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Abstract

Introduction

Anesthesia induces insulin resistance, which may contribute to elevated blood glucose and

adverse post-operative outcomes in critically ill patients, and impair glycemic control in sur-

gical patients with diabetes. However, little is known about the mechanisms by which anes-

thesia impairs insulin sensitivity. Here we investigate the effects of anesthesia on insulin

sensitivity in metabolic tissues.

Methods

Hyperinsulinemic-euglycemic clamps were performed in 32 lean (control diet; n = 16 con-

scious versus n = 16 anesthetized) and 24 fat-fed (6 weeks fat-feeding; n = 16 conscious

versus n = 8 anesthetized) adult male mongrel dogs in conjunction with tracer methodology

to differentiate hepatic versus peripheral insulin sensitivity. Propofol was administered as

an intravenous bolus (3mg/kg) to initiate anesthesia, which was then maintained with

inhaled sevoflurane or isoflurane (2–3%) for the duration of the procedure.

Results

Anesthesia reduced peripheral insulin sensitivity by approximately 50% in both lean and

fat-fed animals as compared to conscious animals, and insulin action at the liver was

almost completely suppressed during anesthesia such that hepatic insulin sensitivity was

decreased by 75.5% and; 116.2% in lean and fat-fed groups, respectively.

Conclusion

Inhaled anesthesia induces severe hepatic insulin resistance in a canine model. Counter-

measures that preserve hepatic insulin sensitivity may represent a therapeutic target that

could improve surgical outcomes in both diabetic and healthy patients.
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Introduction

Anesthesia induces insulin resistance [1], though little is known about the causal mechanism
or specific tissues involved. Both isoflurane and sevoflurane impair glucose tolerance, which
worsen post-operative outcomes, not only by promoting hyperglycemia, but also by enhancing
catabolism and muscle wasting [1]. A previous study demonstrated that sevoflurane impairs
glucose tolerance and insulin secretion [2]. Also, isoflurane decreases lipolysis, insulin sensitiv-
ity, and increases glycemia both through increased glucose production by the liver and
decreased peripheral glucose utilization [3]. Glycemic control, mediated by both production
and uptake of glucose, is particularly important in surgery, where poor control is associated
with adverse outcomes post-surgery [4]. Understanding the effects of anesthesia on various tis-
sues is therefore important in promoting better surgical outcomes.

In healthy, non-diabetic animals and humans, insulin suppresses hepatic glucose produc-
tion and stimulates peripheral glucose uptake [5–7]. Our previous findings in the canine model
have shown that the liver is particularly susceptible to impairments in insulin sensitivity (SI)
induced by a high fat diet, as 12 weeks of fat feeding in this study did not cause a significant
reduction in peripheral insulin sensitivity, whereas hepatic insulin sensitivity was completely
impaired [8]. Here we extend these findings by demonstrating that the liver may be especially
vulnerable to anesthesia-induced insulin resistance.

Methods

Animals

Male mongrel hounds (25-30kg) were purchased from Antech Inc (Barnhart,MO) and were
housed in the University of Southern CaliforniaMedical School Vivarium or Cedars-Sinai
Comparative Medicine facility under controlled kennel conditions (12h light:12h dark). Ani-
mals were fasted overnight before the morning of the experiment. Dogs were used for experi-
ments only if judged to be in good health as determined by visual observation, body weight,
hematocrit and body temperature, and all efforts were made to minimize suffering. Protocols
were conducted in conformity with the Public Health Service (PHS) Policy on Humane Care
and Use of Laboratory Animals, and approved by the University of Southern California (USC)
Institutional Animal Care and Use Committee, or the Cedars-SinaiMedical Center Institu-
tional Animal Care and Use Committee, as appropriate. There was no significant effect of loca-
tion on results (data not shown). Hyperinsulinemic-euglycemicclamps were performed in 32
lean (control diet; n = 16 conscious, 28.4±1.1kg, versus n = 16 anesthetized, 28.5±0.7kg) and 24
fat-fed adult male mongrel dogs (6 weeks fat-feeding; n = 16 conscious 30.9±1.4kg versus n = 8
anesthetized, 28.2±1.0kg), using tracer methodology to differentiate hepatic and peripheral
insulin sensitivity, as previously described [9]. Some data from these experiments has been pre-
viously published [8, 10, 11], here we compare the effects of anesthesia on insulin sensitivity
for the first time.

