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Abstract
Conventional research methodologies and data analytic approaches in psychiatric research

are unable to reliably infer causal relations without experimental designs, or to make infer-

ences about the functional properties of the complex systems in which psychiatric disorders

are embedded. This article describes a series of studies to validate a novel hybrid computa-

tional approach–the Complex Systems-Causal Network (CS-CN) method–designed to inte-

grate causal discovery within a complex systems framework for psychiatric research. The

CS-CN method was first applied to an existing dataset on psychopathology in 163 children

hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of

traumatized children (replication study). Finally, the CS-CN method was applied in a con-

trolled experiment using a ‘gold standard’ dataset for causal discovery and compared with

other methods for accurately detecting causal variables (resimulation controlled experi-

ment). The CS-CN method successfully detected a causal network of 111 variables and

167 bivariate relations in the initial validation study. This causal network had well-defined

adaptive properties and a set of variables was found that disproportionally contributed to

these properties. Modeling the removal of these variables resulted in significant loss of

adaptive properties. The CS-CN method was successfully applied in the replication study

and performed better than traditional statistical methods, and similarly to state-of-the-art

causal discovery algorithms in the causal detection experiment. The CS-CN method was

validated, replicated, and yielded both novel and previously validated findings related to risk

factors and potential treatments of psychiatric disorders. The novel approach yields both

fine-grain (micro) and high-level (macro) insights and thus represents a promising approach

for complex systems-oriented research in psychiatry.
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Introduction
There is an astonishing array of advances in areas such as genomics, proteomics, and func-
tional brain imaging that can provide detailed information about the nature of psychiatric dis-
orders. The capacity to integrate this knowledge with information related to phenotypic
expression in the form of cognition, emotion, and behavior, and information related to devel-
opmental and environmental risk, opens new frontiers for understanding the nature of psychi-
atric disorders. These opportunities will not be harvested, however, without the development
and evaluation of new computational methods and tools needed for integrating the diversity of
modalities of information (e.g. genes, proteins, brain circuitry, developmental, social, behav-
ioral) into unified analyses. Conventional methods and techniques cannot “see” the complex
substrate from which psychiatric disorders emerge and are sustained, which is not only based
on the relations between variables that span the aforementioned diverse modalities of informa-
tion, but on the emergent properties of the system which these variables, and their relations,
create. If the whole of knowledge related to the nature of psychiatric disorders is greater than
the sum of its parts, then advances in our science will require methods to generate knowledge
about both the parts and the whole.

This article describes a computational method and set of analytic tools that we have devel-
oped for these purposes. Obviously, our goal for achieving this method is challenging both con-
ceptually and technically. A successful method will need to be able to accomplish two
interrelated tasks:

1. Yield knowledge of the behavior of the complex system (e.g. psychiatric disorder) itself:
This knowledge will need to develop from methods that can provide meaningful informa-
tion about the behavior of the system as a whole, including how the system and its compo-
nents emerge and are sustained over time. Such methods will need a successful approach for
integrating diverse forms of information. Information limited to the separate components
of the complex system is unlikely to converge on knowledge about the behavior of the com-
plex system as a whole. Although research has been conducted on several of these compo-
nents such as brain, gene, and phenotypic networks [1–10], the development and
employment of methods to handle the integration of diverse forms of information (e.g.
molecular, brain circuitry, developmental, social, behavioral) in a consistent, and meaning-
ful, fashion will be very important.

2. Yield knowledge about mechanisms related to the interactions between various components
of the complex system: A complex system, when viewed as a whole, has emergent properties
that support its functioning and adaptation over time. It also has components that interact
in the form of mechanisms related to its functioning. Mechanistic understandings are
causal. Conventional research methods and data analytic techniques are unable to reliably
infer causal relations without randomized experiments, and randomized experiments are
usually unfeasible and/or unethical in psychiatric research. Research that aims to integrate
the diversity of information required to identify the emergent behavior of the complex sys-
tem governing psychiatric disorders will inevitably identify many relations that are non-
causal and therefore non-mechanistic. Accordingly, there is a need for accurate methods to
enable inferences about the causal relations between variables, or sets of variables, within
the complex system sustaining psychiatric disorders.

Accomplishing the two aforementioned tasks in a unified analytic approach poses non-triv-
ial challenges. We intend for the method described in this article to contribute to the develop-
ment of a diversity of approaches to meet these challenges. Fortunately, the last two decades
has seen a great deal of progress in two fields that offer much promise to meeting these
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challenges: Network Science and Causal Discovery. While a wide range of names has been used
for the sets of methods employed in each of these respective fields, for purposes of clarity and
consistency, we use the terms Network Science and Causal Discovery to refer to these respective
fields and sets of methods. Specifically, methods have been developed within the field of Net-
work Science that enable the generation of knowledge about the behavior of the system in
which complex phenomena, like psychiatric disorders, manifest. Investigators employing the
methods and techniques of Network Science have found remarkable consistency in the proper-
ties of a broad array of systems that are adaptive and robust in nature [9–17]. Systems that
exhibit these measurable properties are called Complex Adaptive Systems (CAS) [13]. The
application of Network Science to problems of health and disease is called Network Medicine
and its main idea follows: a disease represents a pathologic biological process that emerges, and
is sustained over time, because it is embedded in a transformed biologic system that acquires
adaptive properties [9–10,14–16]. Accordingly, if such an adaptive system related to a given
disease is identified, the capacity to determine its areas of vulnerability may reveal promising
targets or new approaches for treatment. Similarly, methods have been developed in parallel in
the field of Causal Discovery that employ a family of models (Causal Probabilistic Networks
and variants) to infer causal relations from observational data [18–22]. Very recently, algo-
rithms that infer such causal relations with very large numbers of variables have been devel-
oped and several empirical studies have verified their applicability [20–21]. Interestingly,
although the Network Science and Causal Discovery fields have each generated methods with
promise for addressing the two identified challenges for psychiatric research, they have largely
developed in parallel with little integration of their methods.

