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Abstract

Instrumental variable (IV) analysis is used to address unmeasured confounding when com-

paring two nonrandomized treatment groups. The local average treatment effect (LATE) is a

causal estimand that can be identified by an IV. The LATE approach is appealing because

its identification relies on weaker assumptions than those in other IV approaches requiring a

homogeneous treatment effect assumption. If the instrument is confounded by some covari-

ates, then one can use a weighting estimator, for which the outcome and treatment are

weighted by instrumental propensity scores. The weighting estimator for the LATE has a

large variance when the IV is weak and the target population, i.e., the compliers, is relatively

small. We propose a truncated LATE that can be estimated more reliably than the regular

LATE in the presence of a weak IV. In our approach, subjects who contribute substantially

to the weak IV are identified by their probabilities of being compliers, and they are removed

based on a pre-specified threshold. We discuss interpretation of the proposed estimand and

related inference method. Simulation and real data experiments demonstrate that the pro-

posed truncated LATE can be estimated more precisely than the standard LATE.

Introduction

Instrumental variable (IV) analysis can be used to address bias from unobserved confounding

in non-randomized studies when estimating a treatment effect on an outcome of interest.

Many IV methods have been developed based on linear and survival regression models [1–5],

however, they require a homogeneous treatment effect assumption to find meaningful causal

effects in the framework of the Rubin causal model [6, 7]. This homogeneity assumption may

be too strong for application to real observational studies. Imbens and Angrist [8] introduced

a causal estimand that can be identified by an IV called the local average treatment effect

(LATE). This estimand does not require treatment effects to be homogeneous for all study sub-

jects. The LATE represents the average treatment effect for a group of compliers, who choose

their treatment according to the random variation in an IV.

A key assumption for a valid IV is that it is independent of the potential outcomes and

treatments. Angrist et al. [9] showed that if this assumption holds without any covariates, then

the Wald estimator, the ratio of sample covariances, is consistent for the LATE. Sometimes,
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IVs are considered to be random only if some covariates are controlled. For example, Brooks

et al. [10] controlled for patient’s socioeconomic and clinical characteristics, and nearest hospi-

tal distance in their IV analysis, where breast conserving surgery plus irradiation (BCSI) rate

was used as an IV to compare BCSI and mastectomy in stage II breast cancer patients. Adjust-

ing for covariates to generate valid IVs is straightforward in IV linear regression models, such

as two-stage least squares. However, covariate adjustment in estimation of the LATE requires

different approaches. Abadie [11] developed a method to estimate the LATE conditional on

observed covariates. This approach requires the estimation of instrumental propensity scores

(IPSs), which are analogous to propensity scores (PSs) for the probability of treatment, and the

construction of an outcome model for compliers as a function of the treatment and covariates,

which is called the local average response function. Weighting and regression methods have

been developed to estimate the conditional and marginal LATEs, which address confounded

instruments [12, 13]. In this study, we particularly focused on the weighting approach, which

only requires the IPSs to be estimated.

In general, PS weighting requires a positivity assumption that the PSs are between 0 and 1.

Extreme PSs close to 0 or 1 are problematic because the average treatment effect (ATE) is esti-

mated from a pseudo-population, where each subject has been treated and untreated. Subjects

with extreme PSs receive extremely large PS weights to realize the pseudo-population. Extreme

PSs result in limited overlap of covariate distributions between comparison groups and make

the inverse probability weighting (IPW) estimator unstable. Methods such as truncation and

overlap weights have been proposed to deal with this problem. Truncation [14] removes sub-

jects whose PSs are extreme, say below 0.05 or above 0.95. Overlap weights [15] continuously

down-weight the subjects with extreme PSs rather than discarding them. Various simulation

studies have showed that these methods perform much better than the IPW estimator [16, 17].

Weak IVs are known to amplify the bias of IV estimators and complicate the related asymp-

totic distributions [18–22]. To deal with weak instruments, we propose a truncation method

for the weighting estimator of the LATE. For this, we use the lemma of Abadie [11] that the

probabilities of being a complier are greater than 0 for all subjects when the monotonicity

assumption of Angrist et al. [9] holds. Therefore, we seek more reliable IV estimation of the

weighting estimator for the LATE by truncating the subjects whose probabilities of being a

complier are very close to or below zero. The proposed method follows the framework of the

truncation method in PS analysis, but it tackles the weak IV problem and related positivity

issue that occur when weighting study subjects to identify the population of compliers.

