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Abstract

Species distribution modeling (SDM) is an important tool to assess the impact

of global environmental change. Many species exhibit ecologically relevant

intraspecific variation, and few studies have analyzed its relevance for SDM.

Here, we compared three SDM techniques for the highly variable species Pinus

contorta. First, applying a conventional SDM approach, we used MaxEnt to

model the subject as a single species (species model), based on presence–
absence observations. Second, we used MaxEnt to model each of the three most

prevalent subspecies independently and combined their projected distributions

(subspecies model). Finally, we used a universal growth transfer function

(UTF), an approach to incorporate intraspecific variation utilizing provenance

trial tree growth data. Different model approaches performed similarly when

predicting current distributions. MaxEnt model discrimination was greater

(AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF

was better calibrated (slope and bias – species model: 1.31 and �0.58, subspe-

cies model: 1.44 and �0.43, UTF: 1.01 and 0.04, respectively). Contrastingly,

for future climatic conditions, projections of lodgepole pine habitat suitability

diverged. In particular, when the species’ intraspecific variability was acknow-

ledged, the species was projected to better tolerate climatic change as related to

suitable habitat without migration (subspecies model: 26% habitat loss or UTF:

24% habitat loss vs. species model: 60% habitat loss), and given unlimited

migration may increase amount of suitable habitat (subspecies model: 8% habi-

tat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the

climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that

models derived from within-species data produce different and better projec-

tions, and coincide with ecological theory. Furthermore, we conclude that

intraspecific variation may buffer against adverse effects of climate change.

A key future research challenge lies in assessing the extent to which species can

utilize intraspecific variation under rapid environmental change.

Introduction

Projections of climate change and the related impacts on

species distributions suggest significant ecological distur-

bance, especially when considering species’ range losses

(e.g., Thomas et al. 2004; Urban et al. 2012). Modeling the

future potential distribution of 1,350 European plant

species under various greenhouse-gas emission scenarios

indicates that more than half of these species could become

vulnerable, endangered, critically endangered, or commit-

ted to extinction in the climatic period 2070–2100 if unable
to disperse (Thuiller et al. 2005). Species distribution mod-

eling (SDM) encompasses a broad range of techniques

(Guisan and Zimmermann 2000), and applications ranging

from paleobiology (Svenning et al. 2011) to spread and

control of infectious vector-borne disease (Fischer et al.

2011). However, major uncertainties are associated with

SDM, such as the realistic modeling of migration rates

(Best et al. 2007; Nathan et al. 2011), biotic interactions

(Araújo and Luoto 2007; Preston et al. 2008; Meier et al.
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2010), for example, fecundity and competition (Clark et al.

2011), consideration of micro-climate (Dobrowski 2011;

Hof et al. 2011; Suggitt et al. 2011) or climate extremes

(Zimmermann et al. 2009), and persistence of ecosystem

structure and reliance upon other predictions (Dormann

2007; Wiens et al. 2009). Nonetheless, successful retrospec-

tive predictions of shifts in bird population sizes demon-

strate the value of species distribution models (Green et al.

2008). Currently, migration rates and pathways are added

to the models, thereby increasing realism of the projected

results while still being restricted by limited species-specific

knowledge on potential migration rates (Fischer et al.

2011). Austin (2007) presented a general framework for

SDM studies, such that ecological theory must concur with

a data model and statistical model. The incorporation of

variation within a species or closely related group of species

has been recently addressed as an important challenge to

improve SDM (Zimmermann et al. 2010). However, “spe-

cies” is a taxonomic designation, and may not necessarily

designate an ecologically homogeneous group of organ-

isms, especially when intraspecific ecotypes occur. Experi-

mental evidence suggests that conventional SDM cannot

capture the climatic response of species by treating them as

homogeneous units (Beierkuhnlein et al. 2011). However,

O’Neill et al. (2008) present an interesting approach to

account for intraspecific variation of growth using prove-

nance trial data. Similarly, Benito Garzón et al. (2011)

investigated future tree survival when considering popula-

tion variation, and found that acknowledgment of this vari-

ability provides a more positive projected outlook into

future climates when compared with conventional SDM

approaches. Furthermore, Pearman et al. (2010) note a

slight improvement of their models when incorporating

within-species variation when compared with the tradi-

tional SDM method. Hamann and Wang (2006) developed

an interesting community modeling approach to account

for ecosystem level variability, which has been successfully

applied to highly prevalent tree populations, including

Pinus contorta, in order to consider future development of

local forest stands under climate change scenarios (Gray

and Hamann 2012) as well as past climates (Roberts and

Hamann 2012). The “ecosystem-based” approach has sev-

eral advantages over species models, one being the ability to

model individual populations in a changing environment

(Roberts and Hamann 2012). Within-species variation,

according to the insurance hypothesis (Yachi and Loreau

1999), contributes to a species’ ability to utilize various

resources (Joshi et al. 2001; Kreyling et al. 2012a,b) and

thereby adapt to ecological change (Davis et al. 2005; Nus-

sey et al. 2005; Skelly et al. 2007).