We have created a method and set of computational tools to integrate Causal Discovery
within a Network Science framework for psychiatric research. Our approach enables both com-
plex and causal systems inference in a unified analysis so that psychiatric investigators can
understand the properties of the systems in which psychiatric disorders emerge and are sus-
tained, and search these systems for causal information about their most critical points of vul-
nerability. We refer to this set of methods and techniques as the Complex Systems-Causal
Network (CS-CN) method. This method is designed to transform most any dataset related to
psychiatric research for such integrated analysis by performing three overarching computa-
tional operations: (1) create a causal network by examining the possible causal association
between each pair of variables in the dataset, using the framework of local causal graph, Mar-
kov Boundary induction and local-to-global causal discovery algorithms; (2) search the causal
network for sets of variables and relations that–when examined together–reveal properties con-
sistent with a CAS; and (3) determine the specific points of vulnerability in the identified CAS.
Details on these three computational operations are provided in the Methods section.

Network Science and Causal Discovery have been used in limited ways in psychiatric
research, largely related to exploring either the causal relations between sets of variables in lim-
ited domains (e.g. causal connections between brain regions for specific areas of psychopathol-
ogy [23–25]) or network structure of sets of variables in similarly limited domains (e.g.
properties of specific brain networks, molecular networks, or disease phenotype networks for
specific areas of psychopathology [1–7]. Our integrated CS-CN method considerably advances
the use of these methods for psychiatric research in the following ways: (1) it enables the inte-
gration of any modality of information (e.g. molecular, developmental, neurologic, phenotypic,
social) in a unified analysis; (2) it integrates state-of-the-art causal discovery algorithms to
search an identified network for the causes of psychiatric disorders; (3) it extends these causal
discovery algorithms in a unique way–to search for the variables that disproportionately con-
tribute to the identified system’s adaptive qualities. This article presents a series of studies that
apply the CS-CN method for psychiatric research and assesses its validity and utility.
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Methods
This study used deidentified data from preexisting datasets collected by the lead author for
other purposes. Due to the deidentified nature of the data used in this study, we received
exempt status from the IRB at New York University School of Medicine. Our IRB record num-
ber is 11–00293.

We first describe the CS-CN method and apply it to an existing dataset on risk factors for
psychopathology in 163 children hospitalized with injuries (validation study). Next, we apply it
to a large, independent dataset of traumatized children (replication study). Finally, we conduct
a validation experiment, under controlled conditions of the CS-CN method–compared to
other methods–for accurately identifying causal variables, using a ‘gold standard’ dataset for
causal discovery (resimulation controlled experiment).

The CS-CN method includes a defined data preparation approach to enable its use. Once
this approach is followed, the CS-CN method will process and analyze a dataset in three
sequential steps. These steps are illustrated in Fig 1.

Data Preparation
The CS-CN method is designed so that most any dataset collected for psychiatric research can
be uploaded to a web-based platform we created for processing and analysis. Datasets can be
automatically processed when uploaded with an additional Variable Table that contains spe-
cific information, provided by the investigator, about each variable in the dataset. The informa-
tion required in the Variable Table for automatic processing includes: the construct the variable
measures, the nature of its numerical value (e.g. continuous, categorical), the time époques in
which it exerts its effect, and its possible hierarchical nature (e.g. a ‘subscale’ value or a ‘total’
value from a psychometric instrument; a brain region, a brain circuit, or a neuron within that

Fig 1. The Complex Systems-Causal Network (CS-CN) Method.

doi:10.1371/journal.pone.0151174.g001
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region). (We provide detail in S1 File about the information investigators must provide in the
Variable Table). Data processing procedures are currently implemented in the Python lan-
guage [26] while causal graph analytics algorithms are implemented in Matlab [27]. Together,
these tools form the web-based platform, which is comprised of a graphical user interface that
processes this information in three overarching computational steps that define the CS-CN
method.

