. Other 
Baumert–Hall matrices found by this method, i.e. 36, 60 and 84, are listed in the Supplementary Information 
section.

The Turyn based quantum computing Method.  In this method, first we have to find a set of 4-sequences 
{X,Y ,Z,W} that has particular properties, then use them to construct a H-matrix based on Goethals-Seidel 
method14,16. We derive the energy function from the requirement of a valid TT-sequences given by,

where NX(r),NY (r),NZ(r),NW (r) are non-periodic auto-correlation functions of the sequences {X,Y ,Z,W} 
calculated at lag-r, respectively. Since the value given by the left-hand side of Eq. (9) can be negative, whereas the 
annealing is performed to achieve a minimum value, we modify it into a non-negative energy function which 
are squared sum of the auto-correlation function at each lag r ≥ 1 as follows,

We have inserted a k subscript to indicate that the energy may includes k-body interaction terms. The searching 
problem becomes finding a TT-sequence that satisfy this condition. We will represent the elements of {X,Y ,Z,W} 
as spin variables si as before. As an example we will calculate the Hamiltonian for k = 4 . By considering normal-
ized sequence for efficiently use variables16, we obtain the following expressions for TT(4)

Then, the energy in Eq. (10) which after following construction diagram given by Eq. (4) with a particular value 
of Boolean reduction factor δ , yields the following 2-body Hamiltonian

(7)
Ĥ2(σ̂

z) = 13, 728σ̂ z
0 + 13, 728σ̂ z

1

+ · · · + 13, 488σ̂ z
0 σ̂

z
1 + · · · + 192σ̂ z

10σ̂
z
11 + 162, 720

(8)
Ĥ2(σ̂

z) = 10, 555, 200σ̂ z
0 + · · · + 2, 636, 352σ̂ z

0 σ̂
z
1

+ · · · + 1, 728σ̂ z
54σ̂

z
59 + 316, 483, 200

(9)NX(r)+ NY (r)+ 2NZ(r)+ 2NW (r) = 0; r ≥ 1

(10)Ek ≡
∑

r≥1

(NX(r)+ NY (r)+ 2NZ(r)+ 2NW (r))2

(11)

X = (1, 1, 1,−1)T

Y = (1, s0,−s0,−1)T

Z = (1, s1, s2, 1)
T

W = (1, s3, s4)
T

(12)Ĥ2(σ̂
z) = 912σ̂ z

0 + 1376σ̂ z
1 + · · · + 8σ̂ z

7 σ̂
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10 + 8, 448
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Figure 3.   Experiment results of finding H-matrices using a quantum computer (D-Wave): (a) Williamson 
based method yields a 12 order H-matrix, (b) Baumert–Hall based method gives 108 order H-matrix, (c) Turyn 
based method resulting a 44 order H-matrix, and (d) extension of the Turyn based method that yields a 92 
order H-matrix. Top parts show running statistics of the quantum processor. Bottom parts show the obtained 
H-matrices at the left hand side and corresponding indicator matrix at the right hand side. White pixels in the 
matrix indicates +1 , whereas the black one is −1 . White pixels in the indicator matrix correspond to M; which is 
the order of the matrix, and the black ones are zeroes. Running statistics shows that the solutions tend to cluster 
around low energy for low order case of 12 and 44, whereas they tend to uniformly distributed for high order 
cases of 108 and 92.
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In the experiment, we encode the Hamiltonian to the D-Wave system. We have successfully found the lowest 
order H-matrix by the Turyn-based method shown in Fig. 3c. By setting k = 6 , we also found H-matrix of order 
68 listed in the Supplementary Information section.

Balancing the quantum and classical resources: extension of the Turyn based quantum com-
puting method.  Finding H-matrix by the Turyn’s method can be achieved by checking all possible binary 
vector that satisfy the TT-sequences {X,Y ,Z,W} requirements. Exhaustive enumeration of all (n, n, n, n− 1) 
TT-sequence needs 24n−1 steps, which is an exponentially increasing task. For finding higher order H-matrices, 
we can explore the properties of the TT-sequence to reduce the number of binary sequence to enumerate16,36. 
In this method, instead of finding all {X,Y ,Z,W} at once, it will be more computationally realistic to start with 
filling some part of them, then subsequently imposing conditions and properties of the TT-sequence to limit the 
number of the sequences to check.