Pinus contorta is a pyrophilic, widely distributed,

outcrossing, wind-dispersed conifer species of high

ecological (Lotan and Critchfield 1990) and economic

importance (Krieger 2001; Karst 2010). Naturally and

through human influence, the economically important

subspecies latifolia has been advancing northward since the

end of the last glacial maximum (MacDonald 1991; Faze-

kas and Yeh 2006) and recent observations hint toward a

continued northward spread (Johnstone and Chapin

2003). Pinus contorta exhibits great ecological variation,

and can be separated into three genetically and ecologically

distinct subspecies: contorta, murrayana and latifolia

(Lotan and Critchfield 1990), making it an ideal candidate to

investigate the effects of intraspecific variability on SDM.

We argue that the integration of within-species variation

is a necessary step when considering ecological theory in

SDM. We investigated the effect of incorporating intraspe-

cific variation on SDM performance and projections using

range-wide, geo-referenced, subspecies information and

provenance test data of Pinus contorta. Two approaches

driven by intraspecific data were compared with conven-

tional SDM, which allowed for robust comparison of our

findings against a particular way to incorporate intraspe-

cific variability. We expected a difference in modeling

results between approaches that ignore intraspecific varia-

tion and those that incorporate intraspecific variation.

Furthermore, given the different theoretical backgrounds

of the modeling approaches, we expected substantial

differences in performance between modeling approaches.

Methods

Climate data

The worldclim climate data (Hijmans et al. 2005) was

used with a resolution of 2.5 arcminutes, which was

reprojected to Albers Equal Area projection (resolution of

4 km2) with GRASS GIS (GRASS Development Team

2012). Climate variables were derived using the worldclim

dataset. Climate variable derivation formulae (Table 1)

were taken from two sources: those used in O’Neill et al.

(2008), and additional bioclimatic variables from Hijmans

et al. (2005). Present climate data (1950–2000) were used

for model training and validation, and future climate sim-

ulations were used for SDM model projections (HadCM3,

A2a emissions scenario; Nakićenović et al. 2000) for peri-

ods 2010–2040, 2040–2070, and 2070–2100. Considering
current CO2 emissions as well as plausible future political

and social developments, the use of A2 simulation data

appears justified (Moss et al. 2010).

Occurrence data

Occurrence data (Fig. 1) were obtained mainly from the

Vegetation Resource Inventory of the British Columbia

(BC) Forest Service, provided at a 1600-m grid and the
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US Forest Service, provided on a 10-km grid. Also, occur-

rence data were further supplemented with online

resources such as herbaria, botanical gardens, and plant

databases (see Supporting Information). Each dataset was

examined extensively for outliers, relative to the most

comprehensive P. contorta occurrence data from Little

(1971). Unfortunately, most occurrences were not docu-

mented and classified to subspecies. In order to address

this problem, occurrences without a subspecies classifica-

tion were assigned the subspecies of their nearest spatial

neighbor (see Supporting Information). The nearest

neighbor analysis assigned the subspecies contorta to some

observations that had elevations far outside its observed

elevational range. Lotan and Critchfield (1990) describe

P. contorta subspecies contorta as occurring mainly

between sea-level and 610-m altitude. One of the P. con-

torta subspecies contorta provenances used in the

Illingworth trial (O’Neill et al. 2008) was sampled at an

elevation of 1266 m (sampled with the reprojected

worldclim-SRTM elevation database); we used this value

as the upper elevational limit of P. contorta subspecies

contorta. These observations were in areas in the Pacific

Northwest where subspecies latifolia and subspecies

contorta introgress, and were therefore assigned to subspe-

cies latifolia. Observations within a raster cell for each

subspecies contorta: 2048, murrayana: 1449, latifolia:

42,342, and totaled: 45,785. The sum of the subspecies

observations does not equal the total observations due to

co-occurrence (see Supporting Information).