CS-CNMethod
Step 1: Create a directed causal network by examining the possible causal association between
each pair of variables in the dataset using the framework of causal graph and Markov Boundary
induction algorithms (Microstructure Analysis).

a. Identifying causal associations: The CS-CN method considers variables within a dataset
as ‘nodes’ and bivariate relations as ‘links,’ and establishes a network of nodes and links that
are all consistent with well-defined mathematical properties of causality [18–19]. The relation-
ships between all possible bivariate relations in the dataset are examined and a binary decision
(0 or 1) is made about whether a given bivariate relation is causally-consistent (1) or not (0).
Informally, we call a statement of the type “A is directly causing B” causally-consistent if the
statistical dependencies and independencies in the data interpreted by the mathematical theory
of causal induction from non-experimental data suggest that (a) A and B are not confounded
by a measured variable (and in special circumstances even when data contains hidden vari-
ables) and (b) the causal relationship between A and B is not mediated by intermediate mea-
sured variables. The mathematical theory and corresponding algorithms that enable such
inferences were pioneered by Simon, Pearl, Granger, and colleagues [18–19, 28–30]. All caus-
ally-consistent bivariate relations are included as links in the network. All other bivariate rela-
tions are excluded. This decision is made through application of the framework of causal graph
and local causal induction algorithms from the Generalized Local Learning (GLL) and Local to
Global Learning (LGL) families [18–22]. This framework allows the application of the afore-
mentioned causal discovery methods [18–19, 28–30] to a scale up to millions of variables
(whereas the original algorithms could not handle efficiently more than ~100 variables). Bivari-
ate relations found to lie within the Markov Boundary contain the direct causes, direct effects,
and direct causes of the direct effects of the response variable and thus are locally causally-con-
sistent but at the same time have desirable predictive and diagnostic properties (i.e. the Markov
Boundary is for the majority of distributions the minimal set of variables that contains the full
predictive information of the whole data for a response variable of interest [21, 29].

b. Identifying the direction between associations: Our method orients all links in the net-
work to create a directed causal network via two types of procedures.

First, links are oriented from information that is provided in the aforementioned Variable
Table about the time époques in which a variable may have exerted its effect. Any link connot-
ing a bivariate causal relation that contains variables from different time époques is oriented
from the earlier to the later time époque (with the assumption that causal influence must travel
forward in time). Investigators will need to make decisions about how variables within their
datasets should be divided by time époque classification using the following formal definition:
A time époque represents a slice of time, more formally a time interval [t1, t2] where t is a time
point in any conventionally constructed real-numbered timeline (i.e. as comprising the set of
the real numbers each one uniquely corresponding to a time point in the real world), and
where t2-t1 is equal to a pre-defined duration of an époque (a month, a year, or other as
defined by the analyst); within this époque (time slice) the directed causal link between vari-
ables ‘A’ and ‘B’ (A!B) normally has the following temporal semantics: ‘A’ occurs within time
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interval [A_start, A_end] which is a subset of [t1, t2], ‘B’ occurs within time interval [B_start,
B_end], and: A_end� B_start [31–34].

Second, the remaining undirected causal bivariate relations can be further oriented using a
variety of approaches including identification of “Y structures” and constraint propagation [19,
28], Bayesian search and score [30,35], or heuristic approaches [36–37]. In the present applica-
tion of the method we use the technique by Guo, Yang, and Zhou [36] primarily because it is
mathematically convenient for handling directionality within a mixed data type network. This
method leverages information about known directionality of some of the links for orienting the
directionality in the others. Nodes in a directed network are defined by their out-degree value
(the number of directed links that point from the given node to other nodes) and their in-
degree value (the number of directed links that point to the given node from other nodes).
Accordingly, causal influence in a directed network flows from nodes with higher out-degree
and to nodes of higher in-degree. This method employs information that is known about the
directionality for each node (i.e. the node’s indegree and outdegree value), and ranks nodes
with this information through a recursive process. Undirected links are then oriented via the
differential ranking of each of the two nodes they join. Details of this method are found in Guo,
Yang, and Zhou [36]. While the method is highly heuristic and thus does not always guarantee
correctness its empirical performance in a study of four diverse existing directed networks
where directionality was known for each link showed good ability to orient these links with a
very high degree of accuracy [36].

This examination of the presence of link between all pairs of variables in the dataset, and the
directionality between them, creates the directed causal network required for steps 2 and 3 of
our method.

Step 2: Examine the causal network for sets of variables and relations that–when examined
together–reveal properties consistent with Complex Adaptive Systems (CAS) (Macro Structure
Analysis).

At this point, we have completed the CN part of the CS-CN method. A directed causal net-
work has been produced, comprising bivariate relations that are all causally-consistent. The
next step is to analyze it for its adaptive properties (and visualize it for the benefit of the
researcher). If the network demonstrates certain adaptive properties–such as scaling, efficiency
of information flow, modularity, and robustness–it is considered a CAS [11, 13–17]. If such
properties are observed in a causal network containing psychopathology, it supports the notion
that the set of variables–and the way they operate within the system–have contributed to the
emergence and maintenance of the psychopathology in question. This second step serves as a
validity check for the method. If the causal network revealed in the first step does not have
adaptive properties–assessed in the second step–then there is no reason to proceed to the third
step. Further, if the CS-CNmethod is not able to reliably identify causal networks with adaptive
properties, the validity and/or utility of the method or the data should be questioned.

The CS-CN method is designed to analyze the network properties of the causal network
produced in Step 1 and to compare these properties to their mean values derived from 1000
permutations of a random directed network model. This random directed network model is
obtained via the generation of 1000 permutated networks, each with the same number of nodes
and links as the observed directed causal network and with the link direction between each pair
of nodes in each of these random networks set at chance. The network properties of the ran-
dom directed model used by the CS-CN method is calculated as the mean value of each respec-
tive network property from these 1000 permuted random networks. Table 1 describes the
network properties assessed by the CS-CN method and the adaptive nature of each property,
as observed in the literature. S3 File provides details on the calculation of each of these proper-
ties. Our application integrates Matlab BGL [38] to derive each of the network properties
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described in Table 1 and detailed in S3 File. The comparison random network models were
generated using the modified version of Matlab Tools for Network Analysis [39]. Network
visualization is conducted with the Cytoscape platform [40] and cluster analysis and visualiza-
tion is conducted with the Cytoscape ClusterOne module [41].

