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Abstract

The thymectomy specimens from the “thymectomy trial in non-thymomatous myasthenia

gravis patients receiving prednisone therapy” (MGTX) underwent rigid and comprehensive

work-up, which permits analysis of the spatial distribution of histological and immunohistolo-

gical features. This analysis revealed strong intra- and inter-case variability. While many his-

tological features (e.g. median percent fat content among different specimens) can easily be

correlated with clinical parameters, intra-case spatial variability of histological features has

yet defied quantification and statistical evaluation. To overcome this gap in digital pathology,

we here propose intra-case entropy of measured histological features in all available slides

of a given thymectomy specimen as a quantitative marker of spatial histological heterogene-

ity. Calculation of entropy led to one value per specimen and histological feature. Through

these ‘entropy values’ the so far neglected degree of spatial histological heterogeneity could

be fed into statistical analyses, extending the scope of clinico-pathological correlations.

Introduction and objectives

The “thymectomy trial in non-thymomatous myasthenia gravis patients receiving prednisone

therapy” (MGTX) [1] showed that extended trans-sternal thymectomy in combination with

prednisone was significantly more beneficial than prednisone alone in terms of myasthenia

gravis (MG) clinical status and corticosteroid requirements. The study protocol included a

rigid method for handling and inspection of thymectomy specimens (Fig 1A) [2]. This stan-

dardization has allowed i) the calculation of overall, mean or median values of various
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immunohistological features (e.g. the mean number of CD23(+) lymphoid follicles per slide

per thymectomy specimen), and ii) analysis of the spatial distributions of immunohistological

features across different anatomical regions of individual thymectomy specimens and across

specimens of the thymectomized cohort.

The objective of this analysis is to correlate quantitative histological findings (including

their heterogeneity as a new morphological ‘dimension’) with clinical outcome parameters to

eventually identify at the time of surgery pathological features with prognostic value in terms

of MG outcome. Furthermore, it is hoped that recommendations for an appropriate and eco-

nomical evaluation of thymectomy specimens will result from the analysis.

Material

1.1 Thymectomy specimens

Thymectomy specimens were retrieved at different clinical centers and processed according to

the MGTX protocol, including removal of all mediastinal fat from the thymus proper [1–3].

This protocol requested local pathologists to retrieve numerous tissue blocks of defined size

from strictly defined bilateral regions of the formalin fixed thymectomy specimens (see below

for details) [3, 4]. This rigid, spatially standardized sampling scheme enabled us to compara-

tively analyse spatial tissue heterogeneity among the resection specimens from different

patients [3, 4]. From the 66 thymectomy specimens that were recruited for the MGTX trial, 11

dropped out because i) local pathologists disregarded the sampling protocol; ii) the diagnosis

was incorrect (thymoma instead of non-neoplastic thymus); or iii) patients withdrew their

Fig 1. Specimen work-up and heterogeneous spatial distribution of the number of follicles on one slide A) Work-up scheme for the specimens in the MGTX trial [1, 3].

Thymuses were sub-divided into regions that underwent predefined evaluation (e.g. complete work-up of the central A-region, partial work-up of other regions) B)

Distribution of the median number of lymphoid follicles in CD23-stained sections per case and the associated minimum-maximum-value-range across all available

slides per case. Case 37T004 from the MGTX-trial is highlighted as an example showing high in-case variation.

https://doi.org/10.1371/journal.pone.0197435.g001
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consent to the scientific evaluation of their resected thymuses. Therefore, 55 cases were

included in the current study. Each thymus was subdivided into several predefined sub-regions

(Fig 1A). The central horizontal slice of each formalin-fixed specimen (plane / region A)

underwent complete work-up, while representative single sections of at least 1 cm2 were

obtained from defined regions of the right and left thymic lobe above and below the central

plane (Fig 1A). All blocks with formalin-fixed, paraffin-embedded tissue from the 55 cases

were finally submitted to the Institute of Pathology, University Medical Centre Mannheim,

Germany.

