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Introduction: Disease development in multiple sclerosis (MS) causes dramatic

structural changes, but the exact changing patterns are unclear. Our objective

is to investigate the di�erences in brain structure locally and spatially between

relapsing-remitting MS (RRMS) and its advanced form, secondary progressive

MS (SPMS), through advanced analysis of di�usion magnetic resonance

imaging (MRI) and image texture.

Methods: A total of 20 patients with RRMS and nine patients with SPMS

from two datasets underwent 3T anatomical and di�usion tensor imaging

(DTI). The DTI was harmonized, augmented, and then modeled, which

generated six voxel- and sub-voxel-scale measures. Texture analysis focused

on T2 and FLAIR MRI, which produced two phase-based measures, namely,

phase congruency and weighted mean phase. Data analysis was 3-fold, i.e.,

histogram analysis of whole-brain normal appearing white matter (NAWM);

region of interest (ROI) analysis of NAWM and lesions within three critical white

matter tracts, namely, corpus callosum, corticospinal tract, and optic radiation;

and along-tract statistics. Furthermore, by calculating the z-score of core-rim

pathology within lesions based on di�usion measures, we developed a novel

method to define chronic active lesions and compared them between cohorts.

Results: Histogram features from di�usion and all but one texture measure

di�erentiated between RRMS and SPMS. Within-tract ROI analysis detected

cohort di�erences in both NAWM and lesions of the corpus callosum body

in three measures of neurite orientation and anisotropy. Along-tract statistics

detected cohort di�erences frommultiple measures, particularly lesion extent,

which increased significantly in SPMS in posterior corpus callosum and optic

radiations. The number of chronic active lesions were also significantly higher
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(by 5–20% over z-scores 0.5 and 1.0) in SPMS than RRMS based on di�usion

anisotropy, neurite content, and diameter.

Conclusion: Advanced di�usion MRI and texture analysis may be promising

approaches for thorough understanding of brain structural changes from

RRMS to SPMS, thereby providing new insight into disease development

mechanisms in MS.

KEYWORDS

multiple sclerosis, chronic active lesions, single-shell high angular resolution di�usion

imaging, di�usion tensor imaging, along-tract statistics, phase congruency

Introduction

Multiple sclerosis (MS) is a common disabling disease

of the central nervous system characterized by inflammatory

demyelination and neurodegeneration (Bagnato et al., 2020).

Most patients start with a relapsing-remitting form (RRMS),

but 60–70% of them progress to a secondary-progressive

phenotype (SPMS) within 20–25 years of disease onset (Dutta

and Trapp, 2014). This will lead to a critical shift clinically

from transient symptoms to lasting disability with little

functional recovery (Dutta and Trapp, 2014; Ontaneda, 2019).

Various studies using magnetic resonance imaging (MRI)

suggest the role of tissue pathology in the transition between

these phenotypes in MS; however, the exact mechanisms are

still unclear (Reich et al., 2018; Ontaneda, 2019). Thorough

understanding of tissue changes underlying the structural and

functional differences between RRMS and SPMS is essential,

as that will help identify what and where to examine;

ultimately, it will improve both our diagnosis and treatment

evaluation capabilities.

Focal lesions remain to be a hallmark of MS pathology,

but “invisible” abnormalities are shown to play an increasingly

critical role in patient function (Vavasour et al., 2017; Filippi

et al., 2018; Yu et al., 2019). Based on advanced MRI, including

diffusion tensor imaging (DTI), high angular resolution

diffusion imaging (HARDI), and myelin water imaging, studies

of brain normal-appearing white matter (NAWM) in MS

have found reduced measures in neurite density, dispersion,

and myelin compared with healthy controls (De Santis et al.,

2017; Vavasour et al., 2017; Spano et al., 2018; Rahmanzadeh

et al., 2021). Texture analysis is another candidate measure of

tissue microstructure achieved by assessing the characteristic

relationships between adjacent voxels. On the one hand, recent

evidence has also revealed extensive texture abnormalities in

the NAWM of MS (Loizou et al., 2020). On the other hand,

consequences of MS lesions also depend on their location in

the nervous system (Bates et al., 2003). Based on DTI, white

matter tractography, and magnetization transfer ratio, studies

of major brain white matter tracts such as corpus callosum

and corticospinal tracts have shown that patient dysfunction

can be attributed to a single critical lesion impacting on

myelin and axonal integrity (Reich et al., 2008; Tovar-Moll

et al., 2015; Sechi et al., 2019; Ngamsombat et al., 2020). As

such, regions of interest (ROIs) studies within white matter

tracts may reveal important “hotspots” associated with disease

evolution. Furthermore, changes distant from focal lesions are

common in MS due to Wallerian degeneration (Klistorner et al.,

2015). Therefore, diffusion MRI-enabled along-tract analyses

are necessary for understanding both lesion and non-lesion

pathology. Currently, there are studies related to specific aspects

of the pathological spectrum, but they are not necessarily

integrated as a whole (Reich et al., 2008; Harrison et al., 2011;

Tovar-Moll et al., 2015; Ngamsombat et al., 2020).