Anesthesia

Dogs were sedated with acepromazine maleate (Prom-Ace, Aueco, Fort Dodge, IA; 0.22mg/kg)
and atropine sulfate (Western Medical, Arcadia, CA; 0.11 mL/kg). Anesthesia was induced
with intravenous administration of propofol (Western Medical, Arcadia, CA; 6mg/kg) and
maintained with inhaled isofluorane or sevoflurane (Western Medical, Arcadia, CA). Dogs
were placed on heating pads to maintain body temperature. Saline was infused into the cephalic
vein and maintained at a slow drip throughout the experiment. Indwelling catheters were
placed into both the left femoral artery and vein for sampling. Blood pressure, heart rate, O2
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saturation and CO2 were monitored continuously. At the conclusion of these experiments, ani-
mals were euthanized with an overdose of sodium pentobarbital (Eutha-6, Western Medical;
65mg/kg).

Hyperinsulinemic euglycemic clamp (EGC)

Conscious animals were mildly restrained in a Pavlov harness. Infusions were made into
cephalic or saphenous veins, and blood samples were taken from femoral vessels (in anesthe-
tized animals) or cephalic veins (in conscious animals) every 10–15 minutes throughout the
study. A primed tracer infusion of [3-3H]glucose (priming dose, 25μCi; infusion, 0.25μCi/min;
DuPont-NEN, Boston,MA) was administered, and exogenous glucose labeled with [3-3H]glu-
cose (2.7μCi/g glucose) was infused at variable rates to clamp plasma glucose to the basal level
throughout the entire experimental period. Somatostatin was infused to inhibit endogenous
insulin secretion (1ug/min/kg; Bachem, Torrance CA). After 120–180 minutes of tracer infu-
sion, insulin was infused at 0.75–1.0mU/min/kg (Novo Nordisk, Bagsvaerd, Denmark) for the
remainder of the study.

Assays

Blood samples were collected in microtubes pre-coated with lithium-heparin (BectonDickin-
son, Franklin Lakes, NJ) containing 50μL EDTA (Sigma Chemicals, St Louis, MO). Blood sam-
ples were centrifuged immediately, and the supernatant was assayed for glucose with a YSI
2700 autoanalyzer (Yellow Springs Instrument Co., Yellow Springs, OH), then frozen at -20°C.
Plasma insulin was measured with an ELISA for dog plasma (Alpco, Salem, NH). Samples for
measuring [3-3H]glucose were deproteinized with barium hydroxide and zinc sulfate, evapo-
rated to remove radiolabeledwater, and counted in Ready Safe scintillation fluid (Beckman
Instruments, Fullerton, CA). Tracer-determined whole body glucose disposal (Rd) and endoge-
nous glucose production (EGP) were calculated using Steele’s equation modified for use with
labeled glucose infusion [9] after smoothing plasma glucose and tracer data by optimal seg-
ments. Steady state was defined as the final thirty minutes of the hyperinsulinemic euglycemic
clamp. Peripheral insulin sensitivity is calculated from the peripheral insulin action (ΔRd), the
change in plasma insulin (ΔIns), and the glucose concentration at steady state (GlucSS) by the
equation ΔRd/(ΔInsxGlucSS). Similarly, hepatic insulin sensitivity is calculated using the
hepatic insulin effect (ΔEGP), with the equation ΔEGP/(ΔInsxGlucSS) (9).

Statistical analyses

Experimental data are shown as mean ± standard error of the mean (SEM). Statistical analyses
were performedwith paired or unpaired Student’s t tests or two-way ANOVAs with Tukey’s
pairwise comparisons, as appropriate (GraphPad Prism version 5.04 for Windows, GraphPad
Software, San Diego, CA). Differences were considered statistically significant when p<0.05.