1.2 Evaluation of histological parameters

Of the 55 thymectomy specimens, all obtained tissue blocks (11±5 blocks per specimen)

underwent a pre-defined standard diagnostic protocol: First, all sections were hematoxylin-

eosin (HE)-stained and evaluated for percentage of fat tissue on the slide; percentage of intra-

thymic fat tissue; grading of cortical atrophy; grading of follicular hypertrophy; number of fol-

licles, and proportion of cortical and medullary areas (Table 1). Second, slides containing thy-

mic parenchyma were immunohisto-chemically stained for CD23 (expressed by follicular

Table 1. Overview of gathered histomorphological data. For most of the slides of the 55 thymectomy specimens 16 histomorphological parameters were collected using

different means of measurement as indicated in column. Region “A” designates the completely processed central horizontal tissue plane of a given thymus as shown in Fig

1A. HE, hematoxylin and eosin.

Variable Mode of acquistion Regions

analyzed

Staining Value range Measurement

scale

Basic summary statistics

Narrative description of

follicle morphology

Visual inspection all HE, CD23 nominal

Grading atrophy Visual inspection all HE grades 0–4 ordinal Grade 2 (modus)

Grading follicular atrophy Visual inspection all HE, CD23 grades 0–4 ordinal Grade 0 for HE / Grade 1 for IHC (modus)

Grading overall fat content Visual inspection and

estimation

all HE 0–100% interval 66.6±24.7% (mean±std)

Grading intrathymic fat

content

Visual inspection and

estimation

all HE 0–100% interval 46.9 ± 21.3%(mean±std)

Area with B-cellular

infiltrate

Visual inspection and

estimation

all CD20 0–100% interval 31.2±16.9%(mean±std)

Number of follicle Visual inspection and

counting

all HE, CD23 0–100 interval 1.2±2.5 follicles (mean±std) for HE / 7.1±6.7

follicles (mean±std) for IHC

Cortical area Automatic image

processing

all HE 0–

10.000pixel

interval 2.9±1.4 mm^2 (mean±std)

Medullary area Automatic image

processing

all HE 0–

10.000pixel

interval 13.1±6.9 mm^2 (mean±std)

Follicle area Manual segmentation A HE, CD23,

IgD

0–

10.000pixel

interval 18964±14225 μm^2 (mean±std)

Germinal centre area Manual segmentation A HE, CD23,

IgD

0–

10.000pixel

interval 7877.5±6466.3 μm^2 (mean±std)

Mantle zone area Manual segmentation A HE, CD23,

IgD

0–

10.000pixel

interval 12510±8496.2 μm^2 (mean±std)

Marginal zone area Manual segmentation A HE, CD23,

IgD

0–

10.000pixel

interval 27116.8±17851.9 μm^2 (mean±std)

Area thymic tissue Manual segmentation A HE 0–

10.000pixel

interval 8820.7±6609.9 mm^2 (mean±std)

Number of follicle with

germinal centre

Visual inspection and

counting

A HE 0–100 interval 12.7±12.6 follicles (mean±std)

Number of follicle without

germinal centre

Visual inspection and

coutning

A HE 0–100 interval 5.3±6.7 follicles (mean±std)

https://doi.org/10.1371/journal.pone.0197435.t001
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dendritic cells) using a routine immunoperoxidase technique [5, 6]. Numbers and morphology

of lymphoid follicles were ‘manually’ assessed on digitalized sections (Table 1).

This process led to 16 histological variables (Table 1) per slide (e.g. percentage of fat tissue

as interval scaled data (0–100%); grading of thymic follicular hyperplasia (grades 0–4) as ordi-

nal scaled data) [4]. Nine of these parameters (e.g. the number of lymphoid follicles per slide)

were derived on the basis of the visual inspection of histological slides by two pathologists

(CW and AM), i.e by a technique that can realistically be integrated into a routine pathology

workflow. For the semiautomatic quantification of 5 different types of areas (e.g. the area of

lymphoid follicles) we applied manual segmentation on a subset of the slides. Finally, two

parameters (e.g. cortical area) were assessed by fully automatic image processing in all available

slides. On the basis of these data, statistical “location parameters” (mean, median, modus)

were calculated in order to correlate quantitative histological features with clinical outcome

parameters.

2.3 Data accessibility

The raw data we are dealing with in this work has been collected in the course of the MGTX trial

and is centrally managed by the MGTX Data Coordinating Center [3, 4]. The data described and

used in this work is available at heiData (http://dx.doi.org/10.11588/data/NWE2JJ).