Recent studies also suggest the importance of chronic

active lesions to disease progression in MS (Dutta and Trapp,

2014; Absinta et al., 2019; Bagnato et al., 2020). While lesion

development is often connected with clinical relapses in RRMS,

many lesions in SPMS are chronic and smoldering, causing

occult disease progression without signs of evident relapse

(Dutta and Trapp, 2014; Reich et al., 2018). Histologically,

chronic active lesions are characterized by inactive hypocellular

demyelinated cores and actively inflammatory demyelinating

rims (Dutta and Trapp, 2014). Characterizing the nature and

extent of such chronic active lesions in vivo has become a critical

priority to improve healthcare in MS; however, the availability

of methods is limited (Klistorner et al., 2018; Bagnato et al.,

2020). Current research has been relying on susceptibility-based

imaging methods (Absinta et al., 2018), which define chronic

active lesions as having isointense cores and hypointense rims

(rim-positive) (Chawla et al., 2018; Filippi et al., 2019). The

presence of more rim-positive lesions is associated with earlier

disabilities inMS, and the persistence of paramagnetic rims from

acute lesions suggests remyelination failure (Absinta et al., 2019).

Nonetheless, susceptibility imaging is still under development

and there is no evidence showing the ability of these methods

to identify other pathologies such as axonal injury that is critical

for MS progression.

This study aims to identify new quantitative methods for

an integrated analysis of brain pathological changes in RRMS

and SPMS and compare how and where they are different. The

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.944908
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Oladosu et al. 10.3389/fnhum.2022.944908

procedures will focus on novel analyses of diffusion MRI and

image texture in clinical MRI.

Materials and methods

Sample

This study used brain MRI scans of 29 subjects with MS (all

females), including 20 RRMS and 9 SPMS from two datasets

as part of an ongoing clinical study (REB14-1926). Established

criteria were followed in all diagnoses of MS (Polman et al.,

2011), RRMS (Lublin et al., 2014), and SPMS (Lublin and

Reingold, 1996). The first dataset (dataset1) included 10 patients

with RRMS and nine patients with SPMS recruited for a

study assessing corpus callosum function. The second dataset

(dataset2) included 10 patients with RRMS as a convenience

sample from a clinical trial of domperidone as a myelin repair

agent (ClinicalTrials.gov Identifier: NCT02493049). For the

latter, participants needed to have at least one gadolinium-

enhancing lesion in brain MRI, but the current patients were

ineligible and therefore did not continue in the trial. Both

studies were approved by the institutional research ethics board.

Written informed consent was obtained from all participants.

Imaging protocol

Images of 3T anatomical and diffusion brain MRI were

obtained from each dataset using a research-dedicated scanner

(Discovery MR750; GE Healthcare, Milwaukee, USA). The

imaging protocol included T1-weighted MRI acquired with a

1mm isotropic, magnetization-prepared, fast-spoiled gradient

echo sequence using 6.7–8.0ms repetition time (TR), and 2.9–

3.0ms echo time (TE). T2-weighted MRI was acquired with

a spin-echo sequence using TR1/TR2 = 6,000/5,600ms and

TE1/TE2 = 84/100ms; matrix = 256 x 256/512 x 512; field of

view (FOV) = 24 x 24/22 x 22 cm; and slice thickness = 3mm.

FLAIR MRI was obtained with a spin-echo inversion recovery

sequence using TR1/TR2 = 7,000/6,000ms and TE1/TE2 =

127/127ms; matrix = 512 x 512; and FOV = 24 x 24 cm.

Diffusion MRI was acquired with a spin-echo echo-planar

sequence using TR1/TR2 = 8,000ms and TE1/TE2 = 84/61ms;

matrix= 120 x 120; FOV= 24 x 24 cm; slice thickness=3/2mm,

5 b0, with 23 b = 800 s/mm2 directions for Dataset1, and 3 b0,

45 b= 1,000 s/mm2 directions, and three reverse phase-encoded

b0 for Dataset2.