The remainder of this article is organized as follows. We begin with a discussion of the

notation and assumptions used for the LATE with a confounded IV. Then, we present the

main results for the proposed truncated local average treatment effect (TLATE), which can be

estimated more reliably than the LATE when the IV is weak. Based on simulations, we com-

pare the proposed TLATE estimator with the LATE estimator in terms of variance and IV

strength. For real-world application, we used the data from a population-based prospecitive

cohort study to estimate the effect of a respiratory syncytial virus on lower respiratory tract

infections. We end the article with concluding remarks.

Notation and assumptions

To define the LATE, we introduce some notation and assumptions. Let Z 2 {0, 1} be the binary

IV and D(z) 2 {0, 1} be the binary potential treatment value that would be seen if Z = z. The

actual treatment received is defined as D = (1 − Z)D(0) + ZD(1). Let Y(z, d) be the potential

outcome that would be seen if Z = z and D = d. Under the assumption of exclusion restriction
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(Assumption 3 below), Y(z, d) can be written as Y(d). Then, the observed outcome can be

expressed as Y = DY(1) + (1 − D)Y(0). Let X be a vector of observed covariates.

Angrist et al. [9] divided the population into four groups in terms ofD(0) and D(1): compli-

ers if D(1) > D(0), always-takers if D(1) = D(0) = 1, never-takers if D(1) = D(0) = 0 and defiers

if D(1) < D(0). These groups can only be partially identified because only D(0) or D(1) is

observed for each subject. Among these four groups, under certain assumptions, causal treat-

ment effects are identifiable only for compliers. Let U denote the latent compliance class,

where U = 0 for never-takers, U = 1 for always-takers and U = 2 for compliers. Defiers are

removed under the assumption of monotonicity (Assumption 5 below).

Angrist et al. [9] defined the LATE as

y
c
¼ EfYð1Þ � Yð0Þ j U ¼ 2g:

If the instrument is strongly ignorable without X, then θc is estimated by the Wald estimator. If

strongly ignorable instrument assignment requires conditioning on X, then the Wald estima-

tor is not valid for θc. To get a valid IV estimator for θc in such a case, we must employ an IPS,

defined as e(X) = pr(Z = 1 j X) [11, 12, 23]. We adapt the following assumptions of Abadie [11]

and Frölich [13] for use in the IPS.

Assumption 1 Independence of the instrument:

Z ? fYð0; 0Þ;Yð0; 1Þ;Yð1; 0Þ;Yð1; 1Þ;Dð0Þ;Dð1ÞgjX;

where? denotes statistical independence.

Assumption 2 Positivity: 0< e(X)< 1.

Assumption 3 Exclusion restriction: Y(0, d) = Y(1, d) for d = {0, 1}.

Assumption 4 Nonzero average causal effect of Z on D: pr{D(1) = 1 j X}> pr{D(0) = 1 j X}.

Assumption 5Monotonicity: pr{D(1)� D(0) j X} = 1.

Assumption 1 means that Z is as-if randomized once we condition on X. Assumption 2

means that any study subject has a positive probability of being assigned to both instrument

groups. Assumption 3 means that variation in Z affects the potential outcomes only through

its effect on D. Assumption 4 indicates that Z is positively correlated with D given X. Assump-

tion 5 excludes defiers from the study population. Monotonicity trivially holds when only the

participants assigned to a treatment arm have the opportunity to receive the active treatment,

as in a single consent design [24].

To estimate the LATE with covariates, one can use the weighting IV estimator presented in

equation (11) of Frölich [13]:

(
Xn

i¼1

ZiYi
êðXiÞ

�
Xn

i¼1

ð1 � ZiÞYi
1 � êðXiÞ

) (
Xn

i¼1

ZiDi
êðXiÞ

�
Xn

i¼1

ð1 � ZiÞDi
1 � êðXiÞ

, )

; ð1Þ

where êðXiÞ is the consistently estimated IPS for subject i. We can see that the numerator and

denominator of estimator (1) are the IPW estimators for E{Y(D(1), 1) − Y(D(0), 0)} and E{D
(1) − D(0)}, which represent the average causal effects of the instrument on the outcome and

treatment, respectively. By Proposition 1 in Angrist et al. [9], θc is the ratio of these two average

treatment effects. Therefore, estimator (1) is a consistent estimator for θc.
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Truncated local average treatment effects