2.4 Data management and gathering in R

As described above (Table 1) data were produced using very different approaches (e.g. visual

inspection with estimation of cortical atrophy; grading or counting; semi-automatic image

processing in Fiji (www.fiji.sc) and automatic image processing in MATLAB (MATLAB

R2016a, Mathworks, Natick, MA, USA) and saved in spreadsheets (Microsoft Excel 2010,

Microsoft Corporation, Redmond WA, USA). Furthermore, demographic and clinical data

associated with each case were obtained from Dr. Cutter, University of Alabama at Birming-

ham and submitted in spreadsheets.

All these datasheets were gathered in R (www.r-project.org) and merged into two main

databases: one database with values per slide and another database with summation values per

case (on the basis of unique case IDs).

2.5 Statistical methods applied

All statistical analysis were performed in R (www.r-project.org) by built-in functions or sepa-

rately loaded libraries [7]:

P-values were calculated accordingly after testing for normal distribution using the Sha-

piro-Wilk test [7, 8]. T-test and Wilcoxon-test were performed in case of normally distribution

and non-normally distributed variables, respectively. P-values <0.05 were considered as

significant.

Pearson-correlation were calculated to check for the linear correlation between two vari-

ables [7].

Linear modelling was performed with single or multiple independent variables to check for

their correlation and prediction quality regarding the modelled endpoints [7, 8].

2.6 Evaluation of entropy as marker of spatial heterogeneity

Since statistical “location parameters” (e.g. means, medians) are not helpful to evaluate “intra-

case variance”, i.e. spatial heterogeneity of a particular histological feature in a given case (as

depicted for follicle counts in Fig 1B), we first quantified variance as an additional feature [9].

Histological heterogeneity of MGTX thymectomy specimens
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Since summation of the deviation values per feature (e.g. range of the follicle number or stan-

dard deviation of fat content) can describe the variance of one feature, but is not suitable to

measure the compound spatial heterogeneity of variables with different measurement scales,

we here propose a probability based model for the quantification of heterogeneity based on

entropy measurement (in bit) per case [10]. This strategy has been successfully used in other

scientific disciplines such as ecology [10] and digital image processing [11–14]. In these fields,

entropy was defined in terms of information theory [15, 16] and has been used to quantify spa-

tial heterogeneity.

This approach can be divided into several steps: i) For the sake of simplification, every

region (measurement point) could have one pre-defined level per variable from a certain

range (e.g. number of lymph follicles with levels 1–10 in Fig 2A; atrophy grading with levels 0

to 4 in Fig 2B). The rationale behind choosing and defining the numbers of levels and the

Fig 2. Variance of the entropy in the MGTX collective. Entropy was calculated for the number [n] of follicles and for the grading of lymphofollicular

hyperplasia in CD23-stained sections [grades 0–4]; entropy calculations for the grading of intra-thymic fat content [%] and the grading of thymic atrophy

[grades 0–4] were based on measurements based on HE-stained sections. Diagonal: The histogram per entropy is plotted with case 37T004 being

highlighted. Lower triangle: Below the diagonal the variables are plotted against each other. Upper triangle: Above the diagonal the corresponding

correlation coefficients are plotted.

https://doi.org/10.1371/journal.pone.0197435.g002
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thresholds were to not over estimate (e.g. in the case of estimated fat-content 5% and 8% are

not significant different) and not to under estimate heterogeneity (e.g. two levels for a fat-con-

tent ranging from 0–100%).This is analogous to digital image processing [12], where entropy

calculation of grayscale images with intensities between 0 and 256 (for a 8bit image) is achieved

through reduction of the 256 intensities to 16 intensity levels. ii) For these levels the relative

probability can be calculated (compare Fig 2). In case of complete randomness the probability

of every level (pi) should converge to one divided by the number of measurement points /

region (m-1). Then, according to Shannon [10, 16, 17], entropy H can then be calculated as