Di�usion MRI processing and analysis

Preprocessing

Image preprocessing for diffusion MRI involved several

steps, which were essentially the same for dataset1 and dataset2

except the step used in susceptibility distortion correction due

to the lack of reverse phase-encoded b0 data in dataset1. Briefly,

the diffusion MRI scans were denoised, corrected for Gibbs

ringing, and then bias corrected as reported previously (Veraart

et al., 2016a,b; Cordero-Grande et al., 2019; Tournier et al.,

2019; Oladosu et al., 2021). Eddy current and susceptibility

distortion corrections were completed using the FSL eddy

method (Andersson and Sotiropoulos, 2016; Andersson et al.,

2016). The latter involved a tool called topup, where dataset1

was not compatible initially due to acquisition confounders as

noted above. To compensate, we inverted the signal intensity

of T1-w MRI from Dataset1 and rigidly transformed it to the

diffusion space. The corresponding b0 volumes were averaged

and nonlinearly registered (ANTs SyN) to the processed T1-

w MRI in an x-axis constrained transformation to calculate

susceptibility distortion (Avants et al., 2008; Huang et al.,

2008). The distortions were transformed afterwards to a topup-

like output format in FSL for correction (Andersson et al.,

2003). Dataset2 was processed for susceptibility distortion

correction using topup directly (Andersson et al., 2003). For

both datasets, the corrected average b0 volumes were then

rigidly registered (FSL epireg) to the corresponding T1-w

MRI per patient for further processing (Jenkinson and Smith,

2001; Jenkinson et al., 2002). Next, diffusion images from

the two datasets were harmonized for angular resolution

by resampling, and for voxel-wise imaging characteristics by

using the linear Rotationally Invariant Spherical Harmonics

method based on 8 patients with RRMS (Descoteaux et al.,

2007; Mirzaalian et al., 2018; Billah et al., 2019; Cetin

Karayumak et al., 2019). These published accounts indicated

that the harmonization approaches were valid if the b value

differences between datasets fell between the range of 500 and

1,500 s/mm2.

To further clarify the suitability of the aforementioned

harmonization methods, we calculated the variance and signal-

to-noise ratio (SNR) of white matter ROIs and compared

them between datasets based on harmonized data. Eight ROIs

each with a size of 6 x 6 pixels were drawn in the corpus

callosum, forceps minor, and forceps major tracts per subject,

per examined diffusionmeasure. The SNRwas evaluated relative

to the standard deviation of the cerebrospinal fluid of the

brain because the calculated maps were masked, which made

the background of the maps all zeros. Subsequently, to enable

HARDI analysis, new diffusion MRI data at b = 2,000 s/mm2

were predicted for both datasets based on their corresponding b

= 1,000 s/mm2 data using an in-house deep learning algorithm

(Murray et al., 2022).

Di�usion metrics calculation

Fractional anisotropy (FA) was obtained from DTI in FSL.

HARDI analysis applied the ActiveAx method implemented

in the accelerated microstructure imaging with convex
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FIGURE 1

Example di�usion and phase congruency texture maps. (A) Di�usion MRI of a) fractional anisotropy, b) axonal diameter, c) intracellular volume

fraction, d) Orientation Dispersion Index, e) Orientation Distribution Function energy f) Apparent Fiber Density, and (B) phase congruency of (top

row) FLAIR MRI and (bottom row) T2 MRI.

optimization (AMICO) for crossing fibers (AMICOx) to model

axonal diameter and intracellular volume fraction (ICVF), and

neurite orientation distribution and density imaging (NODDI)

in AMICO to calculate orientation dispersion (Alexander

et al., 2010; Auria et al., 2015; Daducci et al., 2015). The

apparent fiber density (AFD) was obtained using the fiber

orientation distribution function (fODF), and ODF energy, a

measure of orientational complexity, was obtained from the

diffusion ODF computed by q-ball imaging reconstruction

(Tournier et al., 2004; Descoteaux et al., 2007; Raffelt et al.,

2012). All measures were transformed to the common

MNI-152 coordinates for an analysis based on T1-w MRI
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FIGURE 2

Di�usion tractography and tract geometries. Along-tract

analysis of the corpus callosum, optic radiation, and

corticospinal tracts utilized (A) tractography oriented posterior

(left) to anterior (right) and (B) mean tract geometries for

within-tract sampling.

nonlinear MNI transformation with the ANTs SyN method

(Figure 1A).

Di�usion tractography

The white matter fODF was calculated based on constrained

spherical deconvolution using the b = 1,000 s/mm2 data

alone. The resulting orientation distribution was nonlinearly

transformed and reoriented to MNI-152 space using diffusion

to T1 rigid and T1 to MNI nonlinear transformations (Tournier

et al., 2004). The peaks of the fODF were calculated and input

into a software known as TractSeg to obtain tracts and tract-

ending segmentations (Wasserthal et al., 2018, 2019). Tract

orientation mappings were then calculated and tractography

generated through probabilistic tracking using iFOD2 and a

dilation factor of 2 (Figure 2A) (Tournier et al., 2010). The

corpus callosum was partitioned into seven segments according

to the Witelson scheme based on locations of cortical intercepts

(Witelson, 1989). The corticospinal tracts and optic radiations

were also segmented bihemispherically.