Partially filled sequences {X∗,Y∗,Z∗,W∗} with m-elements on the left part and another m-elements on the 
right one, are given as follows

The requirement of non-periodic auto-correlation sum for these sequences is now become

We will refer all {X∗,Y∗,Z∗,W∗} sequences satisfying condition given by Eq. (13) as solution prototypes. Then 
the energy function becomes

Figure 4 shows a block diagram of extended Turyn-based quantum computing method, involving both of clas-
sical and quantum computing parts. The generation of {X∗,Y∗,Z∗,W∗} solution prototypes and their corre-
sponding Hamiltonians are conducted in a classical computer. They are fetch one-by-one and processed by a 
quantum computer which deliver solutions. In the next step, the classical computer checks the orthogonality of 
the matrices. Notes that the simplest way to check the orthogonality of an M ×M matrix H is by multiplication 
HTH which consisting of M times multiplications for each of all M2 entries in the product followed by checking 
them whether the off diagonal are zeros and the diagonal entries are equal to M2 . Therefore, the orthogonality 
test can be done in O(M3).

Although increasing the value of m in Eq. (13) will reduce the number of sequence to check in the follow-
ing steps, it also increases the number of the solution prototypes itself. There are about 2 millions prototypes 
for 2m = 12 , which will increase into about 23 millions for 2m = 1416,36,37. It has been reported that a few 

X∗ = (x0, x1, ..., xm−1, ∗, ∗, . . . , ∗, ∗, xn−m, . . . , xn−1)
T

Y∗ = (y0, y1, ..., ym−1, ∗, ∗, . . . , ∗, ∗, yn−m, . . . , yn−1)
T

Z∗ = (z0, z1, ..., zm−1, ∗, ∗, . . . , ∗, ∗, zn−m, . . . , zn−1)
T

W∗ = (w0,w1, ...,wm−1, ∗, ∗, . . . , ∗, ∗,wn−m, . . . ,wn−2)
T

(13)NX∗(r)+ NY∗(r)+ 2NZ∗(r)+ 2NW∗ (r) = 0; r ≥ (n−m)

(14)Ek ≡
∑

r≥1

(NX∗(r)+ NY∗(r)+ 2NZ∗(r)+ 2NW∗ (r))2

Figure 4.   Block diagram of classical and quantum processing in extended Turyn-based quantum computing 
method. The classical processing includes generation of the {X∗,Y∗,Z∗,W∗} solution prototypes, construction 
of the Hamiltonian, and orthogonality test of the solutions. The quantum computing is solely employed to find 
the solution (ground state) of the problem defined in the Hamiltonian. In this scheme, the classical and quantum 
processing will be terminated either after a valid solution is found or we run out of the solution prototypes.
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TT-sequence of up to 40 can be found using classical computers, whereas higher order ones need more powerful 
computers which is impossible to be implemented at the moment. This is one of the main reasons that H-matrix 
of order 668 has not been found nor declared non-exists yet, assuming that such a matrix can be constructed 
by the Turyn’s method.

On the other hand, we can use the solution prototypes to reduce the number of required qubits when a 
quantum computer is involved in the searching process. For clarity, in the followings we illustrate this method 
by a simple case which is implementable on a current quantum processor. We will consider a (4, 4, 4, 3) solution 
prototype to find a (8, 8, 8, 7) TT-sequences by using quantum computing; therefore, it is a kind of finding higher 
order sequence by extending the lower one. The extended TT-sequences can be expressed by

with known x0, . . . , x3, y0, . . . , y3, . . . , . . . ,w0,w2 and unknown s0, s1, . . . , s15.
To find the unknown values represented by si , we calculate the energy of the Turyn’s based method as before. 

Among all possible {X∗,Y∗,Z∗,W∗} prototypes and the replacement of the unknowns with binary variables, we 
choose the following solution prototype as an example

Note that in the real case, we might have to check all of the solution prototypes.
Further calculation by applying the construction diagram with a particular value of Boolean reduction factor 

δ yields the following 2-body Hamiltonian,

We then encode the Hamiltonian into the D-Wave. Calculation shows that we need 108 physical qubits to 
implement, but embedding into the Chimera graph with the D-Wave provided embedding tools indicates that 
more qubits are required, which in this case is 860. After quantum annealing, we get among others, the follow-
ing solution

Among 10,000 of obtained results, we identified two correct solutions. One of the solution that has been con-
structed to a H-matrix; its corresponding indicator matrix, and solution statistics are displayed in Fig. 3d. This 
TT(8)-sequences yields a 92-order Hadamard matrix, which in 1961 was also found by JPL researchers in a 
search using IBM/7090 mainframe computer15.