H ¼ �
Pm

i¼1
pi log2ðpiÞ with m as the number of measurement points and pi as the relative

probability of the level of the measurement point i.
iii) Entropy can be defined per variable (e.g. number of lymphoid follicles, atrophy grade)

and case (depending on the number of measurement points), which results in a maximum

possible entropy per variable as a function of the number of measurement points and the prob-

ability of the examined feature. Accordingly, when 6 slides (measurement points) per case

were studied, the respective entropy is Hmax ¼ �
P6

i¼1
1

5
log2

1

5

� �
¼ 2:786 for the atrophy grad-

ing that was subdivided into 5 levels (grades 0–4) and Hmax ¼ �
P6

i¼1
1

10
log2

1

10

� �
¼ 1:993 for

the number of lymphoid follicles, since their absolute numbers (range = 0–50) were subdivided

into 10 levels (levels 1–10). If there are identical values in all regions, i.e. if there is a completely

random distribution, the entropy Hmax ¼ �
P6

i¼1
1 log2ð1Þ ¼ 0 (compare Fig 2).

Results

3.1 Thymic histomorphological heterogeneity across the cohort of MGTX-

patients

Based on HE-stained (for fat) or CD23-stained (for follicles) sections, entropy per case was cal-

culated for four histological features: The number of follicles; the grade of lymphofollicular

hyperplasia (based on follicles per low power field)[4]; the grade of atrophy and the estimated

percentage of intra-thymic fat) (Fig 2). The entropy values showed a remarkable variability for

all features across the cases (compare the histograms on the diagonal in Fig 2). Furthermore,

the entropy values of each single feature showed no significant correlation with any one of the

other three features. Therefore, the entropies of these four histological features of the thymec-

tomy specimens appeared independent of each other and usable as independent variables for

further statistical analyses.

3.2 Comparing histological parameters and their entropy

Entropy of histological parameters (e.g. the percentage of intrathymic fat, the number of

CD23-positive lymphoid follicles etc.) was calculated in order to generate new variables to be

used for further statistics and modeling [9]: Here, we found no evidence of a correlation

between the entropy of the grading of the intra-thymic fat content and the patient age (Pearson

correlation -0.12). This finding is in contrast to the percentage of intra-thymic fat itself that

needs normalization to age because of thymic involution (Pearson correlation 0.47 and p<

0.001 for the correlation of intrathymic fat and the patient age)[3, 18]. Interestingly, we found

a marginally non-significant correlation between the percentage of intrathymic fat and the

BMI as surrogate of the body weight (Pearson correlation 0.44, p = 0.051). In turn, for the

entropy of the intrathymic fat there is no correlation to the BMI.

Furthermore, we found that that the entropy of the number of CD23-positive follicles

was not significantly different between patient groups stratified according to basic patient

parameter like gender (mean entropy in females 0.52±0.66, mean entropy in males 0.47±0.60,

Histological heterogeneity of MGTX thymectomy specimens
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p = 0.786) and age (Pearson correlation across an age range of 18–68 years was -0.23,

p = 0.319).

This could indicate that entropy of these particular features is an independent variable,

which does not need normalization to patient age and gender.

3.3 Checking the independence of entropy

One possible limitation of the entropy approach is its relation to the number of measurement

points per case: If there are only few points (e.g. due to a small specimen or to limited sam-

pling), the maximal possible entropy of that case is relative low (e.g. for 3 measurement points

with 10 possible levels (pi = 0.1) Hmax = 0.99). This low value of entropy could lead to the erro-

neous conclusion that the investigated variable shows a high degree of order. To test for this

possibility, we correlated the calculated entropy values with the number of underlying mea-

surement points. Indeed, there was no significant correlation between the entropy values for

the number of follicles and the number of measurement points, i.e. slides per case (Pearson-

correlation 0.07, p = 0.652). We interpret this finding as an indication of having enough sam-

ple points per case to avoid over-estimation of the entropy of the number of follicles.

3.4 Correlation of histomorphological heterogeneity with clinical

parameters

We next analyzed the correlation between the entropy of the four histological parameters and

several clinical parameters by explorative modeling (compare Table 1) [19, 20]. Thereby, the

main idea was to include many variables in the linear model and to subsequently further focus

on the ones with a significant contribution: The following clinical outcome parameters were

analyzed separately: prednisone exposure (area under the dose-time curve) from the time

point of surgery to 12 months after surgery; MG-severity (measured by the QMG-score) at

enrollment; MG-duration before surgery; a 3-point drop in the QMG score (which has been

defined as significant improvement by neurologists [1, 21, 22]), and the achievement or not of

minimal manifestation status between month 12 and month 36 after surgery. On this analysis,

only the entropy of the grading of intra-thymic fat content showed a statistically significant

contribution in a linear regression model for the absolute post operative prednisone dose

