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The gastrointestinal (GI) tract is innervated by the enteric nervous system (ENS), an extensive neuronal network that traverses
along its walls. Due to local reflex circuits, the ENS is capable of functioning with and without input from the central nervous
system. The functions of the ENS range from the propulsion of food to nutrient handling, blood flow regulation, and
immunological defense. Records of it first being studied emerged in the early 19™ century when the submucosal and myenteric
plexuses were discovered. This was followed by extensive research and further delineation of its development, anatomy, and
function during the next two centuries. The morbidity and mortality associated with the underdevelopment, infection, or
inflammation of the ENS highlight its importance and the need for us to completely understand its normal function. This
review will provide a general overview of the ENS to date and connect specific GI diseases including short bowel syndrome with
neuronal pathophysiology and current therapies. Exciting opportunities in which the ENS could be used as a therapeutic target
for common GI diseases will also be highlighted, as the further unlocking of such mechanisms could open the door to more

therapy-related advances and ultimately change our treatment approach.

1. Introduction

The gastrointestinal (GI) tract is innervated by an extensive
intrinsic network of ganglion-rich nerve connections known
as the enteric nervous system (ENS) [1, 2]. The human ENS
contains approximately 400-600 million neurons that can
be found in two major networks—the myenteric and submu-
cosal plexuses, which are also known as Auerbach’s and
Meissner’s plexus, respectively [3-5]. The ENS is the largest
and most complex unit of the peripheral nervous system
and is located within the walls of the GI tract, extending from
the esophagus to the anal canal [6, 7]. In fact, it has been clas-
sified as the third division of the autonomic nervous system
in addition to the sympathetic and parasympathetic divisions
by Langley during the early 20™ century [1, 2, 7, 8]. The sub-
mucosal plexus lies just beneath the mucosal layer of the gut
and is predominantly found in the small and large intestines,
whereas the myenteric plexus is found between the circular

and longitudinal layers of smooth muscle and can be found
along the entire length of the GI tract [1, 6, 9]. Although it
receives central nervous system (CNS) input via the vagus
nerve and thoracolumbar and lumbosacral spinal cord, it
has been shown very early on to act independently of the
CNS [3, 10, 11]. The ENS possesses peristaltic motor,
secretory, and immunological function in addition to more
complex behaviors such as nonpropulsive mixing or segmen-
tation, slow orthograde propulsion via the migrating
myoelectric complex (MMC), retropulsion of noxious sub-
stances, and modification of nutrient handling and changing
of local blood flow [1, 4]. This system is supported by periph-
eral glial cells called enteric glia that helps the ENS maintain
the integrity of the epithelial barrier and that have been
shown to play a role in intestinal inflammation and interac-
tion with the microbiome [4, 12, 13]. In this review [14], we
will provide a brief general overview of the history, embryol-
ogy, anatomy, and function of the ENS to date as it relates to
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the small intestine in a way that the average reader can
understand. We hope to make a novel contribution to the lit-
erature by connecting common GI disorders with specific
neuronal pathophysiology and therapies and also summarize
opportunities for future investigation including the potential
role of the ENS and the intestinotrophic effect of glucagon-
like peptide 2.

2. History

The study of the ENS dates back to the nineteenth century
when German anatomist and neuropathologist, Leopold
Auerbach, was credited with the discovery of Plexus myen-
tericus Auerbachi or Auerbach’s (myenteric) plexus in the
mid-19" century [15, 16]. This was followed by the discov-
ery of Meissner’s (submucosal) plexus by German anato-
mist and physiologist, Georg Meissner, around the same
time [16]. In 1899, two English scientists, Bayliss and Star-
ling, published a series of articles detailing their experi-
ments on the function of these plexuses and subsequently
described the “Law of the Intestine” [3, 17]. This was the
first demonstration of the peristaltic reflex and the ENS
ability to function independently of the CNS. This law
was reproduced and further characterized by other early
pioneers in the field of neurogastroenterology [1, 10, 18].
More specifically, Trendelenburg was the first to reliably
reproduce the peristaltic reflex in a completely isolated
intestine of the guinea pig with a stimulus that was easily
adjustable [10]. The first attempts of morphological classifi-
cation were made by Cajal and Dogiel who studied their
morphology and microarchitecture identified by silver
impregnation methods [15, 19]. In the 20™ century, multi-
ple attempts at further classification in an effort to support
or refute Dogiel’s efforts were made [6, 19, 20].