Instead of estimator (1), one may want to use the following normalized estimator:

ŷc ¼

Pn
i¼1

Zi
êðXiÞ

� �� 1Pn
i¼1

ZiYi
êðXiÞ
�

Pn
i¼1

1� Zi
1� êðXiÞ

� �� 1Pn
i¼1

ð1� ZiÞYi
1� êðXiÞ

Pn
i¼1

Zi
êðXiÞ

� �� 1Pn
i¼1

ZiDi
êðXiÞ
�

Pn
i¼1

1� Zi
1� êðXiÞ

� �� 1Pn
i¼1

ð1� ZiÞDi
1� êðXiÞ

; ð2Þ

where the numerator and denominator are the Hajek estimators for the average treatment

effects of the instrument on the outcome and treatment, respectively. The weighting estimator

for the LATE, ŷc, is obtained from the identification result in Theorem 1 of Frölich [13]:

y
c
¼

Z

y
c
ðxÞf cðxÞdx ¼

R
tðxÞf ðxÞdx

R
dðxÞf ðxÞdx

; ð3Þ

where fc(x) = pr(X = x j U = 2) is the density function of X for compliers, f(x) = pr(X = x) is the

marginal density function of X, θc(x) = τ(x)/δ(x) is the conditional LATE given x, and τ(x) and

δ(x) are the conditional average treatment effects of Z on Y and D given x, respectively:

y
c
ðxÞ ¼ EfYð1Þ � Yð0Þ j X ¼ x;U ¼ 2g;

tðxÞ ¼ EfYð1;Dð1ÞÞ � Yð0;Dð0ÞÞ j X ¼ xg;

dðxÞ ¼ EfDð1Þ � Dð0Þ j X ¼ xg:

We will call δ(x) = pr(U = 2 j X = x) the compliance score. The denominator of (3) is P(U = 2),

which is the population size of compliers.

Frölich [13] showed that the semiparametric efficiency bound for θc is proportional to 1/P
(U = 2)2. Therefore, if the overall proportion of compliers is close to zero, the regression and

weighting estimators for the LATE will have very large variances. Abadie [11] showed in

Lemma 2.1 of his paper that under monotonicity, δ(x) is greater than 0, and this positivity

assumption implied by monotonicity may be more likely to be violated empirically if P(U = 2)

is very close to zero. That is, subjects whose estimated δ(x) values are very close to or below

zero considerably contribute to a weak instrument. To overcome the problems regarding a

weak instrument, we propose the truncated LATE (TLATE), where subjects whose compliance

scores are below a pre-specified threshold value are excluded from the analysis.

The proposed estimand is defined as

y
c
T ¼

R
tðxÞ1fdðxÞ > tgf ðxÞdx

R
dðxÞ1fdðxÞ > tgf ðxÞdx

; ð4Þ

where t is a pre-specified constant, and 1{�} is an indicator function. We consider selecting a

value of t from the percentiles of the estimated compliance scores, say from the 5th to 50th per-

centiles, and after truncation with the chosen t, the remaining data are used for estimation of

the LATE [16]. The TLATE in (4) is different from the LATE in that only the subjects whose

probabilities of being a complier are greater than a threshold value t contribute to the calcula-

tions of the numerator and denominator in (3). By choosing appropriate percentiles, say the

10th or 20th percentile, we can improve the IV strength and variance of the estimate. This is

similar to the truncation approach of Crump et al. [14], which excludes subjects whose PSs

are close to 0 or 1, improving the variance of the PS weighting estimator. The normalized
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denominator of (4),
R
dðxÞ1fdðxÞ > tgf ðxÞdx
R

1fdðxÞ > tgf ðxÞdx
; ð5Þ

is interpreted as the IV strength for the TLATE in the sense that Eq (5) equals the IV strength

of the LATE for any t smaller than the minimum value of the compliance score.

The following theorem addresses the local causal estimand identified by Eq (4).

Theorem 1 Under Assumptions 1-5, ycT can be expressed as

y
c
T ¼

R
y
c
ðxÞ1fdðxÞ > tgf cðxÞdx
R

1fdðxÞ > tgf cðxÞdx
: ð6Þ

Theorem 1 shows that the proposed estimand is obtained as the average of the local average

treatment effects of the compliers whose compliance scores are greater than t. If θc(x) does not

vary by different characteristics x, then the TLATE is equivalent to θc, which is the LATE.