(henceforth called post-operative prednisone-load) (Table 2). Subsequently, the factors with a

significant contribution to the model were analyzed alone. Then, a significant positive correla-

tion between the entropy of the grading of the intra-thymic fat content (as single independent

Table 2. Explorative modelling. To model the effect of the entropy on certain clinical parameters / endpoints, explorative modelling with logistic regression for categori-

cal clinical endpoints (QMG-drop, MMS) and linear regression for clinical endpoints with linear scaling (QMG-score, MG-duration, pre- and postoperative prednisone

load) were performed. Respectively, one clinical parameter is thereby modeled on basis of four entropy values (for the number of follicles in the CD23-staining, the follicle

grading in the CD23-staining, the grading of the intratyhmic fat and the grading of the atrophy). The table shows the p-value (� indicates significance at the 5%-level) per

variable in the adjusted model that contains all the other variables against the respective clinical endpoint.

entropy [bit]

end-point variable intercept n follicle CD23 grading follicle CD23 grading intrathymic fat grading atrophy

QMG-drop M12-36 <0.001 0,914 0,974 0,904 0,971 logistic regression

MMS M12-36 <0.001 0,402 0,847 0,082 0,621

QMG-score at baseline 0,006 0,489 0,479 0,575 0,712 linear regression

MG-duration 0,028 0,363 0,992 0,48 0,301

Absolute prednisone dose before surgery 0,05 0,47 0,386 0,129 0,725

Absolute prednisone dose

after surgery

0,674 0,755 0,553 0.015 � 0,741

https://doi.org/10.1371/journal.pone.0197435.t002
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variable) and the postoperative prednisone load could be confirmed (p-value for entropy

grading intra-thymic fat 0.031). Fig 3 illustrates the trend to higher post-operative prednisone

loads for cases with higher entropy. However, since the correlation analysis showed a small

R-squared (R2 = 0.071), the predictive power of our model was low. In order to check, whether

Fig 3. Correlation between the entropy of intra-thymic fat and post-operative absolute prednisone-dose. On linear modelling, a significant

correlation (p = 0.03) between the entropy of intra-thymic fat per case and the post-operative absolute prednisone dose (area under the dose-time curve

for prednisone months 0–12) could be shown. To visualize the correlation the values per case are plotted against each other with the calculated regression

line.

https://doi.org/10.1371/journal.pone.0197435.g003
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our model was suitable at all for this set of data, we performed cross validation by randomly

dividing our patient collective of n = 55 into three sub-groups (folds) of similar size, of which

two subgroups were selected to serve as training set for the model, while the remaining third

subgroup served as test set. The mean squared error of the three folds was 82.9±11.2g (predni-

sone load) as compared to a mean squared error of 82.1g when the model was trained on all

data. Thus, there seems to be no over fitting.

Translating these statistical findings into common clinicopathological terms, it appears that

thymectomy specimens with more heterogeneous fat distribution show a trend for higher

postoperative prednisone requirements, which is a surrogate for a more delayed clinical

improvement. However, due to the great heterogeneity of our data, this correlation is not suffi-

cient to predict clinical outcome.

Discussion

4.1 Advantages and limitations of using entropy as measure of

heterogeneity

Generally speaking, entropy belongs to the few basic measurable entities in nature. It can be

mathematically formulated using different axioms. For example, Shannon’s entropy definition

follows a basic additive algorithm (H1+H2 = H3), in contrast to Pincus’s entropy which

includes a non-zero additional term dependent upon boundary conditions [23]. Having spatial

data, as shown above, Shannon’s entropy could easily be calculated for all obtained parameters.

In this context we could show that it is an independent and valuable new variable: The entropy

of a given parameter showed other correlations than the parameter itself. For instance, the

entropy of the intra-thymic fat content was independent of age (compare section 8.2), whereas

intrathymic fat content showed a correlation with age (because of thymic involution). Vice

versa, the entropy of intrathymic fat content showed a correlation to the BMI, whereas the

parameter itself showed no correlation.