3. Embryology

The development of the ENS has largely been studied in
murine and avian embryo models [21-23]. The majority of
progenitor cells have been shown to originate and migrate
from the vagal level of the neural crest along defined path-
ways ahead of the descending vagus nerve fibers, picking up
cues from the microenvironment along the way before differ-
entiating within the wall of the GI tract [22-25]. They
migrate as chains proximodistally within the outer gut mes-
enchyme and remain in contact with one another for direc-
tional migration [26, 27]. A large subset of the vagal enteric
neural crest-derived cells take a shortcut through the dorsal
mesentery from the ileum to a loop of postcecal bowel, pre-
sumably the ascending colon [26]. Additionally, a small
group of sacral crest-derived cells migrate to the bowel
through the somatic mesenchyme and enter it with the
extrinsic sacral nerves giving rise to approximately 20% of
postumbilical neurons [21, 28-30]. However, this has
recently become controversial as a recent report has called
for the redefining of the sacral innervation [31]. During
human gestation, the ENS becomes functional during the last
trimester and continues to develop following birth [11].
Given the complexity of its development with the migration
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of cells from the neural crest, the ENS has many unique orga-
nizational features that make it similar to the CNS [32]. It
lacks much of the internal collagen that creates connective
tissue between neurons, and the supportive cells—enteric
glia—resemble the astroglia of the CNS and less so Schwann
cells (Figure 1) [12, 33-36]. In this regard, the symptoms
of obstruction seen in Hirschsprung’s disease (Table 1)
occurs when a segment of bowel is deprived of ganglion
cells secondary to defective migration of enteric glia. This
highlights the importance of the ENS to the gut and its
motor function [37].

4. Anatomy and Function

The ENS consists of up to 20 different types of neurons, con-
taining more than all the sympathetic and parasympathetic
ganglia combined and a similar amount of neurons to what
is in the spinal cord [11, 33]. The major categories as
observed by Furness et al. in the Burnstock laboratory
include intrinsic primary afferent neurons (IPANs), motor
neurons, and interneurons (Figure 2) [1, 9, 11, 15, 38]. These
neurons are further classified based on their morphological
(Dogiel types I-VII), electrical (types S and AH), chemical
(neurotransmitters), and functional properties [15, 20, 39].

4.1. Intrinsic Primary Afferent Neurons. The intrinsic pri-
mary afferent neurons (IPANs) are some of the first sensory
neurons to detect the physical state of the intestine. They are
located in the submucosal and myenteric plexuses [40]. The
primary neurotransmitters of IPANs are acetylcholine, calci-
tonin gene-related peptide (CGRP), and tachykinin; the sec-
ondary neurotransmitter is undetermined [4, 9, 41].
Morphologically, IPANS are classified as Dogiel type II [40].
They are round or oval in shape and create multiaxonal or
pseudounipolar synapses with multiple types of neuronal ele-
ments to form intrinsic reflex circuits [40, 42, 43]. In the
guinea pig model, myenteric sensory neurons of Dogiel type
IT morphology make up the majority (~97%) of neurons that
project to the mucosa [44]. In the more complicated porcine
model, most of the mucosal-projecting neurons live in the
submucosal plexus, and a minority (12%) are located in the
myenteric plexus. Of the latter group, approximately 23%
of the myenteric neurons projecting to the mucosa are Dogiel
type I, highlighting a stark difference in the proportion of
primary afferent myenteric neurons between both models
[20]. Notably, guinea pig and murine models show IPANs
to be responsive to mucosal mechanical distortion, to distor-
tion of their processes in the external muscle layers, and to
chemicals that interact with the mucosa [40, 45-48].
Within this context, primary afferent nerves such as
IPANs have been investigated with respect to their altered
excitability and influence on motor activity in inflamma-
tory disorders of the gut (Crohn’s, ulcerative colitis, or
infectious), and innovative therapeutic targets have been
identified (Table 1) [49-51].