For estimation of the TLATE, following Crump et al. [14], we re-estimate the IPSs for the

truncated sample. That is, we select a sample of subjects whose δ(x) values are greater than a

pre-specified t. Then, we estimate the IPSs using only this sample and plug the re-estimated

IPSs into Eq (2).

To implement our approach, we must estimate δ(x). In a single consent design, δ(Xi) = E(Di
j Xi, Zi = 1) = pr(Di = 1 j Xi, Zi = 1). Therefore, we can fit a logistic regression model of D on X
to the group Z = 1 and then predict δ(Xi) for all subjects. This procedure makes all estimated

δ(Xi) values positive. For a general case, we fit both pr(Di = 1 j Xi, Zi = 1) and pr(Di = 1 j Xi, Zi
= 0) using only the Z = 1 and Z = 0 groups with logistic regression models. Then, we predict

the values of pr(Di = 1 j Xi, Zi = 1) and pr(Di = 1 j Xi, Zi = 0) for all subjects and take the differ-

ences. This does not guarantee that all estimated δ(Xi) values are positive. The proposed

method can exclude the subjects with negative compliance scores by choosing t appropriately.

Simulation study

We compared the proposed truncation method with the LATE method by evaluating the abso-

lute percentage bias, standard error, and IV strength of the TLATE and LATE estimates using

simulated data sets. We considered one covariate X, which was a standard normal random var-

iate. Using this X, we generated the IV (Z) from the following logistic regression model:

eðxÞ ¼ prðZ ¼ 1 j X ¼ xÞ ¼
exp ðb0 þ b1xÞ

1þ exp ðb0 þ b1xÞ
;

where β1 = 1, and β0 was set such that pr(Z = 1) = 0.4. A compliance class U took values 0 for

never-takers, 1 for always-takers, and 2 for compliers. The compliance score was generated

based on the following logistic regression function:

dðxÞ ¼ prðU ¼ 2 j X ¼ xÞ ¼
exp ðg0 þ g1xÞ

1þ exp ðg0 þ g1xÞ
:

The probability of being a never-taker or always-taker was (1 − δ(x))/2. The value of γ1 was 1,

2, or, 3, and the value of γ0 was chosen to implement three scenarios: pr(U = 2) = 0.1, 0.3, and

0.5. The treatment variable D was then a deterministic function of Z and U: D = Z1(U = 2)+

U1(U 6¼ 2). We generated the outcome variable Y from the following linear model:

Y ¼ Dþ X þ �;
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where � was a standard normal random variate independent of the other variables. In this

setup, the conditional average treatment effects were equal to 1 for all subjects. Thus, the

LATE and TLATE were equal to 1. We generated 1000 data sets with a sample size of 1000.

From each simulated data set, we fitted a logistic regression model to estimate the IPSs

and calculated the LATE estimate using Eq (2). For the TLATE, we used the 5th to 51st per-

centiles of the estimated compliance scores for the value of t. While increasing the size of

the percentile cutpoint, we used a smaller data set. We fitted logistic regression models of D
on X to the Z = 1 and Z = 0 groups separately. Then, we predicted pr(Di = 1 j Xi, Zi = 1) and

pr(Di = 1 j Xi, Zi = 0) for all subjects and took the differences as the estimates of the compli-

ance scores.

Figs 1–3 show the simulation results when the overall IV strength was weak, mild, and

moderate, i.e., when pr(U = 2) = 0.1, 0.3, and 0.5, respectively. The absolute bias, standard

error, and IV strength of the LATE and TLATE estimates are shown as functions of the per-

centile of the estimated compliance scores for the cutpoint t. The first value of each perfor-

mance measure was obtained without truncation, i.e., when t was slightly smaller than

the 0th percentile. All estimates had less than 5% bias. The bias was reduced as pr(U = 2)

increased. In general, as t increased, the standard error decreased and the IV strength

increased. Truncation became more beneficial as the association between the covariate and

compliance class grew: in general, the slopes for the reduction in the standard error and

increment in the IV strength became greater as γ1 increased. The standard error reduced

most significantly up to approximately the 10th percentile across the different scenarios of pr

(U = 2). When γ1 was 2 or 3, the standard error reduced monotonically up to the 51st percen-

tile. However, when γ1 = 1, the standard error reached a plateau at approximately the 20th

percentile in the scenario of pr(U = 2) = 0.3 and at approximately the 10th percentile in the

scenario of pr(U = 2) = 0.5.