Range designation

In order to avoid biased niche estimates arising from

treating areas as absence that are climatically suitable but

are not occupied because of geographic isolation, a buffer

of 1,000 km around the occurrence dataset was calculated

for the entire species as well as for each subspecies for

model building and evaluation. Each model was trained

on its own buffer (see Supporting Information), evaluated

on probabilities within the whole species buffer (Fig. 1 –
“Modeling Range”), and projected to the North American

continent north of 23°N. Pinus contorta has yet to be doc-

umented to occur north of 65°N or in Saskatchewan,

except in the southwest corner (Little 1971). We were

unable to obtain a thorough dataset for Alberta, whose

area was, except for presence data, omitted from the anal-

yses. Areas lying within the buffer of 1000 km, but well

outside the documented natural range of P. contorta were

included as absence data. This meant that, within the buf-

fer, areas north of 65°N, west of the Alberta-Saskatchewan

Table 1. Climate variables investigated across the ranges of Pinus

contorta and subspecies.

Climate variables Unit Source

Annual Heat/Moisture Index ◦C/mm Wang et al. (2006)

Summer Heat/Moisture Index ◦C/mm Wang et al. (2006)

Mean Annual Temp. ◦C Wang et al. (2006)

Mean Warm Monthly Temp. ◦C Wang et al. (2006)

Mean Cold Monthly Temp. ◦C Wang et al. (2006)

Temp. Difference/Annual Range ◦C Wang et al. (2006)

Mean Annual Precip. mm Wang et al. (2006)

Mean Summer Precip. mm Wang et al. (2006)

Isothermality ◦C/◦C Hijmans et al. (2005)

Mean Diurnal Range ◦C Hijmans et al. (2005)

Temp. Seasonality ◦C Hijmans et al. (2005)

Mean Temp. of Wettest Quarter ◦C Hijmans et al. (2005)

Mean Temp. of Driest Quarter ◦C Hijmans et al. (2005)

Mean Temp. of Warmest Quarter ◦C Hijmans et al. (2005)

Mean Temp. of Coldest Quarter ◦C Hijmans et al. (2005)

Precip. of Wettest Month mm Hijmans et al. (2005)

Precip. of Driest Month mm Hijmans et al. (2005)

Precip. Seasonality mm Hijmans et al. (2005)

Precip. of Wettest Quarter mm Hijmans et al. (2005)

Precip. of Driest Quarter mm Hijmans et al. (2005)

Precip. of Coldest Quarter mm Hijmans et al. (2005)

Precip. of Warmest Quarter mm Hijmans et al. (2005)

Mean Max. Temp. of Driest Quarter ◦C This study

Modeling
Range

contorta
murrayana
latifolia

Figure 1. Pinus contorta subspecies distributions across its natural

range. The number of observations documented to subspecies was

low; therefore the nearest observation that was classified to

subspecies was assigned that observations’ subspecies classification.

The dashed line outlines the model building buffer area i.e. model

training and evaluation (see Supporting Information). Occurrence data

were obtained mainly from the British Columbia Ministry of Forests

and US Forest Service Forest Inventory and Analysis; the observational

data cover most of the natural range. Within the modeling range,

each raster cell was assigned either a presence or absence.
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border, or areas much further (>500 km) away from the

edges of the observations were considered to be absence

data. Areas of southern Alaska were omitted from analysis

on the grounds that the sampling intensity is sparse in this

region, and because two observations (Arctos Museum of

the North, 2010) indicate possibly viable populations in

south-central Alaska (see Supporting Information).

Modeling approaches

Three SDM approaches were used to model distributions of

P. contorta. MaxEnt (Phillips et al. 2006) was used (1) as a

conventional SDM (Guisan and Zimmermann 2000; Wiens

et al. 2009), the species observational data were modeled as

if the species was ecotypically homogeneous, called here-

after the “species model”. In order to incorporate intra-

specific variation, the most prevalent P. contorta subspecies

(contorta, murrayana, and latifolia) were modeled; (2) as

autonomous units, call hereafter the “subspecies model”.

Finally, the “Universal Transfer Function” (UTF) from

O’Neill et al. (2008) was used (3) to incorporate the

observed variability in provenance trial tree growth.

Species model

Candidate climate variables were tested for collinearity

with each other with Spearman’s non- parametric correla-

tion. Correlation among candidate climate variables was

examined. Where pairs of variables were highly correlated

(q > 0.7), a univariate generalized additive model (GAM)

was fitted to the test data (see below) using each highly

correlated variable. In order to obtain less correlated vari-

ables, the variable of each pair that yielded the greater

AIC was omitted. MaxEnt (Phillips et al. 2006; Maximum

Entropy, version 3.3a) was then used to model the cur-

rent distribution with the full occurrence dataset. Austin

(2007) discussed species response curves that coincide

with ecological theory and we assumed a smooth response

along a climatic gradient. Therefore, MaxEnt “feature”

types linear, product and quadratic features were used

(Elith et al. 2011), and the “samples-with-data” (SWD)

input data format (see Appendix S4 in Elith et al. 2011).