4.2. Motor Neurons. Motor neurons of the ENS innervate the
circular and longitudinal muscle layers, intrinsic arterioles,
and epithelium including enteroendocrine cells [9, 11, 32].
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Five broad types have been identified as excitatory, inhibi-
tory, secretomotor, vasomotor, and neurons innervating
enteroendocrine cells [9]. The excitatory motor neurons pre-
dominantly use acetylcholine as their neurotransmitter with
a small component of tachykinins (substance P) [9, 41, 80,
81]. They mainly innervate the circular muscle extending
near the boundary of the submucosa and also project more
orally compared to the inhibitory neurons [47]. The inhibi-
tory motor neurons primarily use nitric oxide as their neuro-
transmitter, with vasoactive intestinal peptide (VIP),
adenosine triphosphate (ATP), and carbon monoxide (CO)
as secondary ones [82-85]. They project to muscle that is
close (within 2 mm) to their cell bodies in the anal direction
[47]. The excitatory motor neurons stimulate smooth muscle
contraction whereas the inhibitory neurons discharge in a
continuous fashion, and so inactivity of inhibitory neurons
results in propulsive contraction towards the anus [15, 16].
The effects of both excitatory and inhibitory motor neurons
have been shown in part to be mediated by the interstitial
cells of Cajal (ICC), and this concept is supported by the
presence of NO and excitatory tachykinin transmitter recep-
tors on these cells [47, 86-90]. Abnormal excitatory and
inhibitory input due to the effect of the autonomic nervous
system (sympathetic inhibition of Ach release), neurotrans-
mitters (VIP, NO, substance P, and CGRP), hormones such
as corticotropin-releasing factor (CRF), endogenous opioids,
and bowel manipulation has been shown to result in various
forms of gastrointestinal dysmotility in animal experiments
[70, 76, 91]. In addition, the inhibitory effect of anesthetics
and morphine on gastrointestinal motility has been demon-
strated in humans [76]. These identified mechanisms sup-

port the idea that the cause of intestinal pseudoobstruction
and postoperative ileus is likely multifactorial and that the
targeting of these pathways could lead to preventative and/or
curative therapies (Table 1).

Secretomotor neuron cell bodies are located in the sub-
mucosal and myenteric plexuses; however, they are a part
of secretomotor circuits that involve IPANs with nerve end-
ings in the mucosa [47]. Their activity is initiated through
the interaction of luminal contents such as glucose with the
mucosa or by toxins such as cholera and enterotoxins [15,
92, 93]. Secretomotor neuron main function is to secrete
chloride ions into the intestinal lumen dragging water mole-
cules with them. They consist of a cholinergic and a noncho-
linergic type [47]. The noncholinergic type uses VIP or a
related peptide as its primary neurotransmitter and mediates
most of the local reflex response in contrast to the cholinergic
neurons that act on muscarinic receptors on the mucosal epi-
thelium [15, 93, 94].

Similar to the secretomotor neurons, the vasomotor
neuron cell bodies are located in the submucosal plexus
ganglia and their activity is presumed to also be mediated
by IPANS, though not significantly [15, 47, 95]. They are
the least studied type of motor neuron; however, there is
enough evidence to suggest that they are split into cholin-
ergic and noncholinergic neurons, with acetylcholine as
the likely primary neurotransmitter and VIP as secondary
[47, 95-98]. It is easy to understand how the secretomotor
and vasomotor neurons work in tandem to regulate epi-
thelial secretion and blood flow, and it is important to
note that these reflexes are under extrinsic modulation
via the sympathetics [9].
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TaBLE 1: Additional examples of ENS involvement in various GI diseases and its role as a therapeutic target.
Disorder ENS involvement* Clinical feature(s) Therapeutic targets’

Proinflammatory cytokine-mediated Specific to inflammatory disorder

alteration of afferent nerves and
enteric glia [49, 50]

Gut inflammation

Aganglionosis of myenteric and
submucosal plexuses due to
defective migration of neural
crest cells, disruption of ICC
network [52, 53]

Prostanoid- and 5HT-mediated
stimulation of secretomotor
neurons triggered by inflammatory
mediators released by mast cells
and neutrophils [57-59]

Diabetic autonomic neuropathy
resulting in vagal and sympathetic
nerve damage [62]

Hirschsprung’s
disease

Infectious secretory diarrhea

Diabetic diarrhea

Intestinotrophic effects mediated
by presence of GLP-2 receptor on
submucosal neurons and
endocrine cells [64-66]