Texture analysis with phase congruency

Texture analysis was done for T2-weighted (T2-w) and

FLAIR MRI using a 3D method called phase congruency.

It was a frequency-based calculation approach and was

shown to be insensitive to signal intensity differences between

images (Kovesi, 1999). The same image preprocessing pipelines

were applied to the anatomical images from dataset1 and

dataset2. Essentially, the T1-w, T2-w, and FLAIR MRI were

all preprocessed by Gibbs ringing correction, N4 bias field

correction, and ANTs template-based brain extraction (Tustison

et al., 2010; Kellner et al., 2016). Medial alignment of T1-w

MRI was applied and that involved applying a rotation and

translation procedure calculated from a rigid body registration

to the MNI-152 T1 reference. T2-w and FLAIR MRI were

then rigidly linearly transformed to the same dimensions as

T1-w MRI. In addition, T2-w and FLAIR MRI were further

processed with contrast-limited adaptive histogram equalization

(Zuiderveld, 1994) (scikit-image v0.18.3) to enhance feature

visibility thereby reducing the potential impact of the slightly

different imaging protocols used in acquisitions.

Texture calculation produced two metrics, namely, phase

congruency, reflecting edge strength based on the alignment

of phases, and weighted mean phase, reflecting edge sharpness

(Figure 1B) (Kovesi, 2003; Ferrari et al., 2011). Optimal

calculation of these metrics required fine-tuning of several

parameters (Table 1). Weighting adjustment for frequency

spread used a sigmoid function with the inflection point (cutOff)

set at 0.5 and degree of inflection (gain) set at 10.0. Filter

bandwidths were regulated by

σ

f0
= 0.55, (1)

by controlling the filter standard deviations (σ) relative to their

central frequencies (f0). Central frequencies were separated by a

factor (M) to obtain even spectral coverage. M was empirically

determined as given by

M =
σ

f0

log
(

π
20

)

. (2)

By default, the median of the highest frequency filter was
used to characterize noise with the noise threshold set at two
standard deviations. Filters were uniformly oriented on a sphere
to balance orientational coverage according to a diffusion MRI
gradient scheme of 23 directions conveniently available in this
study. The number of filter scales was determined by

nscale =









log
fmax

fmin

logM









+ n

∣

∣

∣

∣

∣

∣

fmax =
1

λmin
, fmin =

1

λmax
, (3)

including a heuristically determined n=2 additional

filters to ensure uniform sensitivity at low frequencies.

The frequency domain is bounded by the minimum and
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TABLE 1 Definition and impact of phase congruency parameters.

Parameter Symbol Meaning Impact

Spectral coverage

Minimum wavelength λmin Determines the highest frequency in analysis Determines the smallest scale features for which patterns are detected

Maximum wavelength λmax Determines the lowest frequency in analysis Determines the largest scale features for which patterns are detected

Number of scales nScale Number of filters to define a filter bank covering the

frequency range (λmin , λmax)

Defines a set of filters for sensitivity across all feature frequencies

Spectral sensitivity

Sigma σ Standard deviation of a single filter around its central

frequency (f0).

Regulates the frequency coverage of a single filter

Multiple M The factor separating f0 of successive filters in a filter bank. Together with σ, regulates how features at each frequency are relatively

weighted

Angular resolution

Number of orientations nOrient The number of filter banks positioned in 3D to detect

features in multiple orientations

Provides representation of features at all orientations

Frequency spread penalty

Cut-Off cutOff The inflection point of a sigma curve differentiating high

and low frequency spread

Weights features with different orientations based on the complexity of

their frequency makeup

Gain g The sharpness of a sigma curve in contrasting high over low

frequency spread.

maximum wavelengths (λ). For images with a 1 mm3 voxel

resolution, λmin was set at 2mm and λmax at 16 and 32mm

to allow an analysis of frequencies around the spatial scale

of most lesions observed in MS. Increased phase congruency

and decreased weighted mean phase suggest increased

signal complexity.

Outcome generation

This analysis focused on four scales of abnormalities that

are highly associated with disease development in MS, namely,

whole-brain NAWM, tract-based ROIs, along-tract changes, and

chronic active lesions.

Whole-brain white matter

A histogram analysis method based on 256 bins was used

to assess whole-brain NAWM. The procedure started with brain

tissue segmentation with an open-source software (FSL FAST)

using T1-w MRI. Focal MS lesions were segmented based on

T1 and FLAIR MRI as reported previously (Oladosu et al.,

2021). Eventually, this step provided three-dimensional ROIs

for individual lesions. These lesion ROIs were dilated by one

voxel and then subtracted from the FSL-segmented brain white

matter to obtain the NAWM for each patient (Zhang et al.,

2001). For each investigated imaging measure, the 50th (p50),

75th (p75), and 95th (p95) percentile, and histogram peak

were collected.