Otherwise, default settings were used. We use the term

“absence data” to refer to the MaxEnt analogy “back-

ground samples”, and model absence data as background

psamples (MaxEnt argument: environmentallayers).

Subspecies model

Each subspecies was treated as its own viable species, and

was individually investigated for determinant climate vari-

ables. This was done using the same algorithm as for the

“species model” approach. The resultant N subspecies

model probabilities Psubsp,i at a given location x were then

combined (Eq. 1) as in Pearman et al. (2010) to yield the

occurrence probability of the species as a whole, Ptot:

PtotðxÞ ¼ 1�
YN
i¼1

ð1� Psubsp;iðxÞÞ (1)

Universal transfer function approach

The Illingworth provenance trial (Illingworth 1978) began

in the late 1960′s, taking seed from 140 provenances

across most of the range of P. contorta, growing seeds in

a nursery, and planting the 3-year-old seedlings across BC

and Yukon Territory in 1974. An incomplete factorial

design was used to test 60 populations at each of 60 test

sites. We derived the UTF according to the same methods

from O’Neill et al. (2008), using the Illingworth trial

35- year-old tree plot growth data (volume per hectare [V

PH], m3/ha), a measure that combines height, diameter

and survival. Using the original model structure, tree plot

growth data were used to fit the UTF to the worldclim

climate variables. The UTF projections were produced in

two steps. First, at each test, site (S), individual prove-

nance (P), mean cold month temperature (MCMTP) were

fitted to population production (VPHP) using a unimodal

Cauchy function to develop an individual transfer func-

tion for each test site:

VPHP ¼ AS

1þ MCMTP�BS

CS

� �2 (2)

where AS, BS and CS are the fitted function parameters,

yielding a transfer function per trial site S (N = 42, see

Eq. 2; for background see Raymond and Lindgren (1990);

Lindgren and Ying (2000)). Inter-site variation in the

transfer functions, that is, the variation in the transfer

function parameters AS, BS and CS was then modeled as a

function of site climate, using mean annual temperature,

mean coldest month temperature, and annual heat/mois-

ture index (see O’Neill et al. 2008; for details). The result-

ing UTF (Eq. 2) predicts 35-year-old tree growth of a

population from any climate growing in any climate

(VPHS), and was used to predict current and future

growth estimates. The growth estimates for each raster

cell were then used to explain the observational data

using logistic regression. The logistic regression model

was then used to convert present and future growth esti-

mates to occurrence probabilities.

Model evaluation

Observations were randomly partitioned into two data-

sets, with 70% of the cells selected for training and the
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remaining 30% of the cells used for model evaluation, as

is common in SDM studies (e.g., Thuiller et al. 2004;

Fischer et al. 2011). The same set of cells was used for

training and evaluating all models, that is, across all three

approaches. Model performance was assessed by the area

under the receiving operator characteristic curve (AUC),

which measures discrimination, the Nagelkerke-Cox-

Snell-Maddala-Magee R2–index, a general indicator of

performance, and the logistic calibration curve, of which

the slope indicates over- or underfitting (calibration) and

the intercept indicates bias (see Reineking and Schröder

2006). A calibration curve slope greater than 1 (a > 1)

indicates under-fitting/over-regularization, vice versa for

a < 1, and bias indicates how well the numerical values

of the actual and predicted probabilities correspond; that

is, an intercept of less than 1 (b > 1) indicates that the

predicted probabilities are too high and vice versa. The

variable “importance” was calculated by randomizing

(n = 10) each variable and then subtracting the mean

change in AUC from the full model, and each AUC

difference is divided by the sum of all AUC changes to

derive the relative importance.

Suitable area quantitation

In order to avoid the somewhat arbitrary procedure of

threshold choice (Fielding and Bell 1997), the total area

of habitat suitability Atot was quantitated by multiplying

the predicted probability of occurrence Pj for each cell j

with the area of the cell Areaj and summing over the M

analyzed cells (Eq. 3).