Hyperactive but disorganized
excitatory motor neurons due to
dysfunctional or damaged inhibitory
motor neurons and loss of
ICC [53, 70-72]
Increased sympathetic activity
resulting from inhibitory neural
reflexes from the spinal cord;
release of inhibitory
neurotransmitters and ICC loss
(NO, VIP, substance P) [74-76]

Deposits of alpha-synuclein
and misfolded proteins found in
enteric neurons/glia [78, 79]

Short bowel syndrome

Chronic intestinal
pseudoobstruction (CIPO)

Postoperative ileus

Parkinson’s disease (PD) and
Creutzfeldt-Jakob disease

IL-1p, TNF-a, mast cell
products, 5-HT; agonists,
substance P, and CGRP [49]

(Crohn’s, ulcerative colitis, or
infectious diarrhea)

Neuronal stem cell therapy;
exploitation of proliferative
ICC signaling pathways [53-56]

Chronic constipation,
obstruction, failure to thrive,
toxic megacolon [37]

Loose and watery stools,
+/- blood, abdominal pain,
dehydration, nutrient loss,

sepsis [60]

Neural blockade,
Loperamide [57-59, 61]

Unclear, codeine phosphate [63]
Eluxadoline (NCT04313088)

Nocturnal watery and painless
stools, +/- incontinence [63]

Intestinal failure resulting
in malabsorption and
malnutrition [67]

GLP-2 analogs such as
Teduglutide [65, 67-69]

Metoclopramide, erythromycin,
octreotide, and neostigmine;
proliferative ICC
pathways [53, 72, 73]

Nausea, vomiting, abdominal
pain, distention, constipation,
diarrhea, malnutrition [71, 72]

Octreotide and CGRP as potential
therapies; proliferative ICC
pathways [53, 73, 75, 76]

Nausea, vomiting, abdominal
distention, obstipation [77]

Explore ENS role as a biomarker
in these diseases

GI dysfunction, constipation,
reservoir of prions [79]

*May not represent a singular pathophysiological process of the disease. "Therapeutic targets may or may not be approved for clinical use.

Enteroendocrine cells are highly specialized cells that
reside in the intestinal mucosa interacting with various
chemical and mechanical stimuli within the gut’s lumen
[15]. The major transmitters include, but are not lim-
ited to, cholecystokinin (CCK), secretin, somatostatin,
serotonin (5-HT), corticotrophin-releasing factor, gastrin,
leptin, ghrelin, and glucagon-like peptide 2 (GLP-2) [11,
15, 99]. They are released from these cells and interact
with afferent nerve fibers in the lamina propria which
in turn communicate with excitatory and inhibitory
motor neurons [15]. The production of GLP-2 by
enteroendocrine cells is worth highlighting further for
the purpose of this review. There is evidence to suggest
that these cells detect and participate in the transport
of glucose across the mucosa via the activation of glu-
cose transporters by GLP-2 [100]. However, the recep-
tor for GLP-2 is on submucosal neurons as well,
which implies that glucose transport could also be
mediated by enteric neurons that are excited by GLP-
2 [101, 102].

4.3. Interneurons. There are two main types of interneuron-
s—ascending or orally directed interneurons and descending
or anally directed interneurons [19]. They are primarily
located in the myenteric plexus. Just like the motor neurons,
the interneurons’ primary neurotransmitter is acetylcholine.
Furthermore, ATP has been identified as a secondary neuro-
transmitter especially in the descending type [47, 103, 104].
However, there is conflicting evidence on whether or not 5-
HT is also a secondary neurotransmitter of the descending
interneuron [40, 47, 104]. In the guinea pig, one type of
ascending and three types of descending interneurons have
been identified and have been noted to form chains that
extend the length of the GI tract [9, 47]. The majority of
the input to the ascending interneurons comes from IPANS,
and the remaining input is from other ascending interneu-
rons [47]. In contrast, the descending interneurons receive
very little input from IPANSs but rather from other descend-
ing interneurons. It is therefore thought that the descending
interneurons are heavily involved in the MMC of the small
intestine [40, 47].
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5. Supporting Cells