NAWM and lesion regions within major white
matter tracts

The ICBM-DTI-81 atlas of size 1mm helped identify major

brain white matter tracks, including three corpus callosum

segments (Genu, Body, Splenium), bihemispheric corticospinal

tracts, and optic radiation tracts (Mori et al., 2004;Wakana et al.,

2007; Hua et al., 2008). The union of ROIs from the corticospinal

tract, cerebral peduncle, posterior limb of the internal capsule,

and superior corona radiata formed the overall corticospinal

tract. NAWM and lesions were defined by intersecting whole-

brain NAWM and lesion ROIs, respectively, with each tract.

Along-tract statistics

Tractometry was applied to tractography to obtain

measurements for all investigated diffusion metrics at 100

points along the mean geometries of each investigated tract

using distance map correspondence (Figure 2B) (Maddah

et al., 2008; Wasserthal et al., 2020). Lesion maps were also

averaged at each point along a tract giving a measure of the

extent of local lesions (lesion extent), with values of 1 (one)

indicating complete lesion coverage at that node. Coordinates

and measurements at each point in corresponding mean

geometries were further aligned across patients using diffusion

profile realignment based on FA (St-Jean et al., 2019).

Chronic lesion activity analysis

We proposed a schema to understand the activity of chronic

MS lesions based on their core-rim dichotomy (Figure 3).
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FIGURE 3

Diagram of acute and chronic lesion activity. Di�erent patterns

of pathology are visible in (A) acute lesion, (B) slowly expanding

lesion, (C) chronic active lesion, and (D) chronic inactive lesion

structures.

Lesions were assigned a z-score based on the relationship

between lesion core and rim pathology.

Zlesion =
µCore − µRim

σRim
(4)

Lesion cores were defined by 26-connectivity erosion of

lesion masks. Subtracting the core voxels from full-lesion ROIs

produced single-voxel-thick rim ROIs for each lesion (Oladosu

et al., 2021). Lesions without definable cores and rims were

excluded in this step of the analysis. With this schema, chronic

active lesions would present with z-scores>0 (or <0 based on

the investigated measure) highlighting greater core damage.

Statistical analysis

All analyses focused on cohort differences between RRMS

and SPMS. Histogram features for each measure were compared

using ANOVA and then post-hoc Tukey correction for multiple

comparisons. For tract-based ROI analyses, measures in tracts

were compared using ANOVA for a combined NAWM and

lesion analysis and then a linear mixed-effect model with subject

as a random effect, including Tukey correction for pairwise

comparisons to understand individual group differences. Tract-

based means were compared using ANOVA, and along-tract

variations were compared with a mixed-effect model and

corrected for multiple comparisons using permutation testing.

All models included subject age as a covariate. The sex factor

was not controlled because all subjects were female. Disease

duration was not included as a covariate because it was

expected to be different between cohorts given the nature

of SPMS being a continuum of RRMS. Analysis of multiple

features and tracts was addressed with Benjamini-Hochberg

correction. Two-sample comparisons used Student’s t -tests,

with p < 0.05 considered significant. For chronic active lesion

analysis, the overall lesion percentages, and average counts

of lesions per patient at multiple thresholds were graphed

and tabulated.

Results

Sample characteristics

The mean (standard deviation) age of the participants was

46.9 (11.5) years, which was 40.7 (9.3) years for RRMS and 58.2

(8.9) years for SPMS subjects. The disease duration of the whole

cohort was 15.5 (11.8) years, and it was 8.6 (6.5) years for RRMS

and 29.3 (8.4) years for SPMS participants. Furthermore, the

overall expanded disability status scale (EDSS) score was 3.3

(2.4), which was 1.9 (1.1) and 6.5 (0.5) for RRMS and SPMS

subjects, respectively. In total, we identified 1,026 brain white

matter lesions, 1 to 111 per subject. Patients with SPMS had

an average of 48.56 lesions and patients with RRMS had an

average of 29.45 lesions. Among the 1,026 lesions, 275 had

core-shell analysis (SPMS: 12.67/pt, RRMS: 8.05/pt). In total, six

diffusion and eight phase congruency measures were analyzed.

Diameter, ODI, ODF energy, and FLAIR WMP showed higher

values in regions of greater pathology such as those in SPMS

vs. RRMS, while AFD, FA, ICVF, and T2 WMP showed the

opposite trend, being lower in SPMS than RRMS. In addition,

after harmonization of diffusion MRI, there was no significant

difference (p > 0.05) in either variance or SNR of white matter

ROIs between dataset1 and dataset2 for any calculated diffusion

metrics (Supplementary Table 1).