Results

Under basal conditions, Rd was low and similar in all groups (Fig 1A). Insulin stimulated glu-
cose disposal, as evidencedby increased Rd under clamp conditions. However, anesthesia sig-
nificantly decreasedRd (Fig 1B) resulting in a 20% suppression of insulin-mediated glucose
disposal compared to conscious animals. Although there was no significant effect of diet on
basal glucose production (Fig 1C), glucose production was significantly reduced by anesthesia.
Insulin normally suppressed glucose production, as observed in Fig 1D, however this effect was
lost with fat feeding. Interestingly, this effect was completely lost under anesthesia, such that
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even in lean animals there was no insulin-mediated suppression of endogenous glucose pro-
duction. There was no interaction of diet and anesthesia on any of the measured variables. We
also assessed the metabolic clearance rate of insulin, which is calculated by dividing the insulin
infusion rate by the insulin levels at steady state during the clamp, and there was no effect of
either diet or anesthesia (LEAN: Conscious 2.8±0.3, Anesthetized 2.6±0.2. FAT FED: Con-
scious 2.3±0.3 Anesthetized 2.2±0.1).

Peripheral insulin sensitivity during anesthesia was 50% of that in conscious animals, indi-
cating peripheral insulin resistance (52.0% and 47.9% reduction in lean and fat-fed, respec-
tively). Anesthesia was also associated with a reduction in insulin sensitivity in the liver as
compared to conscious animals (75.5% and 116.2% reduction in lean and fat-fed, respectively;
Fig 2), indicating severe hepatic insulin resistance (raw data in S1 Table).

In a subset of lean animals, we detected no difference between the two anesthetic agents on
peripheral or hepatic insulin sensitivity (peripheral SI: isoflurane: 2.3±0.7, n = 10 versus sevo-
flurane: 2.2±0.4, n = 6; dl/kg/min per μU/ml x104; p = ns; hepatic SI: isoflurane: 0.3±0.2 versus
sevoflurane: 0.4±0.2 dl/kg/min per μU/ml x104, p = ns).

Discussion

The effects of a high fat diet on body weight and insulin sensitivity have been reported previ-
ously [8], and it is generally known that anesthesia can induce insulin resistance [1]. Anesthesia
has been shown to impair pancreatic release of insulin [1, 12], and peripheral insulin resistance
is also noted. Here we show that the SI in the periphery is reduced by approximately 50% with
anesthesia, whereas liver SI is almost completely impaired, resulting in a higher level of glucose
production by the liver, which may contribute to hyperglycemia under anesthesia.

Fig 1. Effects of anesthesia and diet on measures of glucose metabolism. Rd (A and B) and EGP (C

and D) were assessed under conscious (black bars) and anesthetized (white bars) conditions in lean and fat

fed animals (mean±SEM). Assessments were taken under low insulin (BASAL) conditions (A and C), and

under the hyperinsulinemia induced by the CLAMP (B and D).

doi:10.1371/journal.pone.0163275.g001
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The hyperinsulinemic clamp allows the separate analysis of glucose removal by the periph-
ery (Rd) and endogenous production (EGP) by the liver. Here we demonstrate that glucose uti-
lization under basal conditions is not significantly altered by either diet or anesthesia, however
the normal effects of insulin to increase Rd are impaired by anesthesia. In this study, we
observedno effect of diet to induce peripheral insulin resistance, as previously reported [8].
EGP, driven primarily by the liver, was suppressed under anesthesia. It is possible that reduced
glucose requirements under anesthesia due to reducedmotor activity requirements and tonic
muscle tone may contribute to a reduction in glucose production, however we did not observe
a commensurate drop in Rd that would support this hypothesis. Further, the ability of insulin
to suppress EGP under both fat feeding and anesthesia conditions was reduced. Thus, anesthe-
sia itself impairs hepatic glucosemetabolism.