5.1. Enteric Glia. The enteric glia are the supporting, non-
neuronal cells of the myenteric and submucosal plexuses
with an approximate ratio of glia to neurons of 2-3 to 1 [36,
79]. They are believed to originate from the neural crest
and migrate to the bowel either at the time that the vagal-
and sacral crest-derived cells do or later during gut develop-
ment at the time of extrinsic nerve migration [12, 13]. A
unique characteristic is the abundance of glial fibrillary acidic
protein (GFAP) that is present in their cytoplasm compared
to Schwann cells [12]. This is a result of the large amount of
10 nm intermediate filaments known as “gliofilaments” that
they possess [34, 105, 106]. The enteric glia are far more
irregular in shape compared to Schwann cells, and they have
long processes that radiate out and terminate into small
swellings called “end feet” forming an incomplete glial sheath
that partially separates the myenteric neurons from the sur-

rounding connective tissue [36]. Several neurotransmitters
such as acetylcholine, catecholamines, glutamate, adenosine,
and serotonin activate enteric glia [13]. They nourish neu-
rons, maintain homeostasis, and are now being increasingly
acknowledged as active regulators of multiple physiological
processes [13, 79]. There is some evidence to suggest that
enteric glia may have a neurosecretory function, just like
astroglia are believed to play a role in controlling ionic flux
in the CNS [36]. Enteric glia interact with various other non-
neuronal cell types such as enterocytes, enteroendocrine, and
immune cells which speak to their emerging role in regulat-
ing various intestinal functions and their involvement in
pathological disorders such as diarrhea, Parkinson’s disease,
and Creutzfeldt-Jakob disease (Table 1) [13, 79].

5.2. Interstitial Cells of Cajal. The interstitial cells of Cajal
(ICC) have been called the pacemakers of the GI tract due
to their ability to produce cyclic spontaneous depolarization



and slow waves described as the basic electrical rhythm [107].
They are responsible for initiating slow waves within the GI
tract smooth muscle layers due to the lack of unique ion
mechanisms within smooth muscle cells necessary to inde-
pendently produce them [108]. Slow waves are needed to
depolarize smooth muscle cells enough to activate calcium
influx and trigger excitation-contraction coupling [109]. Fur-
thermore, studies in humans and mice have suggested a
mechanosensitive function induced by muscle stretch that
then influences slow wave frequency and smooth muscle
chronotropy; however, the underlying mechanisms are not
fully understood [110, 111]. Experiments in avian and
murine models have shown that ICC are derived from mes-
enchymal cells induced by kit signaling and develop indepen-
dently from the enteric neuron [53, 112, 113]. Thus, they
express c-kit—the marker by which these cells are identifie-
d—and a transmembrane receptor that induces receptor
tyrosine kinase activity after the binding of its ligand, steel
factor (kit ligand or stem cell factor) [107]. As mentioned
earlier, they also possess receptors for tachykinins and NO
produced by excitatory and inhibitory neurons, respectively,
as well as for 5-HT [114, 115]. They are characterized by an
elongated, fusiform body with few processes and are located
at the junction of motor neurons and smooth muscle cells,
forming connections similar to traditional synapses [107-
109]. Moreover, ICC are involved in an integrated functional
syncytium comprised of smooth muscle cells, ICC, and
platelet-derived growth factor-positive cells (i.e., SIP syncy-
tium) [109, 116]. From a pathological perspective, loss of
ICC has been observed in a variety of human intestinal motil-
ity disorders including chronic intestinal pseudoobstruction
(CIPO), Hirschsprung’s disease, inflammatory bowel dis-
eases (IBD), mechanical obstruction, and slow transit consti-
pation (Table 1) [53, 109, 117, 118]. Though this remains
controversial, ICC have also been suggested as a source of
gastrointestinal stromal tumors (GIST) and as one of the rea-
sons for the effectiveness of tyrosine kinase inhibitor, ima-
tinib [53, 119].

6. Current ENS-Targeted Therapies of Common
GI Diseases

In addition to the examples summarized in Table 1, several
common GI diseases have established ENS-targeted thera-
pies. A number of these therapies will be discussed below in
more detail and within the context of the disease.