Basically, the relation of the entropy to the number of measurement points is one possible

limitation. However, we could rule out this potential flaw as illustrated in section 8.3: We did

not find a significant correlation between the sample sizes and entropy values using our data.

However, regarding the strategy of tissue work-up, the strong relation between entropy and

the number of sample points argues for an exentsive work-up scheme with sufficiently spaced

sampling point: Too few or too closely located sampling points would reduce the meaningful-

ness of the resulting entropy value. Another possible limitation is the choice of the number of

parameter levels (compare Fig 4A and 4B): For interval scaled variables (e.g. the number of fol-

licles in Fig 4A), an appropriate number of chosen levels will result in entropy values that are

robust against minimal variations, thereby avoiding over-estimation of disorder / heterogene-

ity. On the other hand, if the number of chosen levels is too low, entropy will appear decep-

tively low, pretending a high degree of order / homogeneity. Accordingly, we deemed 10 levels

with an interval of 5 follicles as reasonable compromise that is similar to the choice of levels

that is commonly used in image processing software [12].

4.2 New perspectives through the introduction of entropy in digital

pathology

In imaging based disciplines the term “entropy” has mostly been used in the context of image pro-

cessing as a textural feature. For instance, in radiology the ‘textural entropy’ has been used to pre-

dict different stages of rectal cancer [24] or the survival of breast cancer patients [25], while, in

pathology, it has been used to quantify nuclear features after toxic interventions [26, 27].

Histological heterogeneity of MGTX thymectomy specimens

PLOS ONE | https://doi.org/10.1371/journal.pone.0197435 June 13, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0197435


However, since it is a tool to measure any type of system complexity, entropy analysis and

its variations (e.g. “minimum spanning tree (MST) entropy”) might be useful wherever hetero-

geneity plays a diagnostic or biological role, be it in cancer or beyond [23, 28–30]: Examples

Fig 4. Scheme to illustrate the definition of levels and the calculation of entropy that is based thereon. A-B): For one fictional case the spatial heterogeneity and the

in-case variance for one variable is illustrated (number of follicles per slide in Fig 2A and atrophy grading in Fig 2B). The numbers of follicles per slides were mapped to

one of 10 levels (with an interval of 5 lymphoid follicles; accordingly level 0 =<5 follicles; level 1 = 5 -< 10; etc.). The resulting frequencies / relative probabilities are

plotted next to the scheme. C-D): Entropy as calculated for the number of follicles in case 37T004 C) Fictional thymus with a non-random, completely homogenous

distribution of measurements for the number of follicles. The corresponding entropy equals zero. D) Mean-values and standard deviations of the number of follicles per

region in CD23-stained sections of case 37T004. The entropy value in this case with heterogeneously distributed follicle frequencies across the various regions is 2.2bit.

https://doi.org/10.1371/journal.pone.0197435.g004
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comprise the quantification of heterogeneity of inflammatory infiltrates (e.g. in the fields of

tumor immunology, pulmonary interstitial diseases and transplant rejection) or degenerative

and regenerative processes (e.g. bone marrow alterations after toxic insults or following

hematopoietic stem cell transplantation). For any of these applications no special statistical

software would be needed, since entropy can easily be calculated and the features it relies on

can be quite heterogeneous in regard to their means of measurement (compare Table 1). In

practical terms and in order to determine entropy e.g. of a simple parameter like follicular

grade, a pathologist would just need a specimen worked up in more than one section, a micro-

scope (to estimate the parameter on visual inspection) and a spreadsheet (to collect the data).

A sophisticated spatial work up scheme like the one used in this work (compare Fig 1) would

allow to compare different regions of a specimen (e.g. entropy on the right as compared to the

left lobule), but is not mandatory to determine entropy overall.

Beyond the analysis of heterogeneity of tissue images, entropy analysis may help to quantify

the heterogeneity of RNA-seq data [31] and the heterogeneity of tumors in terms of subclone

composition.[32] Finally, through correlation with clinical endpoints, entropy analysis might

have the potential to detect new, quantitative types of predictive biomarkers on the morpho-

logical and molecular level in neoplastic as well as reactively changed tissue.
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3. Ströbel P, Moritz R, Leite MI, Willcox N, Chuang W-Y, Gold R, et al. The ageing and myasthenic thy-

mus: A morphometric study validating a standard procedure in the histological workup of thymic speci-

mens. Journal of Neuroimmunology. 2008; 201–202:64–73. http://dx.doi.org/10.1016/j.jneuroim.2008.