Areatot ¼
XM
j¼1

Pj � Areaj (3)

The AUC is a rank-based measure, which allowed us to

quantitate the discriminative ability of the models, with-

out choosing a threshold and creating a projected binary

map of presences and absences. We refer to habitat suit-

ability as the modeled probability of occurrence, which is

important for predicting the success of seedlings, but also

serves as reference for production potential, although

adult trees have been observed to tolerate a wide range of

conditions. The relative amounts of suitable habitat were

quantitated with two dispersal scenarios: “no dispersal”

and “full dispersal”. A full dispersal scenario is the

optimistic extreme and assumes that the species can reach

all habitats on the North American continent. The no

dispersal scenario is the pessimistic extreme, and assumes

that the species will not be able to migrate. These dis-

persal scenarios were used to bound and illustrate the

range of possible future locations of the species’ climate

habitat, and to guide assisted migration efforts. Because

we did not set a probability threshold to create a presence

–absence map from the model projections, we took the

occurrence data and quantitated the area of suitable

habitat at each occurrence location. All data preparation,

analyses, and visualization were conducted in R (R Devel-

opment Core Team 2012) and GRASS GIS (GRASS

Development Team 2012, version 6.4).

Results

Model performance

For each MaxEnt model target, a separate set of climate

variables was found to be best suited for describing the

occurrence distributions, and the response curve charac-

teristics give insight into the relationship between

P. contorta distribution and climate (Table 2). The shapes

of the curves representing the response of each subspecies

provide more evidence that each subspecies should react

differently to climatic changes. It is interesting to note the

variety with which the models depict each subspecies,

especially when comparing with the “species” model. In

general, the models performed well. According to the R2

-index and AUC values, the species and subspecies models

performed generally better than the UTF and were more

discriminative, respectively (Fig. 2). According to the cali-

bration analyses, the occurrence probabilities of the spe-

cies and subspecies models were under-fitted (slope: 1.31

and 1.44) and overestimated (bias: �0.58 and �0.43),

respectively, while the predicted occurrence probabilities

from the UTF are well calibrated (slope: 1.01 and bias:

1.44).

It is notable that the species model predicts low occur-

rence probabilities of subspecies murrayana in the Sierra

Nevada. All models predict a medium to high occurrence

probability in eastern Canada and southwest Alaska where

it is absent. The MaxEnt species model predicts a high

occurrence probability in the Northwest Territories, where

P. contorta is currently extending its range, but not to the

extent predicted.

Importance of intraspecific variability for
future projections

Predicted future habitat suitability shows a general north-

ward shift of suitable habitat (compare Figs. 2 & 3). The

models predict different future development of suitable

area, with a marked difference between the UTF or the

subspecies model and the species model (Fig. 4); that is,

the difference is between the models that do or do not

incorporate intraspecific variability. More specifically, in a

no-dispersal scenario, the UTF predicts 24% habitat loss

for the period of 2070–2100 relative to the current
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scenario (1950–2000), and similarly the subspecies model

predicts 26% habitat loss, while the species model

predicts 60% habitat loss. Furthermore, given perfect

dispersal to newly suitable climatic areas for the period of

2070–2100, the UTF predicts 12% habitat gain, and the

subspecies model similarly predicts 8% habitat gain, but

the species model predicts 51% habitat loss. As can be

seen in Fig. 4, the predicted change in climatically suit-

able area is gradual over time. Examining the subspecies

model projections more carefully (Fig. 5), predicted

climatic change affects the subspecies differently: in a no-

dispersal scenario, subspecies latifolia may lose current

habitat (23% habitat loss) by the period 2070–2100, and
subspecies contorta is also predicted to experience habitat

loss (28% habitat loss), whereas the subspecies murrayana

is predicted to drastically lose current habitat suitability

(95% habitat loss). In a full dispersal scenario, subspecies

latifolia may experience habitat gain (12% habitat gain),

whereas subspecies contorta is predicted to experience a

decrease in habitat suitability (95% habitat loss) as well as

subspecies murrayana (95% habitat loss).

Discussion

The three models exhibited similar performance and

performed well for current distributions and climates.

The species model was more discriminative than the

UTF, but was under-fitted and yielded overestimated

occurrence probabilities similar to the subspecies model.

The UTF was less discriminative but better calibrated

than either the species or subspecies models, whereas the

species and subspecies models were more discriminative,

but were poorly calibrated. The UTF approach used the

occurrence data only via logistic regression to convert the

predicted tree growth to occurrence probabilities;

independently, the growth model was derived from the

Illingworth provenance trial data. While the UTF

approach still discriminates well, we see a non-trivial per-

formance difference between the species or subspecies

models, and the UTF. Notably, the subspecies model

slightly outperformed the species model, coinciding with

the results from Pearman et al. (2010).