6.1. Achalasia. Botulinum toxin A is a highly selective neuro-
toxin that inhibits acetylcholine release from nerve terminals
including those of the enteric neurons [120]. It exerts its
effects by first gaining entry into the neuron via synaptic ves-
icle (SV2) receptors [121]. The toxin is produced by the bac-
terium Clostridium botulinum and was first isolated in the
1940s [121]. Since then, it has been extensively studied and
is now used to treat a range of disorders affecting the nervous,
urologic, ophthalmologic, dental, and gastrointestinal sys-
tems, among others [121, 122]. Achalasia is a rare motility
disorder that affects the lower esophageal sphincter—result-
ing in dysphagia, chest pain, food intolerance, and recurrent
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aspirations that cause pneumonia [120, 123]. Although the
root cause remains elusive, we now know that it is due to
the loss of inhibitory neurons of the myenteric plexus result-
ing in failure of the lower esophageal sphincter (LES) to relax
[124, 125]. While nitrates and calcium-channel blockers are
often used to pharmacologically treat achalasia by acting on
smooth muscle, botulinum toxin A has emerged as a safe
and effective treatment that targets the excitatory motor neu-
rons of the ENS [120, 126].

6.2. Slow Transit Constipation. Serotonin type 4 (5-HT4)
receptor agonists such as prucalopride, tegaserod, cisapride,
velusetrag, and naronapride have been shown to improve
colonic motility in patients who suffer from slow transit con-
stipation (STC) [127, 128]. Besides constipation, other symp-
toms of STC include abdominal pain, nausea, vomiting, and
distention [129]. It is characterized by persistent constipation
secondary to slow colonic transit that does not respond read-
ily to dietary changes or laxatives [130]. Although the etiol-
ogy is not entirely clear, this colonic dysmotility has been
linked to a disruption of the autonomic and enteric nervous
systems, as well as the neuroendocrine system [130-132].
More specifically, a reduced number of myenteric plexus
neurons and ICC cells have been demonstrated in patients
with slow transit constipation [125, 131-133]. Prokinetic 5-
HT4 receptor agonists exert their effect by binding to the 5-
HT4 receptor on the enteric neuron leading to the release
of acetylcholine and other mediators of excitatory pathways
that increase motility [134]. Of note, the nonselective 5-
HT4 agonists—tegaserod and cisapride—have fallen out of
favor due to their adverse cardiac side effects; however, the
more recent and highly selective agonists such as prucalo-
pride, velusetrag, and naronapride have been shown to be
safer and much more tolerated [127]. Interestingly, prucalo-
pride has also been shown to have a neuroprotective effect on
the enteric nervous system [134].

6.3. Gastroparesis. As is the case in other gastrointestinal dys-
motility disorders, 5-HT4 receptor agonists like prucalopride
have also proven to be effective in the treatment of gastropar-
esis [135]. Symptoms of gastroparesis include early satiety,
nausea, vomiting, postprandial fullness, and distention which
are a result of delayed gastric emptying in the absence of a
true mechanical obstruction [136]. The most common etiol-
ogies are idiopathy, diabetes, and postsurgery [137]. Both
vagal and ENS dysfunctions have been demonstrated in
humans with gastroparesis where the loss and injury of ICC
and abnormal inhibitory and excitatory motor neurons, as
well as a decrease in the number of enteric neurons, all con-
tribute to its pathogenesis [135, 138-140]. Metoclopramide,
primarily a D2 receptor antagonist with some 5-HT4 recep-
tor agonism, leads to a gastric prokinetic effect by antagoniz-
ing synaptic D2 receptors and stimulating 5-HT4 receptors
on the enteric neuron [141, 142]. Due to its ability to cross
the blood-brain barrier, it also exerts a central antiemetic
effect; however, it can cause extrapyramidal side effects as
well which is why its use is limited to 12 weeks [135, 142].
Other pharmacologic treatments of gastroparesis symptoms
that act on the enteric nervous system via their respective
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receptors include domperidone, levosulpiride, erythromycin,
motilin, ghrelin, and ondansetron [125, 136, 142-144]. Of
note, the approval and use of these medications vary from
country to country.