06.017. PMID: 18657325

4. Marx A, Pfister F, Schalke B, Nix W, Strobel P. Thymus pathology observed in the MGTX trial. Ann N Y

Acad Sci. 2012; 1275:92–100. https://doi.org/10.1111/j.1749-6632.2012.06799.x PMID: 23278583.

5. Taylor CR, Rudbeck L. Immunohistochemical Staining Methods: Dako; 2013.

6. Welsch U, Mulisch M. Romeis Mikroskopische Technik: Spektrum Akademischer Verlag; 2010.

7. Horton NJ, Kleinman K. Using R and RStudio for Data Management, Statistical Analysis, and Graphics,

Second Edition: CRC Press; 2015.

8. R-Documentation. Shapiro-Wilk Normality Test 2017. Available from: https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/shapiro.test.html.

9. Domingos P. A Few Useful Things to Know about Machine Learning. 2010.

10. Harte J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics: OUP

Oxford; 2011.

11. Besusparis J, Plancoulaine B, Rasmusson A, Augulis R, Green AR, Ellis IO, et al. Impact of tissue sam-

pling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer. Diagnostic pathology.

2016; 11(1):82. Epub 2016/09/01. https://doi.org/10.1186/s13000-016-0525-z PMID: 27576949;

PubMed Central PMCID: PMCPMC5006256.

12. Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB: McGraw Hill Educa-

tion; 2013.

13. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Transactions

on systems, man and cybernetics. 1973.

14. Petrolis R, Ramonaite R, Janciauskas D, Kupcinskas J, Peciulis R, Kupcinskas L, et al. Digital imaging

of colon tissue: method for evaluation of inflammation severity by spatial frequency features of the histo-

logical images. Diagnostic pathology. 2015; 10:159. Epub 2015/09/16. https://doi.org/10.1186/s13000-

015-0389-7 PMID: 26370784; PubMed Central PMCID: PMCPMC4570696.

15. Cover TM, Thomas JA. Elements of Information Theory: Wiley; 2006.

16. Shannon CE. A Mathematical Theory of Communication. SIGMOBILE Mob Comput Commun Rev.

2001; 5(1):3–55.

17. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal. 1948; 27

(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

18. Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of the ageing human thymic epithelium is

independent of puberty. A morphometric study. Scandinavian journal of immunology. 1985; 22(5):563–

75. Epub 1985/11/01. PMID: 4081647.

Histological heterogeneity of MGTX thymectomy specimens

PLOS ONE | https://doi.org/10.1371/journal.pone.0197435 June 13, 2018 14 / 15

https://doi.org/10.1056/NEJMoa1602489
https://doi.org/10.1056/NEJMoa1602489
http://www.ncbi.nlm.nih.gov/pubmed/27509100
http://www.nejm.org/doi/suppl/10.1056/NEJMoa1602489/suppl_file/nejmoa1602489_protocol.pdf
http://www.nejm.org/doi/suppl/10.1056/NEJMoa1602489/suppl_file/nejmoa1602489_protocol.pdf
http://dx.doi.org/10.1016/j.jneuroim.2008.06.017
http://dx.doi.org/10.1016/j.jneuroim.2008.06.017
http://www.ncbi.nlm.nih.gov/pubmed/18657325
https://doi.org/10.1111/j.1749-6632.2012.06799.x
http://www.ncbi.nlm.nih.gov/pubmed/23278583
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html
https://doi.org/10.1186/s13000-016-0525-z
http://www.ncbi.nlm.nih.gov/pubmed/27576949
https://doi.org/10.1186/s13000-015-0389-7
https://doi.org/10.1186/s13000-015-0389-7
http://www.ncbi.nlm.nih.gov/pubmed/26370784
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://www.ncbi.nlm.nih.gov/pubmed/4081647
https://doi.org/10.1371/journal.pone.0197435


19. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction: Springer; 2013.

20. Mahajan S, Mead CA. Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic

Problem Solving: MIT Press; 2010.