The SDM model algorithm (e.g., Random Forest, GAM,

MaxEnt, etc.) has been shown to be an important source

of uncertainty (Dormann et al. 2008). However, in this

study, we observed that incorporating intraspecific varia-

tion is another important source of variation in addition

to model algorithm. Results of the species model and the

other two models differed greatly in terms of predicted

changes in the extent of future suitable habitat. In con-

trast, we did not observe a notable difference between the

approaches driven by intraspecific data, that is, the

subspecies model and the UTF (Fig. 4). In the two

dispersal scenarios, the intraspecific approaches agreed

with each other, but differed from the conventional spe-

cies model, which predicted much greater climate change

effects. Given that the two intraspecific approaches come

to similar conclusions concerning climate change impacts

suggests that the result does not depend on the particular

way in which intraspecific variation is taken into account,

Table 2. The summarizing dimensions of the climate niche for each modeling subject using MaxEnt.

Subject Variable I.(%) Range Curve

Subsp. contorta Mean diurnal range 44.7 4–13 Unimodal, pos.

Maximum temperature of dry quarter 29.8 �7–30 Unimodal, pos.

Mean temperature of wet quarter 25.5 �7–19 Unimodal, pos.

Subsp. murrayana Precipitation of warm quarter 40.3 1–232 Sigmoidal, neg.

Precipitation of cold quarter 25.3 11–581 Sigmoidal, neg.

Maximum temperature of dry quarter 14.9 �7–21 Unimodal, pos.

Precipitation seasonality 9.8 19–110 Unimodal, pos.

Precipitation of wet quarter 9.7 152–760 Sigmoidal, neg.

Subsp. latifolia Mean annual temperature 72.8 �12–14 Unimodal, pos.

Precipitation of dry quarter 14.7 0–262 Unimodal, pos.

Precipitation seasonality 12.5 6–70 Sigmoidal, neg.

Species model Mean temperature of warm quarter 72.8 0–22 Unimodal, pos.

Precipitation of dry quarter 19.8 2–470 Unimodal, pos.

Precipitation seasonality 7.4 20–75 Sigmoidal, neg.

A set of variables was found to be less correlated (q < 0.7) and important to explain the distributions of each subspecies. The ranges of variables

(units are in Table 1), in which each subspecies responds to climatic conditions, and the shape of their response curve highlight the different char-

acteristics of each subspecies, and provide an informative contrast to the conventional method (species model). Furthermore, the importance (I.

(%)) of each variable, measured by the relative change in AUC when singularly randomizing, hints at the dominant climate factors depicted by

each model.
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and thereby corroborates previous research using the

subspecies approach (e.g. Pearman et al. 2010). Results of

our approaches including intraspecific information concur

closely with predictions of net change in the extent of

P. contorta climatically suitable habitat within BC from

Hamann and Wang (2006) as well as Gray and Hamann

(2012), whose community modeling approach yielded

promising results for projecting ecolimatic shifts in forest

stands (Gray et al. 2011; Gray and Hamann 2012),

although they rely on the assumption that community

composition and thereby ecological structure will endure.

Gray and Hamann (2011) found that if P. contorta popu-

(a)

(b)

(c)

Figure 2. Occurrence probability distributions were modeled in the

current climatic period (1950–2000) and the three models (a) species

model (b) subspecies model and (c) universal transfer function (UTF)

were projected onto North American climate data (Hijmans et al.

2005). The models were trained and evaluated on the modeling

range (see Fig. 1) and projected to the projection range (dashed line),

which corresponds to most of the North American continent. The

MaxEnt models are highly discriminative, but the UTF is better

calibrated.

(a)

(b)

(c)

Figure 3. Projections of the three models (a) species model (b)

subspecies model and (c) universal transfer function onto North

American climate for the period 2070–2100 under the A2a emissions

scenario from the HadCM3 global climate model.

ª 2013 The Authors. Published by Blackwell Publishing Ltd. 443

B. Oney et al. Importance of Intraspecific Variation in SDM



lations were unable to migrate, suitable habitat within seed

zones would decline by 14% (2020s), 22% (2050s) or 34%

(2080s), levels comparable to the “no dispersal” scenario

of our intraspecific models (Fig. 4b). The species models

from McKenney et al. (2007) predict less habitat change

than our species model, whereas Coops and Waring

(2010) using a process-based model predict a similar

change in habitat change; nonetheless, the approaches uti-

lizing intraspecific information presented here predict

much lesser climate change impacts, given both perfect

and no migration. This further indicates that migration

abilities should be investigated at sub-species level.

Benito Garzón et al. (2011) came to very similar con-

clusions regarding the meaning of intraspecific informa-

tion for Pinus sylvestris and Pinus pinaster in light of

climate change using provenance trial survival data. Our

study complements and corroborates their results with

datasets that are more expansive and representative of the

species subject, and focus on the growth response rather

than mortality. In the case of Pinus sylvestris, the Eurasian

analog to P. contorta, the range of the species that Benito

Garzón et al. (2011) sampled represents a relatively small

portion of species range, and the performance of their

conventional SDM may be a result of the small geo-

graphic range of the occurrence data; Thuiller et al.