Histogram statistics

Analysis of variance showed that histogram features differed

significantly between RRMS and SPMS for all diffusion

and texture measures except T2 (32mm) phase congruency

(Figure 4). Diffusion-based AFD (p < 0.0001) differentiated

cohorts across all four histogram features (p < 0.01); FA

differentiated cohorts in all features but p50. Remaining

diffusion measures showed cohort difference in only two

histogram features (p < 0.05) except for diameter, which only

showed significance in histogram peak (p < 0.0001). T2 and
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FIGURE 4

Histogram-based outcomes by cohort. (A) Demonstrates results for di�usion measures, and (B) for texture measures from phase congruency.

The stars indicate post-hoc significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The boxes plot the median, interquartile range

(IQR), and 1.5*IQR.

FLAIR (16mm) phase congruency showed significance in both

p75 and p95 (p < 0.05), while FLAIR (32mm) and T2 (16

and 32mm) were significant at p50 and p95 (p < 0.05) in

differentiating cohorts.

ROI-based tract-wise analysis

Following correction of multiple comparisons in ANOVA,

three diffusion measures, namely, FA, ODF energy, and ODI

detected differences between the cohorts (p< 0.0026) (Figure 5).

All three measures showed significance in differentiating lesions

(p < 0.001) and NAWM (p < 0.05) of the corpus callosum

body. ODI and ODF energy were significant for the left

(RRMS: 0.172, SPMS: 0.212) and right (RRMS: 207.64, SPMS:

240.49) optic radiations, respectively (p < 0.0026) following

ANOVA. Pairwise comparisons highlighted ODI and ODF

energy detecting cohort differences in the optic radiations for

lesions (RRMS: 0.166, SPMS: 0.212, p < 0.01; RRMS: 212.15,

SPMS: 238.15, p < 0.05) and NAWM (RRMS: 0.177, SPMS:

0.212, p < 0.05; RRMS: 203.13, SPMS: 242.83, p < 0.01).

Along-tract statistics

There were prominent differences between cohorts in lesion

extent when all tract values were averaged (Figure 6). With

correction for multiple comparisons following ANOVA (p <

0.0024), lesion extent remained significant in the posterior body,

isthmus, and splenium of the corpus callosum (p < 0.0024), and
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FIGURE 5

Tract ROI-based outcomes by cohort. Shown are findings in three di�usion measures on lesions and normal appearing white matter (NAWM)

within three key regions of the corpus callosum. The stars indicate post hoc significance: *p < 0.05, **p < 0.01, ***p < 0.001. The boxes plot the

median, interquartile range (IQR), and 1.5*IQR.

optic radiations in both hemispheres (p < 0.0001). T2 (16mm)

phase congruency was significant in the left but not in the right

corticospinal tract (p < 0.0024). Lesion extent showed notable

along-tract differences at major bihemispheric peaks appearing

higher in patients with SPMS than in patients with RRMS;

however, T2 (16mm) phase congruency showed constant along-

tract cohort differences. FA, ICVF, and ODI did not survive

correction for multiple comparisons following ANOVA, but

indicated whole-tract differences in the genu, rostral body, and

both hemispheres of the optic radiation with significant along-

tract differences in the callosal segments.

Chronic lesion analysis

Lesions defined as chronic active had z-scores ranging

from 0 to 2.0 (or 0 to −2.0 depending on the investigated

measures) based on core vs. rim pathology analyses. Patients

with SPMS showed 14.1, 18.1, and 13.2%, which corresponded

to an average of 3.44, 3.84, and 3.33 more chronic active lesions

in patients with SPMS than in patients with RRMS at z-scores

between 0.5 and 1.5 according to axonal diameter, FA, and ICVF

(Figure 7). In the 0.5 to 1.0 z-score range, the percentage of

chronic active lesions in patients with SPMS was increased by

18.0%, 12.2%, and 4.9% according to axonal diameter, FA, and

ICVF, respectively. This corresponded to an average of 3.28,

2.73, and 1.61 more chronic active lesions per SPMS patient

than RRMS. According to axonal diameter, FA, and ICVF, 80–

85% of the measured lesions were chronic active (>0, <0, <0,

respectively); using AFD, ODF energy, and ODI, 40–65% of the

measured lesions were chronic active (<0,>0,>0, respectively).

Examining the number of chronic active lesions based on z-

score thresholds, a 0.5 threshold showed cohort differences for

all measures, and a threshold of 1.0 showed differences primarily

with ICVF, which indicated an average lesion count of 4.56±1.67

for SPMS and 2.17±1.79 for RRMS (Table 2).
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FIGURE 6

Along-tract statistics between cohorts. Shown are (A) lesion extent, (B) orientation dispersion index (ODI), (C) fractional anisotropy (FA), (D)

apparent fiber density (AFD), (E) axonal diameter, (F) intracellular volume fraction (ICVF), and (G) orientation distribution function (ODF) energy.