Discussions
Difficulties in finding a H-matrix by classical computing methods, due to the exponential grows of the com-
plexity, can be overcome by quantum-computing based search such as by directly represents each elements of 
the matrix into binary variables, which is then translated into qubits17. However, the availability of quantum 
computing resource limits the implementation to only finding low order H-matrices. We have shown in the 
previous section that classical H-matrix searching methods can be adopted to efficiently use available quantum 
computing resource to solve larger problems, i.e., finding higher order H-matrices than previously achieved by 
the direct method17.

The data displayed in the top part of Table 1 shows required resource and results in the Williamson and 
Baumert–Hall based methods for each order of the H-matrix. Since both of them share the same A, B, C, D block 
matrices, we put them side-by-side on the table. We observe in the table that the number of required logical 
qubits grows linearly by O(M) with respect to the order of the searched matrix, whereas the number of physical 
qubits grows quadratically as O(M2) , which is caused by the ancillary qubits required to translate k-body into 
2-body Hamiltonians. In the implementation, the physical qubits and their connections should be mapped to 
the topology of qubits’s connections in the quantum annealing processor; which is the Chimera graph in the 
DW-2000Q. We have used (default) embedding tool provided by D-Wave35 and the number of embedding qubits 
displayed in the table are taken from the output of the software. This mapping process, which is also called minor 

(15)

X = (x0, x1, s0, s1, s2, s3, x2, x3)
T

Y = (y0, y1, s4, s5, s6, s7, y2, y3)
T

Z = (z0, z1, s8, s9, s10, s11, z2, z3)
T

W = (w0,w1, s12, s13, s14, s15,w2)
T

(16)

X = (1, 1, s0, s1, s2, s3, 1,−1)T

Y = (1,−1, s4, s5, s6, s7, 1,−1)T

Z = (1,−1, s8, s9, s10, s11,−1, 1)T

W = (1,−1, s12, s13, s14, s15, 1)
T

(17)
Ĥ2(σ̂

z) = 197, 860σ̂ z
0 + · · · + 16, 484σ̂ z

0 σ̂
z
1 + · · ·

+ 64σ̂ z
102σ̂

z
107 + 4, 551, 232

(18)

X = (1, 1,−1, 1,−1, 1, 1,−1)T

Y = (1,−1, 1, 1, 1, 1, 1,−1T

Z = (1,−1,−1, 1, 1, 1,−1, 1T

W = (1,−1,−1,−1,−1,−1, 1)T
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embedding, further increases the number of required qubits. In the following discussions, the number of required 
qubits after the embedding process will be labeled as the embedding qubits.

The Williamson and Baumert–Hall adopted methods can be implemented to all of matrix order as long as 
the embedding process is successful, which is up to 36 for the Williamson and up to 108 for the Baumert–Hall. 
We observe from the output of embedding tool that the highest order needs 1, 492 qubits to implement, which is 
more than 6 times of the required physical qubits. Observing that the trends of the embedding-to-physical qubits 
ratio; denoted by E/P ratio in the table, increases with the H-matrix order, by taking a moderate estimate of 7 
times, the 300 physical qubits for the order of 132 matrix (in the Baumert–Hall based method) requires 2, 100 
qubits to be implemented; which is more than currently available qubits in the DW-2000Q. We also observe from 
the experiment results, especially those displayed in the last column of Table 1, that the number of correct solu-
tions among 10,000 number of reads tends to decrease with the increasing order of the matrix; i.e., it is about 4% 
at the beginning then decreased to about 0.2% at order 108 for the Baumert–Hall. A possible explanation to this 
phenomena is that when the order of the matrix is increased, the magnitude of the coefficients in the Hamiltonian 
are also increased so that the difference between the largest to the smallest value becomes very large. Since they 
are normalized when fed into the D-Wave, with limited resolution to 1/256, the D-wave will set lower coefficients 
to zero. Accordingly, some of the terms will be discarded and the solutions become degenerate. It makes the 

Table 1.   Resource required in the proposed quantum computing methods. The Willamson and Baumert–
Hall based method: to find an M order H-matrix, the required logical qubits grows by O(M) and the physical 
qubits by O(M2) . Embedding the connections implied by the Hamiltonian on existing Chimera graph further 
increases the required qubits, which ultimately limit the capability of the method. Decreasing percentage 
of correct solutions, knowing that only 10,000 reads in a single run is allowed, indicates that repeated 
experiments will be needed to find higher order matrices. The Turyn-based quantum computing method: 
although the number of required physical qubits also grows by O(M2) , the jump among the order is high 
so that the next one after order 68, i.e. 92 and beyond,cannot successfully be embedded in DW-2000Q. We 
also cannot conclude the success rate for given 10,000 number of reads due to lack of data, although we may 
suspect that it will also decrease as in the Williamsons and Baumert–Hall adopted methods. Extended Turyn 
based method: the number of logical qubits is determined by the number of additional k in the extension 
�k , not by the final qubits. We show the result of extending order k = 4 into k = 8 and only one of successful 
solution prototypes in the table. *Order for Williamson / Baumert–Hall method.