The CS-CN method inserts one process of data preparation before conducting the network
analysis of the causal network produced in Step 1. This process is designed to safeguard the
analysis from falsely demonstrating adaptive properties based on measurement biases related
to the type of data under study. Such biases can intrude into the analyses based on the ubiquity
of what might be called structurally superfluous information within typical datasets for psychi-
atric research. We have created procedures for removing superfluous information from the
directed causal network identified in Step 1. These procedures are detailed in S2 File.

Importantly, the CS-CN method allows for assessing the network properties of the entire
identified causal network, or to search the causal network for sub-networks that may have
adaptive properties. There are two reasons for conducting such a search: (1) the global causal
network itself is highly heterogeneous masking the properties of the sub-network components
that are themselves CASs, and (2) there is a scientific rationale for searching for a sub-network
(e.g. interest in a sub-network related to specific genes or specific brain regions; or interest in
separate analyses for different forms of psychopathology contained within a larger causal net-
work). Any sub-network within a larger causal network contains links that are all causally-con-
sistent and, accordingly, is a proper causal network. The capacity to use the CS-CN method to

Table 1. Definitions of network properties, their adaptive qualities, and differences between random networks and adaptive networks [15–17].

Network
Property

Definition Adaptive Quality Random Network vs. Adaptive Network

Network
Diameter

The greatest distance between any pair of
nodes in a network. This is equivalent to
the longest, shortest path within the
network.

Efficiency of information transfer is related
to the number of steps it takes to get from
one node to another within a network.
Accordingly, a larger network diameter is
an index of a less efficient network.

A random network has a larger network
diameter than an adaptive network.

Characteristic
Path Length

The average (mean) number of steps it
takes to get from any two nodes in a
network along the shortest path between
those nodes.

Characteristic Path Length is a defining
feature of the ‘small world’ property of an
adaptive system. It describes the number
of steps between any two nodes in the
network and, like network diameter, is an
index of the efficiency of information
transfer within a network.

A random network has a larger
characteristic path length than an adaptive
network.

Shortest Path
Distribution

A ‘shortest path’ between any two nodes is
defined as the path with smallest number
of steps between those two nodes. The
Shortest Path Distribution shows the
distribution of Shortest Paths length in the
network

A Shortest Path distribution of an adaptive
network, like its Characteristic Path
Length, illustrates the efficiency of
information transfer within the network by
showing the small number of steps it takes
for information to travel between any two
nodes in the network.

Shortest paths in a random network has
greater mean path length than an adaptive
network. The shortest path distribution of
an adaptive network has a higher
frequency of very short path lengths.

Degree
Distribution

The distribution of number of links per
node within the network. Particularly
important is the scaling property of the
degree distribution defined by the
exponential function of the distribution in
the equation: y = β xα

Entities/variables/nodes within an adaptive
network do not link by chance, but for
functional reasons. Accordingly, an
adaptive network displays ‘preferential
attachment’ between nodes. This can be
observed by the power function of the link-
per-node distribution.

A random network displays a normalized
link-per-node distribution. An adaptive
network is ‘scale free.’ Most nodes draw
few links while a small number of nodes
draw an extraordinarily large number of
links.

Clustering
Coefficient

A network’s clustering coefficient is an
index of the degree to which the network
contains regions of nodes that are highly
interconnected.

A network’s clustering coefficient indicates
the possible modular nature of a network.
An adaptive network tends to be modular
as different parts of the network assume
different specialized functions.

A random network has a smaller clustering
coefficient than an adaptive network.

doi:10.1371/journal.pone.0151174.t001
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conduct such searches provides investigators with a highly flexible and powerful platform for
causal discovery. Thus, at the end of this step we have a set of variables that constitutes what
we define as a Complex Systems-Causal Network. All links in this network are consistent with
well-established causal assumptions, and the network has properties consistent with CASs.

Step 3: Discover the vulnerabilities of the Complex Systems-Causal Network to generate
knowledge related to pathogenesis, treatment targets, and high-level functional organization
(Functional Inference Analysis).