(2004) present results demonstrating that the smaller the

range, the more likely the outlook produced by SDMs will

be grim. Although tree mortality is directly related to spe-

cies distributions, tree mortality is difficult to predict

(van Mantgem et al., 2009), as is also apparent in the

low-explained survival variance presented by Benito

Garzón et al. (2011), and influenced by a range of factors

in addition to climate, that is, bark beetles, over-browsing,

and other more proximal influences (Austin 2007). The

convergent results of the study by Benito Garzón et al.

(2011) and ours indicate the robustness of the underlying

phenomenon and highlight the utility of provenance trials

to investigate sub-species variation.

Regarding the use of conventional SDMs, the most cost-

and time-efficient method to incorporate intraspecific

variability is to model sub-specific variants individually

and combine the respective projections afterward, which

is presented first in Pearman et al. (2010) and again in

this study. This approach is of course less informative

than carrying out provenance trials, but serves the pur-

pose of creating more realistic species distributions than

conventional SDMs. Given the similarity of the methods

presented here that incorporate intraspecific variability

(subspecies model vs. UTF), it appears that “sub-clade”

(Pearman et al. 2010) or subspecies models are a more

robust approach to using occurrence data. As Pearman

et al. (2010) noted, the less prevalent conspecifics are

improperly represented in species (clade) models. Simi-

larly, although not quantitated, we find that the species

model underpredicts distributions of subspecies murraya-

na in the Sierra Nevada as well as subspecies contorta

along the coast, where they currently thrive, which is not

the case in the subspecies model (Fig. 5). The niche of

the most prevalent subspecies latifolia appears to be best

represented in the species model. Pearman et al. (2010)

described prerequisites for dividing a species or taxon

into subcomponents, which summarize to ecogeographi-

cal distinction of within-taxon ecotypes, in other words,

substantial niche differentiation which is spatially segre-

gated. Given the differences among the subspecies of

P. contorta, the effects of climate may reasonably have a

different effect on each subspecies and our results support

this notion (Fig. 5). Pearman et al. (2010) show that 7 of

10 species, which exhibit considerable intraspecific varia-

tion, have greater projected range extents in future
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Figure 4. Predicted suitable habitat area of Pinus contorta relative to

the reference climatic period 1950–2000 assuming (a) full dispersal

and (b) no dispersal for each climatic period for all modeling

techniques. Modeling techniques which incorporate intraspecific

variability – the UTF and subspecies model, predict more optimistic

outcomes for Pinus contorta.
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climates. Furthermore, their models, which incorporate

within-species variation, outperform their species models,

similar to our results (Fig. 2 and see Supporting Informa-

tion). Species with much intraspecific variability such as

P. contorta exhibit niche diversity and breadth, which is

difficult to capture in a single model. In the case of

P. contorta, it appears that the niche breadth was underes-

timated by the species model. All models predict suitabil-

ity in Eastern Canada and Southwest Alaska, where

P. contorta occurs rarely or is absent, suggesting that sub-

stantial niche overlap with other boreal tree species. As

thoroughly discussed in the field of SDM (e.g., Guisan

and Zimmermann 2000), only the realized niche is cap-

tured by SDM approaches. Perhaps P. contorta could

occur more frequently in many other parts of Canada

and in southern Alaska, but natural history, processes

such as dispersal and competition, and/or forestry man-

agement have shaped current observation patterns.

Furthermore, difference in realized and fundamental

niches may also reflect evolutionary lag following the last

glaciation or recent climate change (O’Neill et al. 2008).

Given the range of climates that P. contorta inhabits, it is

very possible that the predicted suitable areas would host

P. contorta well.

The work of Thomas et al. (2004) initiated a wide

discussion regarding the extinction risks associated with

global climate change. In reply, Harte et al. (2004) argued

that the conclusions therein may be conservative in that

the averaging characteristic of SDM implies that one eco-

type is as capable as another ecotype, from a climatically

different portion of the species’ range, of filling the

modeled niche. Results from the Illingworth trial (Rehfeldt

et al. 1999; Rehfeldt and Wykoff 2001; O’Neill et al. 2008)

and other large provenance trials (Reich and Oleksyn

2008) concur in that tree growth decreases with increasing

climatic distance between test site and population origin.

However, when considering the UTF (i.e., O’Neill et al.

2008) across all provenances, the contribution of intraspe-

cific variation appears to buffer climate change impacts.