Method No. k Order

Number of qubits

E/P ratio
Number of correct 
solution in 10,000  Logical    Physical   Embedded 

Williamson/Baumert–Hall

1 3 12 / 36*  8 36 51 1.4 322

2 5 20/60*  12 78 207 2.7 493

3 7 28/84*  16 316 688 5.1 282

4 9 36/108* 20 210 1492 7.1 18

5 11 44/132* 24 300 NA NA NA

Turyn

1 4 44 5 11 25 2.3 17

2 6 68 13 36 397 11.0 35

3 8 92 31 199 NA NA NA

Extended Turyn 1 4 → 8 68 → 92 16 108 860 8 2

Figure 5.   The plot of success probability against the matrix order in finding Hadamard matrices by using the 
proposed Baumert–Hall based quantum algorithm.



10

Vol:.(1234567890)

Scientific Reports |          (2022) 12:197  | https://doi.org/10.1038/s41598-021-03586-0

www.nature.com/scientificreports/

percentage of the correct true solutions are reduced, as shown in the last column of the table. Since the number 
of reads in one run is limited by the D-Wave system to 10,000, several repeated runs on the quantum processor 
should be done to find higher order H-matrices. Figure 5 plots the probability of success against the order of 
Baumert–Hall matrices; it shows that in general higher order matrices are more difficult than the lower ones to 
find by the method. This also means that, for finding higher order H-matrices; assuming that the processor has 
a number of sufficient qubits to implement, what we have to do is by repeating the experiments many times.

Middle part of Table 1 shows required number of qubits and performance of the Turyn based quantum 
computing method. An H-matrix of order 44 and 68 have successfully been found, but higher order matrices 
have not. We observe that the E/P ratio grows faster than the similar case in the Williamson and Baumert–Hall 
based methods; i.e, it is now about 11 times at the order of 68. Assuming this factor stay the same, higher order 
matrices of 92, which needs 199 physical qubits, might require about 2, 189 embedding qubits. This is more than 
the currently available number of qubits in the DW-2000Q quantum processor, and therefore the search of order 
92 H-matrix did not successful. We have proposed a solution for the limitation of quantum computer resource 
by the extended Turyn based method described previously.

Bottom part of Table 1 shows the required resource and performance of extended Turyn based method. For 
extending k = 4 into k = 8 , we need 108 physical qubits; which is then increased into 860 embedding qubits. An 
important feature of this method is that, as long as the number of additional/extension �k = 4 is kept the same, 
the required qubits to solve extended problem will also stay the same, regardless the targeted order. However, 
this advantage should be paid by increasing number of solution prototypes, implying that more classical comput-
ing resources is needed and the frequency usage of the quantum processor will be increased. We expect to have 
an optimal point where the combination of the classical and quantum resources delivers the best solution and 
achieves highest order of the searched H-matrix.

At present, some of H-matrices of order under 1000; such as 668, 716, and 892, have not been found by any 
methods yet due to huge computational resource required to perform the computation by existing classical 
methods. When using the Turyn-based quantum computing method, even after extension, H-SEARCH for 
such orders still cannot be implemented. As an illustration, with a 12 pre-filled {X∗,Y∗,Z∗,W∗} , the required 
logical qubits for the 668 case will be 4 · (56− 12) = 176 which becomes 176 · 175/2 = 15, 400 physical qubits. 
Assuming the similar embedding performance as before at a factor of 8, the required number of qubits is 123, 200 
which is beyond the capability of current quantum annealing processors.

Figure 6 shows the progress of available qubits in D-Wave quantum annealers [? ] and the decrease number 
of required qubits to implement H-matrix search of order 668 by solving the {X∗,Y∗,Z∗,W∗} problem. The 
points in the graph shows actual number of qubits achieved in every year since 2011. We can see that the num-
ber of qubits doubled every two years; therefore, by using regression we get a linear line in a semi-logarithmic 
plot as shown by a dotted red curve. The middle dashed green horizontal line indicates the number of required 
qubits when no additional embedding qubits are required, which means that an ideal complete graph connec-
tion among the qubits is available. The top blue dashed dotted line indicates the number of required qubits with 
embedding factor of 8. Assuming that the connections among qubits are also improved substantially every year, 
we can expect the H-SEARCH of order 668 can be implemented between the year 2022 to 2029. Additionally, 
recent achievement of 64 qubits volume43 and the 1000 qubits milestone44 of QGM processor, the H-SEARCH 
implementation through QAOA is also very promising to explore.