Once the macro/adaptive properties of the Complex Systems-Causal Network are analyzed,
the capacity to search for its points of vulnerability is straightforward. Nodes vary in their contri-
bution to a network’s adaptive properties, and there are a variety of ways to identify a node’s
importance to the adaptive properties of a network (defined as the node’s centrality). The sim-
plest way of defining the centrality of a node is to count the number of other nodes that link to it
(defined as degree centrality). Another index of the importance of a node to a network is called
betweenness centrality (BC), defined as the number of shortest paths that pass through a node.
BC is thought to reflect the amount of control that a node may exert over other nodes in the net-
work. Given the importance of BC, we use it as our primary index of a node’s centrality. The con-
ventional method for assessing the vulnerability and robustness of a network to challenge is to
model changes in the adaptive qualities of a network to node removal by centrality rank vs. ran-
domly generated rank [11–13]. An adaptive network loses its adaptive properties when its most
central nodes are sequentially removed. An adaptive network is highly robust to challenge by ran-
dom node removal. This process of ‘error tolerance vs. attack vulnerability’ is thought to be an
important quality of a Complex Adaptive System (CAS) [11–13]. The modeling of these forms of
challenge offers two advantages: 1. The results will reveal whether the network ‘behaves’ consis-
tently with other CASs to challenge, thus supporting (or refuting) a conclusion that our method
has identified a CAS related to a psychiatric disorder of interest, and 2. The results will identify
the variables (nodes) that most contribute to the robustness of the identified CAS, and may also
reveal a critical threshold of node removal before the CAS loses its adaptive properties. The iden-
tification of such variables (and the threshold number for removal) may offer important opportu-
nities for intervention development. Our method uses the approach of sequential node removal
based on BC rank (with recalculation of rank at each sequential step). As Holmes and colleagues
have reported, this approach is amongst the most powerful means for challenging an adaptive
network [12]. There are also other methods, found in other literatures, for network challenge
(such as making “in silico experimentation” inferences about the quantitative effects of interven-
tion to the network, via, for example Pearl’s “Do Calculus” [19]). In the future we may integrate
these additional approaches within our CS-CN application.

Procedures for Handling High Dimensional Information
As psychiatric research advances, investigators will increasingly need to integrate procedures
for handling high dimensional information within their datasets. This has certainly been a
challenge for research using more conventional statistical methodologies, related to limitations
in the number of variables that can be included in a given analysis. It is also a challenge with
the CS-CN method for reasons specific to network analysis itself. In this section, we describe
this challenge and detail how the CS-CN method has been programmed to handle it.

A primary concern with the integration of high dimensional information of one modality with
information of another modality, within a network analysis, is that measurement biases can influ-
ence the study results. If a dataset contains a very large, and disproportionate, number of variables
of a given modality (e.g. genes) compared to variables of other modalities (e.g. demographics), the
observed scaling properties of the network may simply be driven by the disproportionate number
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of variables within the high dimensional modality, compared to other variables in the dataset. An
important innovation of the CS-CNmethod is its capacity to integrate a great diversity of modali-
ties of variables into an integrated analysis. Therefore, handling the problem of proportionality
between different modalities of information is extremely important.

We handle this problem by using information about the hierarchical nature of variables that
are specified by the investigator in the Variable Table, prior to any analysis. Depending on the
specific research question and the nature of the high dimensional information in the dataset,
investigators can create specific hierarchies from their high dimensional data and specify these
hierarchies in the Variable Table. The CS-CN method then uses that hierarchical information
to constrain the number of variables that will be used in a singular network analysis. For exam-
ple, our validation study (described next) contains one sort of high dimensional data, candidate
genes, which include a large number of corresponding single nucleotide polymorphisms
(SNPs). The CS-CN method is programmed to conclude that if any variable of a lower hierar-
chy (e.g. a SNP) is found to be causally related to any other variable in the dataset, its higher-
order variable (e.g. its gene) is considered to be causally related to that variable and only that
higher order variable is described in a network analysis. Although we have described this prob-
lem (and our solution) concerning genomic information, the CS-CN method can handle this
problem with any form of disproportionality related to high dimensional information within a
dataset. We expect our solution will be very relevant for handling high dimensional brain imag-
ing information in an integrated analysis, related to the hierarchical nature of this information
(e.g. voxels, brain regions, brain circuits).

Confirmation Studies
I. Validation Study. The Child Injury Dataset (CHIDS) is based on 163 children aged

7–18, and was collected as part of a National Institute of Mental Health funded study (R01
MH063247) on risk factors for psychopathology in children hospitalized with injuries. The
basic design follows: injured children were assessed within hours or days after their hospitaliza-
tion and reassessed 3 months and 1 year following discharge. CHIDS includes 161 variables
related to such domains as candidate genes, early childhood development, demographics,
school and social function, family stress, parent symptoms and functioning, psychosocial
stress, qualities and magnitude of injury, neuroendocrine response, psychophysiologic
response, and child symptoms and functioning. Due to space restrictions, we provide informa-
tion about each of the 161 variables of the CHIDS in our Variable Table in S1 Table.

II. Replication Study. We applied the CS-CNmethod to a dataset of 14,088 children and
1,439 variables called the National Child Traumatic Stress Network (NCTSN) Core Dataset
(CDS) [42]. Details about the methods and results for this replication study are found in S5 File.

III. Resimulation Controlled Experiment. Following the standard of rigorous new
method validation using model-based simulation (e.g. “resimulation”), the CS-CN method was
tested in a controlled experiment using a ‘gold standard’ dataset for causal discovery obtained
by sampling a previously published model that has been used extensively for causal challenges
and testing of new methods. The ability of CS-CN to discover causal structure was compared
with other methods for accurately detecting causal variables against the known model struc-
ture. Details of this study are provided in S6 File.

Results

Finding the Causal Network (Micro Structure Analysis)
The CHIDS dataset of 161 variables, and its corresponding Variable Table, were uploaded into
our web-based CS-CN platform. The causal discovery algorithm identified 129 nodes and 204
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links. Of these, 18 nodes and 37 links were considered to be superfluous (by the method for
identifying superfluous variables, as detailed in S2 File) and were eliminated. Accordingly, we
produced a causal network containing 111 nodes and 167 links.