6.4. Irritable Bowel Syndrome. Another class of drugs, not
previously discussed, act on the opioid receptors of the ENS
(e.g., Eluxadoline and Loperamide) [145-147]. For example,
they target the ENS to provide relief of gastrointestinal (pri-
marily diarrheal) symptoms seen in irritable bowel syndrome
(IBS) patients [148]. Similarly, 5-HT3 receptor antagonists
(e.g., alosetron and ondansetron) have also proven to be of
clinical benefit in controlling diarrhea-predominant IBS
[149, 150]. IBS is typically diagnosed using the Rome IV cri-
teria—a 3-month history of recurrent abdominal pain for at
least 1 day per week in addition to experiencing two or more
symptoms such as defecation, change in stool frequency, or
change in stool form [148, 151]. It is classified into 4 subtypes
(IBS-diarrhea, IBS-constipation, IBS-mixed, and IBS-unsub-
typed), but therapies targeting the ENS primarily treat the
IBS-diarrhea subtype [152]. Pathogenesis as it pertains to
the ENS is due to alterations in sensory and motor function;
however, overall, it is not well-understood [148, 153]. Loper-
amide acts via the mu-opioid receptors on the enteric neuron
to slow intestinal transit [152]. The newer therapy of the two,
Eluxadoline, acts via the gamma-, kappa-, and mu-opioid
receptors to exert its antidiarrheal effects in IBS-diarrhea
patients and is currently being investigated in a randomized
clinical trial for the treatment of diabetic diarrhea (Clinical-
Trials.gov, NCT04313088) [145, 147].

7. GLP-2 and Short Bowel Syndrome

Glucagon-like peptide 2 (GLP-2) is heavily involved in the
digestive process and is cosecreted, along with its sister hor-
mone GLP-1, from enteroendocrine L-cells of the small and
large intestines [68, 154]. Studies have demonstrated its abil-
ity to inhibit gastric emptying and gastric acid secretion stim-
ulated by meals, as well as its role in increasing intestinal
barrier function as part of the immune response [68, 155,
156]. Glucagon-like peptide 2 also regulates many intestinal
adaptive processes including epithelial proliferation, apopto-
sis, and inflammation [68, 157]. To exert its effects, GLP-2
interacts with its receptor on the enteric neurons, subepithe-
lial myofibroblasts, and intestinal endocrine cells as demon-
strated in the mouse, rat, pig, and human intestines [66, 68,
158-160]. The GLP-2 receptor is highly selective for its cog-
nate ligand, GLP-2, and does not allow effective binding of its
structurally related peptide, GLP-1 [68, 159]. When the
enteric neuron is exposed to GLP-2, it results in expansion
of the mucosal epithelium of the small and large intestines
and exerts antiapoptotic actions in the normal and injured
intestine by inducing the expression of cell survival genes
and proteins [64, 65, 68, 161]. Clinically, this has benefited
both adult and pediatric patients who are suffering from
short bowel syndrome (SBS) through the development of
the GLP-2 analog, Teduglutide (Table 1) [64, 65, 69, 162,
163]. Therefore, the clinical success of Teduglutide makes
sense as GLP-2 was previously linked to the regulation of

nutrient absorption in several models, as well as in healthy
human subjects [164-167]. Furthermore, GLP-2 has been
shown to selectively increase visceral blood flow in pigs and
healthy humans, as well as in SBS patients [168-170]. In
the study of SBS patients, the increase in blood flow corre-
lated with the length of their remaining intestine, implying
that GLP-2 exerted metabolic effects on the intestine itself
as opposed to the vasculature [170]. In fact, this was demon-
strated earlier in a representative porcine model (given its
similarity to humans) where GLP-2-induced stimulation of
visceral blood flow was mediated by intestinal endocrine cells
and the enteric neuron, reenforcing its clinical role in the
treatment of SBS patients and making it a potential therapeu-
tic target for low-flow gut diseases such as nonocclusive mes-
enteric ischemia [66]. Thus, the unlocking of these GLP-2
mechanisms has opened the door to a broad avenue of
research looking at the role of GLP-2, the enteric neuron,
and the repair, improvement, and maintenance of mucosal
integrity and nutrient absorption.

8. Conclusion

The enteric nervous system is the largest and most complex
unit of the peripheral nervous system, with ~600 million neu-
rons releasing a multitude of neurotransmitters to facilitate
the motor, sensory, absorptive, and secretory functions of
the gastrointestinal tract. The enteric nervous system receives
regulatory signals from the central nervous system via vagal,
thoracolumbar, and lumbosacral input; however, it is also
capable of independent function as evidenced by the intesti-
nal peristaltic reflex. The involvement of the enteric nervous
system in pathological disorders of the gastrointestinal tract,
and the presence of receptors on the enteric neuron for
enteric hormones and its transmitters, provides the founda-
tion for current and future targeted therapies that could help
patients suffering from a broad range of gastrointestinal
disorders.
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