The p-value indicates significance of pointwise cohort di�erences prior to multiple comparison corrections. Bottom right: Labels of the seven

corpus callosum segments, optic radiation, and corticospinal white matter tracts examined in the study.

FIGURE 7

Density plot of chronic active lesions per cohort based on a common range of z-scores of di�usion metrics. Shown are results based on (A)

fractional anisotropy (FA), (B) intracellular volume fraction (ICVF), and (C) axonal diameter. The histograms (bin size = 0.02) represent the

percentage of chronic active lesions, and the red and blue curves represent the accumulated probability of the lesions with equal or more

extreme z-scores. The boxed images show example lesion maps of the corresponding di�usion measures.
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TABLE 2 The percentage and number of chronic active lesions in each cohort based on z-score definitions.

Measures RRMS SPMS

>0.5 >1.0 0.5–1.0 0.5–1.5 >0.5 >1.0 0.5–1.0 0.5–1.5

Diameter % of total 45.3 18.6 26.7 44.7 62.3 17.5 44.7 58.8

#lesion/pt Mean (s.d.) 4.06 (3.19) 1.67 (1.24) 2.39 (2.45) 4.00 (3.12) 7.89 (2.20) 2.22 (1.56) 5.67 (1.58) 7.44 (1.94)

FA % of total 44.1 12.4 31.7 41.6 59.6 15.8 43.9 59.7

#lesion/pt Mean (s.d.) 3.94 (3.33) 1.11 (1.23) 2.83 (2.60) 3.72 (3.23) 7.56 (2.92) 2.00 (1.41) 5.56 (2.92) 7.56 (2.92)

ICVF % of total 50.9 24.2 26.7 44.7 67.5 36.0 31.6 57.9

#lesion/pt Mean (s.d.) 4.56 (3.33) 2.17 (1.79) 2.39 (2.23) 4.00 (3.18) 8.56 (3.00) 4.56 (1.67) 4.00 (2.12) 7.33 (2.78)

Discussion

Through advanced analysis of diffusion and anatomical

brain MRI, we have detected significant differences between

RRMS and SPMS participants in different scales of tissue

pathology. The SPMS individuals show greater NAWM

damage across nearly all diffusion and phase congruency-

based texture measures of the whole brain. Similarly, increased

tissue damage in SPMS is also manifested in both lesions

and NAWM within two of the three critical brain white

matter tracks as detected by orientation-informed FA, ODF

energy, and ODI diffusion measures. Furthermore, along-

tract statistics highlighted significant differences in lesion

extent within several callosal segments among others. This

is accompanied by dramatically increased percentage and

number of chronic active lesions in SPMS compared with

RRMS subjects.

It is well known that NAWM plays an important role in

disease progression in MS (De Santis et al., 2017; Vavasour

et al., 2017). However, the exact patterns of change during

the process are unclear. Our findings indicate that there is

increased tissue damage in the NAWM of SPMS at both micro-

and macroscopic levels as shown by advanced diffusion MRI

and phase congruency measures. Furthermore, the damage

may vary by brain region or tissue type. The observation that

the SPMS NAWM shows lower ICVF at p95, greater axonal

diameter at p50, and greater orientation dispersion index at

p50 histogram regions than RRMS suggests that high-density

white matter bundles with small diameter and low dispersion

are most susceptible to NAWM damage. Texture measures

also detected significant differences between RMS and SPMS

primarily at sharper structure transition points, as reflected by

high phase congruency and low weighted mean phase values.

The increase in FLAIR phase congruency and the decrease in

weighted mean phase may reflect an increased variation in local

tissue structure resulting from loss of homogenous myelination.

In contrast, the decreased phase congruency and increased

weighted mean phase of T2-w MRI may reflect increased signal

homogeneity from corticospinal fluid and inflammation, which

are suppressed in FLAIR. Pinning down the specific patterns

of difference in pathology between RRMS and SPMS would

permit targeted analysis of brain NAWM, thereby increasing

the efficiency in the search of non-lesion mechanisms of disease

progression in MS.

In contrast to whole-brain NAWM analysis, tract-based

ROI analysis focused on major white matter tracts known

to impact patient function (Reich et al., 2008, 2009; Llufriu

et al., 2012). The corpus callosum plays a significant role in

interhemispheric communication. Therefore, it is not surprising

to observe significant increases in diffusion damage in the body

of corpus callosum of SPMS compared with RRMS in both the

NAWM and lesion areas. Cohort differences in the corticospinal

tract were also detected by a few diffusion measures showing

worsening in SPMS than RRMS but were unilateral and focused

on lesions only within the tract. These findings indicate the

severity of tissue damage in critical brain regions of SPMS, as all

the associated regions of the white matter tracts are important

regulators of motor functions (Sechi et al., 2019). Furthermore,

current evidence may also highlight that lesion damage within

major white matter tracks remain to be critical contributors of

advanced disease in MS (Martínez-Heras et al., 2020).