Determining the Complex Systems Properties of the Causal Network
(Macro Structure Analysis)
The 111 node/167 link causal network was analyzed for its complex systems properties.
Because the causal network is directed, we determined both its in-degree and out-degree scaling
properties, based on the distributions of numbers of links entering and leaving nodes, respec-
tively. In Figs 2 and 3, we show these scaling distributions, with logarithmic transformation.

The properties of this network were compared to the mean value of these properties in a
modeled random directed network of 1000 permutations. The random network was derived
from the same number of nodes (111) and links (167) as the CHIDS network. The comparison
between these networks is shown in Table 2.

As seen in the results in Table 2, the CHIDS Causal Network has very different properties
from the Random Network even though they have the same number of nodes and links. The
causal network is less than one third the size of the random network (based on diameter and
characteristic path length), indicating its ‘small world’ properties–a strong indicator of efficiency
of information transfer. It has a clustering coefficient five times as large, indicating its modular
functioning. These network properties are consistent with Complex Adaptive Systems.

The small world-ness of the CHIDS Causal network can be seen clearly in Fig 4, which
shows the shortest path distribution of this network vs. the random network. As can be seen,
the distribution of shortest paths in these two networks is dramatically different. Over 40% of
shortest paths in the CHIDS causal network contain only 1 link and the longest shortest path is
only 5 (network diameter). The random network is distributed with only 3% of shortest paths
containing only 1 link and the majority of its paths are over 5 links wide, with many consider-
ably wider. We conducted a two-sample Kolmogorov-Smirnov (K.S.) test to determine if these
respective distributions were statistically distinct (under the null hypothesis that the two distri-
butions are the same). This analysis confirmed that the distribution of shortest paths of the
CHIDS causal network was very different from that of the random network (K.S. = 0.78,
p = 4.7 x 10−198).

Fig 2. In-degree Distribution of the CHIDS Network (logarithmic scale).

doi:10.1371/journal.pone.0151174.g002
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We provide a visualization of the causal network and its modular nature in Fig 5. Eight
modules were discovered (color-coded) by the ClusterOne plugin to Cytoscape. As can be seen,
the variables contained within a given module appear to fit together conceptually and have face
validity for modules that can be expected to relate to the development of child psychopathology
amongst injured children. We labeled each module based on the type of variables that were
contained within it. This labeling can also be automated although in the current version of the
software it is manual. We also include the numerical rank order of the 15 nodes with the high-
est BC scores. Details about each of these nodes, and how they were measured, are provided in
Table 3, S1 Table, and S4 File.

Modeling the Adaptive Properties of the Network and Searching for its
Points of Vulnerability (Functional Analysis)
The final step in our approach is to test the adaptive nature of the network by modeling how it
behaves when stressed by the sequential removal of 15 nodes at random vs. by BC rank order.
In Fig 6, this differential response to challenge is shown dynamically based on the network’s
capacity to maintain its largest component, a strong indicator of robustness. We examine the
proportion of nodes that remain in the largest component of the network following sequential
removal by rank order based on BC rank or by random number generator (with recalculation
of rank at each step) [12]. Each step of the random node removal calculates the mean of the
remaining proportion of nodes in the largest component from 1000 trials. As can be seen, ran-
dom sequential removal of 15 nodes has negligible impact on the network. The CHIDS

Fig 3. Out-degree Distribution of the CHIDS Network (logarithmic scale).

doi:10.1371/journal.pone.0151174.g003

Table 2. Properties of the CHIDS Causal Network vs. Random Directed Network.

Network Property CHIDS Causal
Network

Random Directed Network (mean of 1000
permutations)

Nodes 111 111

Links 167 167

Network Diameter 5.00 18.11

Characteristic path
length

1.86 6.58

Clustering Coefficient 0.05 0.01

doi:10.1371/journal.pone.0151174.t002
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network maintains close to 100% of its integrity throughout this sequential challenge. On the
other hand, the sequential removal of nodes by order of BC rank leads to a considerable loss of
network integrity. By the end of this 15 node sequential ‘attack’ the CHIDS network has lost
almost 80% of its nodes. As can be seen, its integrity is maintained through the sequential
removal of its four highest BC ranked nodes, and then the network quickly loses its integrity
with more sequential ‘attacks.’

Another way to visualize the response of the CHIDS network to random vs. targeted (BC
rank) attack is by examining the remaining CHIDS network after these two respective forms of
challenge are completed, and to compare the remaining network under these two conditions to
the CHIDS network before challenge, as shown in Fig 5. The remaining CHIDS network after
random removal of 15 nodes is shown in Fig 7. As can be seen, the CHIDS network has largely
kept its integrity, losing only 9 of 111 nodes. On the other hand, this same network, when chal-
lenged by removal based on BC rank, fragments into 11 components and loses all semblance of
its structure (Fig 8).