Figure 6.   Progress of required and available qubits for solving a H-SEARCH problem. The red-dotted curve 
is a regression line based on actual number of qubits (shown as red circles) produced by D-Wave38–42. The 
linear curve in semi-logarithmic plot indicates that the number of qubits is doubled every two years. The blue 
(dash-dot) line at the top shows required number of qubits in finding 668 order H-matrix for each of a given 
{X∗,Y∗,Z∗,W∗} by assuming an embedding factor of 8, whereas the green (dashed) curve is the required 
number of qubits with no embedding factor, meaning an ideal complete graph connections among the qubits 
are available.
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Methods
Derivation of the Williamson based method.  The Sylvester construction method builds a larger 
H-matrix H2n from smaller ones H2n−1 by iteratively applying the following tensor product,

where H2 =

(

+ +
+ −

)

 , i.e., it is a kind of plugging-in smaller H-matrices into a particular structure to obtain a 

larger H-matrix. Similarly, the Williamson method also builds a higher-order matrix from smaller ones, except 
that the smaller matrices are not necessarily orthogonal. In general, we can express the Williamson type H-matri-
ces W by4,12,34

where A ,   B ,   C ,   D  are block matrices, whose any pair of them are commutative, i.e. , 
[A,B] = [A,C] = [A,D] = [B,C] = [B,D] = [C,D] = 0 , with [A,B] = ATB− BTA, . . . , etc expressed the com-
mutativity of a pair of matrices A,B, . . . etc. The orthogonality property of W needs the following requirement 
to be satisfied,

where Ik is a k × k identity matrix. We will use the properties of the Williamson matrix; especially the one given 
by Eq. (20), to formulate the Hamiltonian of Williamson-based quantum computing method. To further reduce 
the number of variables, we choose A, B, C, D sub-matrices which are symmetric and circular.

For an illustration, consider k = 3 which yields a 4k = 12-order H-matrix. The matrices can be expressed in 
terms of binary variables si ∈ {−1,+1} by

Then, the requirement for Williamson matrix given by Eq. (20) for k = 3 becomes

where v = 4+ 2(s0s1 + s2s3 + s4s5 + s6s7) . Suppose that V ≡ [vi,j] = ATA+ BTB+ CTC + DTD . Naturally, 
we can define an s-dependent k-body energy function by

where δi,j is the Kronecker delta function. The orthogonality requirement of W will be satisfied when Ek(s) = 0 , 
which is the lowest value of the energy function in Eq. (23). In the k = 3 case, the energy function Ek(s) can be 
expanded into

For implementing an energy function to a QAM processor; such as in the D-Wave, the k-body energy func-
tion Ek(s) should be transformed into a 2-body energy function E2(s) using the steps given by the construction 
diagram in Eq. (4). In the process, we should choose a Boolean reduction factor δ to transform the k-body 
into 2-body function, that should be larger than the maximum value Emax of the energy function45. By taking 
Emax = 26, 976 , which is the maximum value of Ek(s) by assuming all of si = +1 , then setting δ = 2Emax , we 
obtain the following result

This 2-body energy function gives the potential Hamiltonian Ĥpot(σ̂ ) ≡ Ĥ2(σ̂
z) as follows,

Complete expressions for the equations can be found in Supplementary Information section.

H2n = H2 ⊗H2n−1 =

(

H2n−1 H2n−1

H2n−1 −H2n−1

)

(19)W =







A B C D
−B A − D C
−C D A − B
−D − C B A







(20)ATA+ BTB+ CTC + DTD = 4kIk

(21)

A =

(

s0 s1 s1
s1 s0 s1
s1 s1 s0

)

,B =

(

s2 s3 s3
s3 s2 s3
s3 s3 s2

)

,

C =

(

s4 s5 s5
s5 s4 s5
s5 s5 s4

)

,D =

(

s6 s7 s7
s7 s6 s7
s7 s7 s6

)

.