Fig 1. Absolute percentage bias, standard error, and IV strength for the local average treatment effect with a

complier population size of 0.1. The X-axis indicates the percentile of the estimated compliance scores for the

cutpoint t.

https://doi.org/10.1371/journal.pone.0249642.g001
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Fig 3. Absolute percentage bias, standard error, and IV strength for the local average treatment effect with a

complier population size of 0.5. The X-axis indicates the percentile of the estimated compliance scores for the

cutpoint t.

https://doi.org/10.1371/journal.pone.0249642.g003

Fig 2. Absolute percentage bias, standard error, and IV strength for the local average treatment effect with a

complier population size of 0.3. The X-axis indicates the percentile of the estimated compliance scores for the

cutpoint t.

https://doi.org/10.1371/journal.pone.0249642.g002
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Application

The PRI.DE study was a population-based prospective cohort study of lower respiratory tract

infections (LRTI) in the German population of infants and children aged less than 3 years [25].

Among the 5310 eligible cases of LRTI, Stampf et al. [26] used 3078 complete cases to estimate

the marginal odds ratio effect of a respiratory syncytial virus (RSV) on the severity of LRTI. In

our study, we used the same data set but estimated the risk difference of severe LRTI.

The outcome was the severity of LRTI, with Y = 1 indicating severe LRTI resulting in hospi-

talization and Y = 0 indicating non-severe LRTI requiring only a pediatric practitioner. The

treatment variable was current RSV infection, with D = 1 indicating the presence of RSV and

D = 0 otherwise. Among the 3078 patients, 1803 were hospitalized and 1031 were infected

with RSV. The covariates included gender, age, external care, siblings, current breast feeding,

parental atopy, preterm delivery, tobacco, congenital heart defect, ethnic group, and region of

country.

We used former RSV infection as an IV. We assumed former RSV infection did not directly

affect the probability of developing severe LRTI during the current RSV infection, and the

covariates were given. Our IV was equal to Z = 0 if the infant had been infected with RSV for-

merly and Z = 1 if the infant had not. Thus, D(0) was the potential current RSV infection when

the infant had been infected formerly, and D(1) was the potential current RSV infection when

the infant had not. Thus, compliers were infants who had a current RSV infection if they had

not been infected formerly, D(1) = 1, and did not have a current RSV infection if they had

been infected formerly, D(0) = 0. Always-takers were infants who had a current RSV infection

regardless of former RSV infection. Never-takers were infants who did not have a current RSV

infection regardless of former RSV infection. Defiers were infants who had a current RSV

infection if they had been infected formerly, D(0) = 1, and did not have a current RSV infec-

tion if they had not been infected formerly, D(1) = 0. We assumed that monotonicity held, and

thus defiers were excluded from the analysis. Table 1 is a frequency table for former RSV infec-

tion (i.e., the IV) and current RSV infection. Among those who had been infected formerly,

20% were not infected, while among those who had not been infected formerly, 34% were

infected. Thus, former RSV infection increased the likelihood of current RSV infection. The

overall IV strength was approximately 15%. The partial F-test statistic for the proposed IV was

10.62, which is on the boderline of the typical rule of thumb of 10 [19].

The IPS was defined as the probability of having no former RSV infection. We estimated

the IPSs, pr(Z = 1 j X = x), using a logistic regression model with main effects of the covariates.

The estimated IPSs ranged from 0.78 to 0.99. We estimated the compliance scores as described

before. The estimated compliance scores ranged from −0.45 to 0.61.

Table 2 lists the inference results for the LATE and TLATE at different values of the cut-

point t. The cutpoint value ranged from the 5th to the 25th percentiles of the estimated compli-

ance scores, and the actual values of the 5th and 25th percentiles were −0.177 and 0.029,

respectively. We estimated the standard error and 95% confidence interval of the point esti-

mate using bootstrapping: for each casual estimate, we obtained 1000 bootstrap replications,

calculated the sample standard error of them, and took their 2.5th and 97.5th percentiles. The

Table 1. Former and current RSV infection.