21. Barohn RJ, McIntire D, Herbelin L, Wolfe GI, Nations S, Bryan WW. Reliability testing of the quantitative

myasthenia gravis score. Ann N Y Acad Sci. 1998; 841:769–72. Epub 1998/07/21. PMID: 9668327.

22. Sharshar T, Chevret S, Mazighi M, Chillet P, Huberfeld G, Berreotta C, et al. Validity and reliability of

two muscle strength scores commonly used as endpoints in assessing treatment of myasthenia gravis.

Journal of neurology. 2000; 247(4):286–90. Epub 2000/06/03. PMID: 10836621.

23. Pincus S. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;

88. https://doi.org/10.1073/pnas.88.6.2297

24. Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, et al. Application of texture analysis based on apparent diffusion

coefficient maps in discriminating different stages of rectal cancer. Journal of magnetic resonance imag-

ing: JMRI. 2017; 45(6):1798–808. Epub 2016/09/23. https://doi.org/10.1002/jmri.25460 PMID:

27654307.

25. Kim JH, Ko ES, Lim Y, Lee KS, Han BK, Ko EY, et al. Breast Cancer Heterogeneity: MR Imaging Tex-

ture Analysis and Survival Outcomes. Radiology. 2017; 282(3):665–75. Epub 2016/10/05. https://doi.

org/10.1148/radiol.2016160261 PMID: 27700229.

26. Silva DA, Basso GG, Semenzim VL, Godoy MF, Taboga SR, Andrade AL, et al. Fractal dimension and

Shannon’s entropy analyses of the architectural complexity caused by the inflammatory reactions

induced by highly crystalline poly(vinyl alcohol) microspheres implanted in subcutaneous tissues of the

Wistar rats. Journal of biomedical materials research Part A. 2013; 101(2):326–39. Epub 2012/07/26.

https://doi.org/10.1002/jbm.a.34334 PMID: 22829297.

27. Nielsen B, Hveem TS, Kildal W, Abeler VM, Kristensen GB, Albregtsen F, et al. Entropy-Based Adap-

tive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sar-

comas. Cytometry Part A. 2015; 87A(4):315–25. https://doi.org/10.1002/cyto.a.22601 PMID: 25483227

28. Kayser K, Borkenfeld S, Carvalho R, Kayser G. Contribution of Measurement to morphologic Diagnos-

tics. Diagnostic pathology. 2016; 2(1).

29. Kayser K. Application of attributed graphs in diagnostic pathology. Anal Quant Cytol Histol. 1996; 18.

30. Kayser K. Neighborhood condition and application of syntactic structure analysis in histo-pathology.

Acta Stereol. 1987; 6(2):373–84.

31. Park Y, Lim S, Nam JW, Kim S. Measuring intratumor heterogeneity by network entropy using RNA-seq

data. Scientific reports. 2016; 6:37767. Epub 2016/11/25. https://doi.org/10.1038/srep37767 PMID:

27883053; PubMed Central PMCID: PMCPMC5121893.

32. Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA, Makarov V, et al. Pan-cancer analysis of

intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016; 7(9):10051–63.

Epub 2016/02/04. https://doi.org/10.18632/oncotarget.7067 PMID: 26840267; PubMed Central

PMCID: PMCPMC4891103.

Histological heterogeneity of MGTX thymectomy specimens

PLOS ONE | https://doi.org/10.1371/journal.pone.0197435 June 13, 2018 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/9668327
http://www.ncbi.nlm.nih.gov/pubmed/10836621
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1002/jmri.25460
http://www.ncbi.nlm.nih.gov/pubmed/27654307
https://doi.org/10.1148/radiol.2016160261
https://doi.org/10.1148/radiol.2016160261
http://www.ncbi.nlm.nih.gov/pubmed/27700229
https://doi.org/10.1002/jbm.a.34334
http://www.ncbi.nlm.nih.gov/pubmed/22829297
https://doi.org/10.1002/cyto.a.22601
http://www.ncbi.nlm.nih.gov/pubmed/25483227
https://doi.org/10.1038/srep37767
http://www.ncbi.nlm.nih.gov/pubmed/27883053
https://doi.org/10.18632/oncotarget.7067
http://www.ncbi.nlm.nih.gov/pubmed/26840267
https://doi.org/10.1371/journal.pone.0197435