(22)ATA+ BTB+ CTC + DTD =

(

12 v v
v 12 v
v v 12

)

= 12I3

(23)Ek(s) =

2
∑

i=0

2
∑

j=0

(

vi,j(s)− 12δi,j
)2

(24)Ek(s) = 6(4+ 2(s0s1 + s2s3 + s4s5 + s6s7))
2

(25)
E2(s) = 13, 728s0 + 13, 728s1 + · · · + 13, 488s0s1

+ · · · + 192s10s11 + 162, 720

(26)
Ĥ2(σ̂

z) = 13, 728σ̂ z
0 + 13, 728σ̂ z

1

+ · · · + 13, 488σ̂ z
0 σ̂

z
1 + · · · + 192σ̂ z

10σ̂
z
11 + 162, 720
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Derivation of the Baumert–Hall based method.  In principle, the Baumert–Hall quantum computing 
method works in a similar manner as the Williamson’s by first finding the A, B, C, D block matrices, except that 
the construction of the H-matrix is given by the following 12× 12 structure of block matrix13,34:

Considering the usage efficiency of the variables, A, B, C, D are also chosen to be symmetric circulant block 
matrices identical to the Williamsons’s method described in the previous section. For a k × k size of the block 
matrices, Eq. (27) yields a 12k × 12k dimension of the H-matrix. The formulation of the energy function also 
follows the Williamsons method described previously.

Experiments on finding Baumert–Hall matrices using D-Wave quantum processor indicates that the capability 
of the method is limited by the available number of qubits and the capability of the embedding tool35. We have 
successfully find the Hadamard matrix up to order 108 using this method. For the 108-order case, initial energy 
function Ek(s) to find this matrix is given by the following

whose corresponding k-body Hamiltonian is given by

Then the 2-body Hamiltonian realized on the quantum annealing processor will be given by,

Complete expressions for the equations can be found in Supplementary Information section.

Derivation of the Turyn based method.  In this method, first we find a set of 4-sequences {X,Y ,Z,W} 
that has particular properties, then use them to construct a H-matrix based on Goethals-Seidel method14,16. We 
translate the requirements into energy functions which then programmed into a quantum processor. In essence, 
the workflows of the Turyn based method are as follows 

1.	 Find an (n, n, n, n− 1) Turyn-Type (TT) sequence {X,Y ,Z,W}.
2.	 Construct base sequences {A,B,C,D}
3.	 Construct T-sequences {T1,T2,T3,T4}
4.	 Construct seed sequences {A1,A2,A3,A4}
5.	 Construct block symmetric circular matrices {XA1,XA2,XA3,XA4}
6.	 Construct Hadamard matrix, which is given by 

 where R is a back-diagonal identity matrix of size k × k as follows 

We derive the energy function from the requirement of a valid TT-sequences given by,

(27)H =





































A A A B − B C − C − D B C − D − D
A − A B − A − B − D D − C − B − D − C − C
A − B − A A − D D − B B − C − D C − C
B A − A − A D D D C C − B − B − C
B − D D D A A A C − C B − C B
B C − D D A − A C − A − D C B − B
D − C B − B A − C − A A B C D − D

−C − D − C − D C A − A − A − D B − B − B
D − C − B − B − B C C − D A A A D

−D − B C C C B B − D A − A D − A
C − B − C C D − B − D − B A − D − A A

−C − D − D C − C − B B B D A − A − A





































(28)
Ek(s) = 432s0s2 + · · · + 720s18s19

+ · · · + 432s16s17s18s19 + 5760

(29)
Ĥk(σ̂

z) = 432σ̂ z
0 σ̂

z
2 + · · · + 720σ̂ z

18σ̂
z
19

+ · · · + 432σ̂ z
16σ̂

z
17σ̂

z
18σ̂

z
19 + 5760

(30)
Ĥ2(σ̂

z) = 10, 555, 200σ̂ z
0 + · · · + 2, 636, 352σ̂ z

0 σ̂
z
1

+ · · · + 1, 728σ̂ z
54σ̂

z
59 + 316, 483, 200

(31)H =









XA1 XA2R XA3R XA4R

−XA2R XA1 XT
A4R − XT

A3R

−XA3R − XT
A4R XA1 XT

A2R

−XA4R XT
A3R − XT

A2R XA1









(32)R =











0 0 · · · 0 1

0 0 · · · 1 0

· · · · · · · · · · · · · · ·
0 1 · · · 0 0

1 0 · · · 0 0











(33)NX(r)+ NY (r)+ 2NZ(r)+ 2NW (r) = 0; r ≥ 1
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where NX(r),NY (r),NZ(r),NW (r) are non-periodic auto-correlation functions of the sequences {X,Y ,Z,W} 
calculated at lag-r, respectively. The non-periodic auto-correlation function of a sequence V = [v0, v1, . . . , vn−1]

T 
is given by,

for r = 0, 1, . . . , n− 1 and NV (r) = 0 for r ≥ n . Since the value given by the left-hand side of Eq. (33) can be 
negative, whereas the annealing is performed to achieve a minimum value, we adopt a non-negative energy 
function which are sum of squared value of the auto-correlation function at each lag r ≥ 1 as follows,