Current RSV infection

Former RSV infection Not infected (0) Infected (1)

Infected (0) 126 31

Not infected (1) 1921 1000

https://doi.org/10.1371/journal.pone.0249642.t001
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LATE estimate was 0.004, and the TLATE estimates were from 0.051 to 0.079. For the purpose

of comparison, we estimated the ATE, which was 0.077 with a standard error of 0.017. The

TLATE at the 25th percentile was 0.079, which is similar to the ATE, but it was not signifi-

cantly different from 0. We defined the relative efficiency as the variance of the LATE estima-

tor divided by that of the estimator under consideration [27]. Following this definition, the

relative efficiency of the TLATE at the 25th percentile was 1.84.

Conclusion

Approaches dealing with the positivity issue with the PSs of treatment have been well devel-

oped, including the truncation and overlap weights methods [14, 15]. We proposed an IV esti-

mation of truncated LATEs to deal with the problem of weak instruments and the related

positivity violation. The proposed method resembles the truncation approach for PS weight-

ing, but it removes the subjects who are very unlikely to be compliers. Our simulation study

showed that the relative efficiency of the proposed TLATE increases as the variation of the

compliance score increases. Therefore, our method will be useful for data for which the instru-

ments are weak but the compliance score varies considerably across subjects. In our analysis of

PRI.DE data, the estimated compliance score varied considerably across infants, and approxi-

mately 20% of the subjects had negative compliance scores. The analysis showed that the

TLATE estimates were more precise than the standard LATE estimate.

A main limitation of our approach is to lose a part of the study sample by excluding some

subjects based on compliance scores, and thus the LATE can be estimated from a smaller pop-

ulation of compliers. The reduced study sample, however, can represent a population that is

more desirable for IV analysis because the subjects who are very unlikely to be compliers are

removed. In general, the relative population size of compliers estimated from the reduced sam-

ple grows as the cutpoint for compliance scores increases. One interesting measure for IV anal-

ysis is the effective sample size of compliers, which can be calculated as the product of the

sample size and IV strength. Our analysis of PRI.DE data shows that the relative population

size as well as the effective sample size can be increased after truncation. The effective sample

size based on the untruncated PRI.DE data is 3078 × 0.146� 450, while that based on the trun-

cated data at the 25th percentile is 3078 × 0.75 × 0.205� 474.

We used maximum likelihood to estimate a logistic regression model for the IPSs, but other

estimation methods can be used. To reduce the impact of model misspecification in paramet-

ric modeling, one can use the covariate balancing PS [28]. One could also use nonparametric

methods, such as generalized boosting models in which the tuning parameters are selected to

optimize covariate balance [29]. Various comparison studies have shown that these methods,

when used for PS weighting or doubly robust estimation, work more favorably than maximum

Table 2. LATE truncated at different percentiles of the estimated compliance scores: Point estimates, standard errors, and IV strengths. The LATE truncated at the

0th percentile represents the standard LATE.

Percentile Estimate IV strength SE LB UB

0.00 0.004 0.146 0.317 −0.620 0.606

0.05 0.072 0.176 0.267 −0.451 0.609

0.10 0.074 0.173 0.268 −0.441 0.665

0.15 0.056 0.194 0.293 −0.390 0.552

0.20 0.051 0.199 0.248 −0.400 0.588

0.25 0.079 0.205 0.233 −0.355 0.582

“SE” is the standard error of the LATE or TLATE estimate. “LB” and “UB” are the lower and upper bounds of the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0249642.t002

PLOS ONE Truncated local average treatment effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0249642 April 5, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0249642.t002
https://doi.org/10.1371/journal.pone.0249642


likelihood in various simulation scenarios, but their comparative performances depend on the

data generating models for the outcome and treatment [30–33].

Appendix: Proof of Theorem 1

By Bayes’ theorem, fc(x) = pr(U = 2 j X = x)f(x)/pr(U = 2). Because pr(U = 2 j X = x) = δ(x), we

have f(x) = δ(x)−1 pr(U = 2)fc(x) Then, y
c
T in (4) becomes

y
c
T ¼

R
tðxÞ1fdðxÞ > tgf ðxÞdx

R
dðxÞ1fdðxÞ > tgf ðxÞdx

;

¼

R
tðxÞ1fdðxÞ > tgdðxÞ� 1prðU ¼ 2Þf cðxÞdx

R
dðxÞ1fdðxÞ > tgdðxÞ� 1prðU ¼ 2Þf cðxÞdx

;

¼

R
y
c
ðxÞ1fdðxÞ > tgf cðxÞdx
R

1fdðxÞ > tgf cðxÞdx
:

ð7Þ

Eq (7) holds because θc(x) = τ(x)/δ(x).
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