Fig 2. Insulin sensitivity with and without anesthesia. (A) Peripheral and (B) hepatic insulin sensitivity,

as calculated from Rd and EGP, respectively was assessed under conscious (black bars) and anesthetized

(white bars) conditions in lean and fat-fed animals (mean ± SEM).

doi:10.1371/journal.pone.0163275.g002
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In the present study, assessments of SI occurred after animals were maintained on inhalant
anesthesia for more than 5 hours. While propofol can cause acute insulin resistance [13], its
effects are short-lived, lasting approximately 3–5 minutes, therefore the effects of anesthesia on
SI are likely driven by inhaled anesthesia. Propofol itself can increase hepatic blood flow and
liver oxygen consumption [14], and while some inhaled anesthetics impair liver blood flow,
isoflurane seems to preserve volumetric blood flow in the liver microcirculation [15]. Thus, it is
unlikely that the observed changes in liver metabolism are due to changes in liver blood flow,
which is a major consideration in assessing perioperative risk [16]. Studies investigating the
effects of inhaled anesthesia on liver enzymes found that although isoflurane and sevoflurane
did not have an acute effect, [17] liver enzymes were elevated 2–7 days after recovery, which
may indicate that liver functionwas affected in a subclinicalmanner by anesthetic exposure
[17], and may be the cause of the metabolic changes observed.

Impaired metabolism has previously been detectedwith anesthesia, including decreased
protein synthesis, reduced plasma lipid levels, and reduced peripheral glucose uptake with
increased glucose production [3], which would contribute to hyperglycemia. Hyperglycemia
and poor glycemic control during surgery is associated with negative clinical outcomes in dia-
betic patients [4]. While the effect of anesthesia in diabetic and pre-diabetic patients is a major
concern, our results indicate that anesthesia may also impair glucose homeostasis in otherwise
healthy, lean individuals, and suggests the liver may be a primary site of impaired metabolism.
A recent review stated that while aggressive insulin therapy post-operatively can improve mor-
bidity and mortality rates, similar results can be attained by using pre-operative nutrition strat-
egies to minimize insulin resistance [18]. Our studies were performed in fasted animals, and it
is therefore possible that a pre-operative carbohydrate interventionmay alter systemic or
hepatic insulin sensitivity, and thus improve metabolism during the surgery.

We have used the canine as a model of human obesity and insulin resistance to show that
evenmodest increases in body weight induced by a high fat diet are associated with develop-
ment of insulin resistance [8, 19]. A review concluded that the metabolic syndrome does not
occur dogs as it does in humans: although the development of visceral adiposity and obesity-
induced insulin resistance does occur, it is not associated with atherosclerosis, and only mild
changes in plasma lipid profile are detected [20]. Thus, it seems unlikely that a prolonged expo-
sure to a high fat diet alone will eventually result in diabetes in the canine, particularly in the
absence of any pancreatic defect[21]. However, recent GWAS studies of human populations
have demonstrated that a healthy pancreas can adequately compensate for insulin resistance,
but any beta cell defect predisposes an individual towards development of diabetes [22]. There-
fore, our obese canine model represents an insulin resistant phenotype, but not frank diabetes.
We show that anesthesia itself can alter glucosemetabolism in liver and peripheral tissues in
both lean and insulin resistant states. Supporting this finding, there have been documented
instances of hyperglycemia under anesthesia in diabetic [23] and lean patients [24]; this latter
study also demonstrated a reduction in the rate of glucose appearance and clearance under
anesthesia in humans. Thus, our results are highly relevant to humans, such that anesthesia
alters both glucosemetabolism and insulin sensitivity even in healthy lean individuals.

In conclusion, we have demonstrated that inhaled anesthesia used in routine surgeries
causes severe hepatic insulin resistance and altered hepatic glucosemetabolism in canines.
Insulin resistance may contribute to elevated glucose levels under anesthesia, which is associ-
ated with increasedmortality in critically ill patients and may complicate glycemic control in
diabetic surgical patients. Further studies are needed to assess the full clinical implications of
these findings as well as determine strategies to mitigate anesthesia-induced insulin resistance
during surgery in both diabetic and healthy patients.
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Supporting Information

S1 Table. Measures of insulin, glucose and glucosemetabolism. Supplemental data showing
values of insulin, glucosemetabolism and glucose levels at basal (0min, before insulin infusion)
and at steady state (180min) under hyperinsulinemic conditions.
(PDF)
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