To efficiently use available qubits in the quantum processor, it is important to reduce the number of vari-
ables encoded to the qubits as few as possible. We can achieve this by further employing the property of 
the TT-sequences. In this case, we can normalize the TT-sequences16 to obtain XT = (x0, x1, . . . xn−1) , 
YT = (y0, y1, . . . yn−1)

T  , ZT = (z0, z1, . . . zn−1) , and WT = (w0,w1, . . .wn−1) , which have the following 
properties

•	 x0 = y0 = z0 = w0 = 1

•	 xn−1 = yn−1 = −1, zn−1 = 1

•	 x1 = xn−2 = 1, y1yn−2 = −1

For clarity, in the followings we present an example of the Hamiltonian formulation for the lowest order of 
k = 4 case. The first step as described previously is to find a TT(4) -sequences {X,Y ,Z,W} . By representing the 
elements of the sequences as binary (spin) variables si ∈ {−1,+1} , and applying the properties of a normalized 
sequence explained previously, a TT(4) will be as follows,

To determine the energy function, we have to calculate non-periodic auto-correlation functions NX ,NY ,NZ ,NW 
given by Eq. (34). Since s2i = 1 , we get the following results after simplifications

Therefore, the energy E ≡ Ek(s) in Eq. (35), whose terms may contain products of k variables, is now given by

In the following steps, as described by the construction diagram in Eq. (4), the energy function should be 
transformed into a 2-body interacting Ising Hamiltonian. Therefore, we have to change the s-dependent energy 
function into q-dependent energy function Ek(q) . After simplification, this transform yields the following

The conversion into 2-body energy function requires a Boolean reduction factor δ set to be larger than the 
maximum value of the energy function Emax(k) . Assuming it is at least an absolute sum of the Ek(q) coefficients 
as before, we have Emax = 908 . By taking twice of this maximum value, we obtain δ = 1, 816 , which transforms 
Eq. (39) into

(34)NV (r) =

n−1−r
∑

t=0

vivi+r

(35)E ≡
∑

r≥1

(NX(r)+ NY (r)+ 2NZ(r)+ 2NW (r))2

(36)

X = (1, 1, 1,−1)T

Y = (1, s0,−s0,−1)T

Z = (1, s1, s2, 1)
T

W = (1, s3, s4)
T

(37)

NX = (4, 1, 0,−1)T

NY = (4, 2s0 − 1,−2s0,−1)T

NZ = (4, s1 + s2 + s1s2, s1 + s2, 1)
T

NW = (3, s3 + s3s4, s4)
T

(38)

Ek(s) = 2s1 + 2s2 + 2s4 + 4s0s3 + 4s1s2

− 4s0s4 + 2s1s3 + 2s1s4 + 2s2s3 + 2s2s4

+ 4s0s1s2 + 2s1s2s3 + 4s0s3s4 + 2s1s3s4

+ 2s2s3s4 + 2s1s2s3s4 + 242

(39)

Ek(q) = −16q0 − 40q1 − 40q2 − 40q3 − 24q4

+ 16q0q1 + 16q0q2 + 32q0q3 + 48q1q2 + 32q1q3

+ 24q1q4 + 32q2q3 + 24q2q4 + 40q3q4 − 32q0q1q2

− 32q1q2q3 − 32q0q3q4 − 16q1q2q4 − 32q1q3q4

− 32q2q3q4 + 32q1q2q3q4 + 276
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Transforming back Eq. (40) to the s-domain yields the following expression,

which corresponds to the following 2-body Hamiltonian,

Complexity analysis.  This subsection describes complexity analysis on the number of required qubits, 
especially the reduction from O(M3) in the direct method of17 to O(M2) proposed in this paper. In worst case 
condition, a brute force method of finding an M ×M H-matrix should check all possible combinations of “-1” 
and “+1” in the M2 entries of the matrix, i.e., we should perform orthogonality test to all of 2M×M matrices. In 
the SI (Supplementary Information) of17, we have showed that we need M2 logical qubits if the machine capable 
to implement k-body interactions for any non negative integer k; which in this case is up to 4-body Hamiltonian 
terms (Eq. (S5)). When the machine is only capable of implementing 2-body Hamiltonian terms, additional 
ancillary qubits are required. In the sub section High-Order Case: The Needs of Symbolic Computing of the SI, we 
have showed that it will further increase the number of required qubits into M2 +M ×M(M − 1)/2 ; i.e., an 
increase from O(M2) to O(M3).