A Note on the CS-CNmethod and Type 1 Errors
One additional advantage of our approach is that, by definition, the variables identified to be
most important for sustaining the adaptive properties of a network will have extraordinarily
low probability values by chance. The problem of Type 1 errors is ubiquitous in psychiatric
research and the ease of finding an erroneous statistically significant result in typical datasets
with large-scale hypothesis mining is often not given due consideration. Recently, the phenom-
enon of publishing erroneous findings based on statistically significant ‘p values’ from datasets
of a great many variables has been called ‘P-Hacking,’ and has been offered as a reason for the
non-reproducibility of findings in research related to mental illness [47–48]. The CHIDS data-
set, for example, contains 161 variables. Accordingly, this dataset contains 25,760 possible
directed bivariate relations, 1,288 of which would be expected to be statistically significant (p<
.05) based on chance alone. Our method searched all possible bivariate relations and produced
a directed causal network of only 167 bivariate relations. Hence, even if no true relationship
exists, the false positive discovery rate is less than 0.006 (167/25,760), which is much lower
than a conventional alpha level of 0.05. The reasons why our methodology is extremely robust

Fig 4. Distribution of Shortest Paths in the CHIDS Network and the Random Network.

doi:10.1371/journal.pone.0151174.g004
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to false positives under multiple hypothesis testing are quite intricate and directly follow from
the properties of GLL algorithms [20]. Their robustness to multiple hypothesis testing is well-
documented and we refer the interested reader to that prior work for details [21].

Discussion
We developed a computational approach that enables and integrates causal and systems level
inference in a unified analysis for psychiatric research. In our validation study, the CS-CN
method identified a network of 111 variables and 167 bivariate connections that had adaptive
properties comparable to those found in other fields [11,13–17]. We identified both the robust
nature of this network and its points of vulnerability. Modeling the removal of these points
resulted in the network losing its adaptive properties. We were also able to successfully apply
our method to a much larger dataset of traumatized children in our replication study (detailed
in S5 File). We further demonstrated that our novel hybrid causal discovery/network science
approach performed comparably to state-of-the-art Causal Discovery algorithms, and better
than more conventional statistical methods, in detecting causal variables from a gold standard
dataset. These results demonstrate that the CS-CN method can detect causal variables at the
level of state-of-the art Causal Discovery algorithms and it provides meaningful information
about the properties of the complex system in which these variables are embedded. It thus
incorporates both a micro causal structure view and a macro level functional view of a system
under study.

From the perspective of traditional statistical analytics that have dominated psychiatric
research for decades, there is an inherent challenge to proposing a new data analytic method
that deviates considerably from established ones. If the findings yielded by the new method are
too consistent with what has been reported in the literature, the new method will fail the

Fig 5. The CHIDS Network and its Eight Modules. The 15 highest ranked nodes based on BC score are
indicated by numeric rank order.

doi:10.1371/journal.pone.0151174.g005
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novelty test. Why go to all the trouble of developing and validating a new method if the findings
yielded are not novel-enough, given the current state of the literature? On the other hand, if the
findings derived from the new method deviate too much from what is known from the litera-
ture, the new method risks being dismissed out of hand. Accordingly, new methods must
achieve a balance of being novel-enough and consistent-enough with the literature. Next, we dis-
cuss the evidence for such a balance.

The three of the top four nodes with the highest BC rank in our validation study (the
CRHR1 gene, the FKPB5 gene, and the child’s dose of morphine) have all been found by several
prior studies by the lead author (GNS) and others to be related to PTSD in this and other data-
sets, resulting in previous publications [49–53]. These 3 variables have also been related to the
development of PTSD by other investigators [54–57]. These findings are certainly consistent-
enough with the literature. What makes them novel?

First, results indicated these 3 variables were causally related to the development of psycho-
pathology, a conclusion that could not be inferred from any previous study. Second, these

Table 3. Top Fifteen Nodes by BC rank.

Variable Betweenness
Centrality Score

Measurement

1. CRHR1 Gene 3556.64 9 SNPs on the CRHR gene (CRHR104- rs17763104, CRHR112- rs12944712, CRHR114-
rs17690314, CRHR142- rs242942, CRHR144- rs4458044, CRHR158- rs17763658,
CRHR161- rs4074461, CRHR181- rs12936181, CRHR192- rs11657992) analyzed via
buccal DNA samples obtained via mouthwash, isolated using Gentra DNA isolation kit,
and typed using real-time PCR technology.

2. FKPB5 Gene 1881.30 9 SNPs on the FKBP gene (FKBP547- rs3777747, FKBP573- rs3800373, FKBP502-
rs4713902, FKBP558- rs9296158, FKBP524- rs9380524, FKBP534- rs10498734,
FKBP563- rs10947563, FKBP542- 17614642, FKBP533- rs6926133) analyzed via buccal
DNA samples obtained via mouthwash, isolated using Gentra DNA isolation kit, and
typed using real-time PCR technology.

3. Social Competence prior to
injury

1630.97 Child’s score on the Social Competence scale of the Child Behavior Checklist (CBCL)
[43] about the child prior to the injury.

4. Morphine Dose (mg/kg/day) 1626.80 Morphine use (mg/kg/day) during total length of hospital stay as recorded on child’s
medical record.

5. COMT Gene 1471.25 2 SNPs on the COMT gene (COMT33- rs4633, COMT69- rs6269) analyzed via buccal
DNA samples obtained via mouthwash, isolated using Gentra DNA isolation kit, and
typed using real-time PCR technology.

6.Socioeconomic Status 1356.03 Child’s socioeconomic status as captured by the Diagnostic Interview for Children and
Adolescents (DICA) [44].

7. Age at Trauma 1351.71 Child’s age in years at the time of trauma.

8. Physical Symptoms of Anxiety
@ 1 Year

1294.08 Child’s score on the Physical Symptoms scale of the Multidimensional Anxiety Scale for
Children (MASC) [45] 1 year following injury.