Along-tract analysis offered an opportunity to analyze tissue

structure properties along the entire length of white matter

tracts. Lesion extent appears to be the most significant measure

that differentiates SPMS from RRMS, showing increased

quantity in patients with SPMS in all the tracts detected,

especially the posterior regions of the corpus callosum and

optic radiation. Lesion extent herein measures the percentage of

image voxels belonging to lesion areas vs. NAWM. While the

findings again highlight the critical role of lesions, consistent

with results from ROI-based tract analysis above, lesion extent

provides a differentmeasure of pathology in the context of tracts.

Lesion extent showed significant cohort differences at symmetric

regions between hemispheres, presenting with greater lesion

burden than adjacent regions for all tracts. The symmetrical

changes in lesion extent between hemispheres are different

from the changes in FA, ICVF, and ODI, which showed cohort

differences mainly in themidsagittal regions of the brain, such as

the genu and rostral body of corpus callosum, which warrantee

further investigation.
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Taking advantage of the sensitivity of diffusion MRI

measures to microstructural changes, we have also investigated

the activity of chronic MS lesions through the core-rim

framework. The dichotomy of the lesion core and rim has been

investigated in chronic active lesions previously by others to

demonstrate DTI sensitivity to regional differences (Klistorner

et al., 2018, 2021). In this study, we expanded the lesion core

and rim examinations through the z-score framework across a

range of diffusion microstructure measures, allowing detailed

understanding of individual lesions in both RRMS and SPMS.

In this study, cohort differences in the distribution of chronic

active lesions over the 0.5–1.5 range of z-scores may highlight

a critical threshold territory useful for identifying progression

from RRMS to SPMS. A z-score of 0.5 indicates a reasonable

degree of pathological differences between the core and rim,

which may serve as an appropriate threshold to define chronic-

active lesions, deserving further verification. ODI, ODF energy,

and AFD did not show clear core-rim differences. This may

result from their dependence on diffusion orientation models,

which may be influenced by reductions in axonal density

resulting from pathological damage (Schneider et al., 2017).

There are some limitations in this study. The sample size

is small that may limit generalization of our findings. But

significant differences were found in various measures between

RRMS and SPMS. In addition, half of our diffusion data

are derived from prediction based on the available diffusion

MRI in HARDI analysis. While this approach is subject to

further confirmation, our pilot results using predicted data

demonstrate validity (Murray et al., 2022), and such an

approach can be extremely beneficial to clinical scenarios where

imaging acquisition time is limited. Furthermore, our diffusion

measures present with similar patterns to those shown in

the literature, and prior research has found that the outcome

measures are equivalent between single-shell and multi-shell

HARDI (Oladosu et al., 2021). Another limitation is the use

of two different datasets. Nonetheless, the impact of dataset

combination appears to be mitigated by the similarity of their

acquisition protocols, our use of tested techniques to harmonize

datasets, and our integration of robust image preprocessing

strategies. Specifically, the difference of b values between

the two datasets used in our study is 150 s/mm2 which is

far from the allowed threshold (500 and 1,500 s/mm2) in

performing harmonization of diffusion MRI (Cetin Karayumak

et al., 2019). Furthermore, our quantitative results on both

the variance and SNR of ROIs in brain white matter confirm

the feasibility of our harmonization approaches. Similarly, our

use of the contrast-limited adaptive histogram equalization

method in phase congruency-based texture analysis should have

also helped minimize the impact of corresponding protocol

differences. In the future, we seek to validate our findings using

additional datasets, extend the z-score paradigm for chronic

active lesion analysis to images with different resolutions and

with smaller lesions, and investigate the relationship between

chronic active lesion activity and patient function in MS with

or without progression.

In summary, using advanced diffusion MRI and image

texture analysis methods, we found significant differences

between RRMS and SPMS subjects across a wide range of

measures of brain microstructure. The SPMS participants

appear to have increased NAWM pathology at both microscopic

and macroscopic degrees compared with RRMS participants.

Moreover, lesion pathology seems to still play a critical role in

disease development in MS, as highlighted by both within-tract

and along-tract analyses. Furthermore, using advanced diffusion

MRI measures, this study has also developed a novel method for

defining the activity of chronic active lesions, a much-needed

dimension in understanding functional decline in MS. Overall,

this study may provide a useful foundation for future studies of

disease progression in MS, as represented by joint analysis of

different scales of tissue pathology.
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