Further reduction of the needed qubits is achieved through the usage of proposed methods described in 
this paper, such as the Turyn based method. As explained in the section Methods, subsection C. Derivation of 
the Turyn based Method, the (Turyn) Hadamard matrix can be constructed from an (n, n, n, n− 1) Turyn Type/
TT-sequence. For a given (n, n, n, n− 1) TT-sequence, we can construct a 4(4n− 1) order Hadamard matrix; i.e, 
to find an 4(4n− 1) order H matrix, we only need to find a (4n− 1) length sequence. Therefore, in the Turyn-
based method, the required logical qubits to find the M ×M Hadamard matrix is O(M). The quadratic energy 
function given by Eq. (35) implies that there will be up to 4-body terms in the Hamiltonian. Again, when using 
D-Wave that can only accommodate up-to 2-body terms, additional ancillary qubits are needed. Accordingly, 
the final number of the required logical qubits will be O(M2).

Data and code availability
All of codes and data will be provided upon direct request to the authors. Some parts of the codes can be found 
in https://​github.​com/​suksm​ono.
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(40)

E2(q) = −16q0 − 40q1 − 40q2 − 40q3 − 24q4

+ 5, 464q5 + 5, 480q6 + 5, 496q7 + 5, 480q8

+ 5, 480q9 + 5, 488q10 + 1, 816q0q1 + 16q0q2

+ 1, 816q0q3 + 1, 816q1q2 + 1, 816q1q3 − 3, 632q0q5

+ 24q1q4 + 1, 816q2q3 − 3, 632q0q6 − 3, 632q1q5

+ 24q2q4 − 32q2q5 + 1, 816q3q4 − 3, 632q1q7

− 3, 632q1q8 − 3, 632q2q7 − 3, 632q3q6 − 32q3q7

− 32q4q6 − 3, 632q2q9 − 3, 632q3q8 − 16q4q7

− 3632q3q9 − 32q4q8 − 3, 632q3q10 − 32q4q9

− 3, 632q4q10 + 32q7q10 + 276

(41)

E2(s) = 912s0 + 1376s1 + 926s2 + 1844s3 + 482s4

− 908s5 − 916s6 − 928s7 − 916s8 − 916s9

− 936s10 + 454s0s1 + 4s0s2 + 454s0s3 + 454s1s2

+ 454s1s3 − 908s0s5 + 6s1s4 + 454s2s3 − 908s0s6

− 908s1s5 + 6s2s4 − 8s2s5 + 454s3s4 − 908s1s7

− 908s1s8 − 908s2s7 − 908s3s6 − 8s3s7 − 8s4s6

− 908s2s9 − 908s3s8 − 4s4s7 − 908s3s9 − 8s4s8

− 908s3s10 − 8s4s9 − 908s4s10 + 8s7s10 + 8, 448

(42)

Ĥ2(σ̂
z) = 912σ̂ z

0 + 1376σ̂ z
1 + 926σ̂ z

2 + 1844σ̂ z
3

+ 482σ̂ z
4 − 908σ̂ z

5 − 916σ̂ z
6 − 928σ̂ z

7 − 916σ̂ z
8

− 916σ̂ z
9 − 936σ̂ z

10 + 454σ̂ z
0 σ̂

z
1 + 4σ̂ z

0 σ̂
z
2

+ 454σ̂ z
0 σ̂

z
3 + 454σ̂ z

1 σ̂
z
2 + 454σ̂ z

1 σ̂
z
3 − 908σ̂ z

0 σ̂
z
5

+ 6σ̂ z
1 σ̂

z
4 + 454σ̂ z

2 σ̂
z
3 − 908σ̂ z

0 σ̂
z
6 − 908σ̂ z

1 σ̂
z
5

+ 6σ̂ z
2 σ̂

z
4 − 8σ̂ z

2 σ̂
z
5 + 454σ̂ z

3 σ̂
z
4 − 908σ̂ z

1 σ̂
z
7

− 908σ̂ z
1 σ̂

z
8 − 908σ̂ z

2 σ̂
z
7 − 908σ̂ z

3 σ̂
z
6 − 8σ̂ z

3 σ̂
z
7

− 8σ̂ z
4 σ̂

z
6 − 908σ̂ z

2 σ̂
z
9 − 908σ̂ z

3 σ̂
z
8 − 4σ̂ z

4 σ̂
z
7

− 908σ̂ z
3 σ̂

z
9 − 8σ̂ z

4 σ̂
z
8 − 908σ̂ z

3 σ̂
z
10 − 8σ̂ z

4 σ̂
z
9

− 908σ̂ z
4 σ̂

z
10 + 8σ̂ z

7 σ̂
z
10 + 8, 448
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