9. Happiness and Contentment
Before 1 Year Old

1247.23 Child’s happiness as a baby as captured by the DICA.

10. Depressive symptoms @ 1
Year

1041.49 Child’s total score on the Child Depression Inventory [46], 1 year following injury.

11. Internalizing Symptoms Prior
to injury

944.84 Child’s score on the Internalizing scale of the CBCL about the child prior to the injury.

12. Externalizing Symptoms at 3
Months Post-Injury

909.85 Child’s score on the Externalizing scale of the CBCL 3 months following injury.

13. Diastolic Blood Pressure 904.95 Mean diastolic blood pressure during entire length of hospital stay as recorded in the
nursing record.

14. Activity Function Prior to injury. 904.20 Child’s score on the Activity Competence scale of the CBCL about the child, prior to
injury.

15. Anxiety Post-Trauma Acute 836.56 Child’s total score on the MASC in the hospital immediately following injury.

doi:10.1371/journal.pone.0151174.t003
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variables were shown to be important contributors to the stability of the adaptive system in
which psychopathology was sustained, and modeling the removal of these 3 variables, along
with 12 others, contributed to the fragmentation of the system. A dynamic analysis revealed a

Fig 6. Integrity of CHIDS Causal Network Following Challenge. The proportion of nodes in the largest
network component by sequential removal of 15 nodes at random vs. by BC rank.

doi:10.1371/journal.pone.0151174.g006

Fig 7. The CHIDS Causal Network After RandomNode Removal. The CHIDS network after the sequential
removal of 15 nodes at random.

doi:10.1371/journal.pone.0151174.g007
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critical threshold of vulnerability to challenge, shown in Fig 6. The system maintained its adap-
tive properties until its 4 most important nodes were removed, indicating that effective inter-
ventions will require a multipronged approach. Third, examining the nature of these variables
provides information about what such a multipronged intervention might look like. Each of
the 15 variables shown in Fig 2 and Table 3 indicates the potential utility of these variables for
different components of intervention, such as risk factor profile (e.g. genes, age, socioeconomic
status, social competence and internalizing symptoms prior to hospitalization), early interven-
tion (e.g. anxiety in the hospital, diastolic blood pressure in hospital, morphine dose in hospital,
externalizing symptoms at 3 months), and discovery of new treatment targets and interventions
(e.g. drug discovery based on the importance of specific genes). Fourth, an intervention
approach can be refined with knowledge that these 3 variables, along with others, comprise dif-
ferent modules contributing to the system’s adaptive properties.

The type of knowledge revealed by the CS-CN method for child traumatic stress could have
broad relevance for psychiatry. The capacity of the CS-CN method to identify the variables (of
whichever modality) that disproportionally contribute to the stability of psychiatric disorders
may generate important information related to risk profiles, early intervention strategies or
new approaches to prevention or treatment. Certainly, methods that enable causal inference
without experimental study designs are broadly applicable in psychiatry, as is the need to derive
better understandings of the complex system that may sustain many psychiatric disorders.

Limitations
The CS-CN method could be further validated and improved in several ways:

1. Verifying its accuracy and utility with additional psychiatric populations.

Fig 8. The CHIDS Causal Network After Node Removal by BC Rank. The CHIDS network after the
sequential removal of 15 nodes by BC rank.

doi:10.1371/journal.pone.0151174.g008

A Complex Systems Approach to Causal Discovery in Psychiatry

PLOS ONE | DOI:10.1371/journal.pone.0151174 March 30, 2016 16 / 20



2. Investigating the optimal number and duration of time époques to use. Time époque defini-
tion is important for causal inference, but datasets will vary widely in terms of time-related
information contained within them.

3. Evaluating the relative advantage of different procedures to infer directionality between
causal relations within a given time époque. As detailed in the method section, we employed
a heuristic approach to define directionality between variables from the same time époque
[36]. Although this method has demonstrated a high degree of accuracy in previous studies,
the evidence for causal directionality is not as strong for links between variables from the
same époque vs from different époques. There exist several different approaches in the liter-
ature to address this issue. Future studies could compare these different approaches to
define the relative advantages of each.

4. Clarifying the best approach for managing structurally superfluous information. As
described in the method section, and in S1 File and S2 File, bias can be introduced if investi-
gators include many variables that measure the same construct in a given analysis. As
detailed in these sections, the CS-CN method integrates safeguards for this potential prob-
lem but future research should seek to define and evaluate the optimal methods for handling
structurally superfluous information.

In conclusion, the extent of the value of the CS-CN method will ultimately relate to its lon-
ger-term utility to the broader community of psychiatric investigators. Our approach shares
the spirit of an exciting initiative within the biomedical sciences called ‘Convergence.’ As Sharp
and Langer wrote in an influential editorial: “The next challenge for biomedical research will
be to solve problems of highly complex and integrated biological systems within the human
body” [58]. Convergence calls for the integration of expertise and information from a wide vari-
ety of disciplines towards solving complex biomedical problems. Such an initiative will require
novel methods to integrate this diverse information in a unified, and meaningful, analysis. We
hope that the CS-CN method may contribute to this important approach to biomedical sci-
ence, and we look forward to sharing our methods, and improving them, based upon their util-
ity to the field.
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