Thuiller et al. (2004) present results suggesting that species

exhibiting greater niche variation have a greater chance of

coping with climate change. Furthermore, results from this

study (as well as Pearman et al. 2010) indicate that con-

ventional species distribution modeling techniques are

unable to properly estimate the niche breadth of intraspe-

cific variants, especially if the intraspecific variants are

differently prevalent, and may therefore result in future

projections that overestimate suitability distribution losses

(e.g., Thomas et al. 2004; Thuiller et al. 2008; Urban et al.

2012). Considerable intraspecific variability is a common

feature of plant species with broad distributions as indi-

cated by local adaptations (e.g., Joshi et al. 2001; Hufford

and Mazer 2003; Savolainen et al. 2007; Kreyling et al.

2012b). We find that the individual subspecies models

show the same or better performance than the single

species model (Fig. 4), in accordance to the results of

Kadmon et al. (2003). However, the performance of the

combined subspecies model cannot easily be explained by

the often better performance of models for species with

smaller niches, because the combined model does not nec-

essarily represent small niches, but rather a wider range of

niches, and it is therefore relevant that the overall perfor-

mance of the combined model was not lower than that of

the single species model. Species with restricted distribu-

tions are on average more vulnerable to climate change

(Thuiller et al. 2004; Schwartz et al. 2006), and species

with little intraspecific variability or niche breadth are also

most likely to be disadvantaged. While this study addressed

intraspecific variation, all approaches assumed that the

derived relationships to the environment do not evolve, as

they likely would for real populations (Benito Garzón et al.

2011). However, our findings indicate that intraspecific
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Figure 5. Relative predicted suitable habitat area of Pinus contorta

subspecies assuming (a) full dispersal and (b) no dispersal for each

climatic period (taken from the subspecies model).
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variation alone already allows for buffering against envi-

ronmental change. This is relevant as examples of niche

conservatism, that is, the static nature of a niche, occur fre-

quently in the fossil record (Davis and Shaw 2001) and in

current studies (Wiens et al. 2009). Arguably, O’Neill et al.

(2008) provide a compelling example of niche conserva-

tism in P. contorta: the best predictor of transplanted tree

growth was the mean cold monthly temperature of its

provenance climate.

In conclusion, this study emphasizes the need to

investigate intraspecific variation, if applicable, when

considering assisted migration (Aitken et al. 2008;

Kreyling et al. 2011). Whether using provenance trial data

(e.g. O’Neill et al. 2008; Benito Garzón et al. 2011) or

acknowledging ecogeographically unique intraspecific

variants with a conventional SDM technique (e.g., Pear-

man et al. 2010), intraspecific information is a necessary

addition to sapient SDM analyses. Our results show that

incorporation of intraspecific variation results in very dif-

ferent, in this case much more positive, projections of

future suitable habitat for a highly variable species.

Assessing the extent to which species are able to utilize

intraspecific variation presents a pertinent research chal-

lenge.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article at the publisher’s web site:

Table S1. Observation data were gathered from many

sources. The largest sources of data are listed first. Distri-

butional data (Figure 1) were obtained from many

sources, including government agencies, but also from

online resources such as herbaria, botanical gardens, and

plant databases.

Table S2. Prevalence data that was presented to the Max-

Ent models for each modeling target. The sum of subspe-

cies occurrences do not add to the amount of occurrences

for the entire species, because the subspecies co-occur in

several locations, which is counted as a single occurrence

for the whole species.

Figure S1. Pinus contorta subspecies distributions were

given a 1,000km buffer and were truncated in the areas

where no survey data exists. The smaller (truncated) areas

refer to the model-building or the training area. The

models built were then projected to the full subspecies
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range i.e. entire 1000km buffer called “subsp. projection

range”. Each subspecies has its own modeling and projec-

tion range (see text). The modeling range represents the

areas, where presence-pseudoabsence data is available.

Figure S2. Pinus contorta subspecies distributions were

projected for the current period of 1950–2000 and then

combined afterwards (Equation 1). Subspecies’ contorta a)

murryana b) and c) latifolia were modeled within their

habitats with a 1000km buffer and then projected to the

North American continent.

Figure S3. Pinus contorta subspecies distributions were

predicted for the future period of 2070–2100 and then

combined afterwards (Equation 1). Subspecies contorta a)

is predicted to shift up along coastal areas, whereas subsp.

murrayana may lose a substantial amount of habitat, and

latifolia should show a dramatic shift northwards.

Source code S1. The R and GRASS code used to prepare,

analyze and visualize the data in this study. Documenta-

tion is within the code as well as acknowledgements of

the author(s) of the code.
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