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Introduction. Barrett’s oesophagus (BE) is a precursor to oesophageal adenocarcinoma (OAC). Endoscopic surveillance is
performed to detect dysplasia arising in BE as it is likely to be amenable to curative treatment. At present, there are no
guidelines on who should perform surveillance endoscopy in BE. Machine learning (ML) is a branch of artificial intelligence
(AI) that generates simple rules, known as decision trees (DTs). We hypothesised that a DT generated from recognised expert
endoscopists could be used to improve dysplasia detection in non-expert endoscopists. To our knowledge, ML has never been
applied in this manner. Methods. Video recordings were collected from patients with non-dysplastic (ND-BE) and dysplastic
Barrett’s oesophagus (D-BE) undergoing high-definition endoscopy with i-Scan enhancement (PENTAX®). A strict protocol
was used to record areas of interest after which a corresponding biopsy was taken to confirm the histological diagnosis. In a
blinded manner, videos were shown to 3 experts who were asked to interpret them based on their mucosal and
microvasculature patterns and presence of nodularity and ulceration as well as overall suspected diagnosis. Data generated were
entered into the WEKA package to construct a DT for dysplasia prediction. Non-expert endoscopists (gastroenterology
specialist registrars in training with variable experience and undergraduate medical students with no experience) were asked to
score these same videos both before and after web-based training using the DT constructed from the expert opinion. Accuracy,
sensitivity, and specificity values were calculated before and after training where p < 0 05 was statistically significant. Results.
Videos from 40 patients were collected including 12 both before and after acetic acid (ACA) application. Experts’ average
accuracy for dysplasia prediction was 88%. When experts’ answers were entered into a DT, the resultant decision model had a
92% accuracy with a mean sensitivity and specificity of 97% and 88%, respectively. Addition of ACA did not improve dysplasia
detection. Untrained medical students tended to have a high sensitivity but poor specificity as they “overcalled” normal areas.
Gastroenterology trainees did the opposite with overall low sensitivity but high specificity. Detection improved significantly and
accuracy rose in both groups after formal web-based training although it did it reach the accuracy generated by experts. For
trainees, sensitivity rose significantly from 71% to 83% with minimal loss of specificity. Specificity rose sharply in students from
31% to 49% with no loss of sensitivity. Conclusion. ML is able to define rules learnt from expert opinion. These generate a
simple algorithm to accurately predict dysplasia. Once taught to non-experts, the algorithm significantly improves their rate of
dysplasia detection. This opens the door to standardised training and assessment of competence for those who perform
endoscopy in BE. It may shorten the learning curve and might also be used to compare competence of trainees with recognised
experts as part of their accreditation process.
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1. Introduction

Invasive oesophageal adenocarcinoma (OAC) is associated
with a poor overall 5-year survival of 15% [1]. Barrett’s
oesophagus (BE) is the only identifiable premalignant
lesion. Endoscopic surveillance of BE is performed to
detect OAC at a pre-invasive stage that is likely to be ame-
nable to curative treatment. Current surveillance strategies
typically rely on white light endoscopy (WLE) to obtain
random four-quadrant biopsies every 2 cm through the
BE segment [2]. This approach samples less than 5% of
the Barrett’s epithelium and is therefore prone to missing
early lesions [3].

A novel endoscopic image enhancement technology,
i-Scan (PENTAX HOYA, Japan), has been developed to
improve lesion recognition in the gastrointestinal tract.
i-Scan utilises post processing light filtering technology
to enhance different elements on the mucosa and micro-
vasculature. We recently published the first formal classi-
fication system for i-Scan in the upper gastrointestinal
tract [4]. There is also growing evidence to suggest
increased accuracy of dysplasia detection using i-Scan in
the assessment of colorectal polyps [5–7].

Machine learning (ML) is a branch of data mining that
applies mathematical models to generate computerised algo-
rithms. These can create novel prediction models. ML
involves a computer “learning” important features of a data-
set to enable predictions about other, unseen, data. A poten-
tial application would be to separate subjects into two (but
sometimes more) categories based on the attributes mea-
sured. This could then be used to create predictive models
about which subjects have a disease.

Over the past 10 years, ML has become increasingly used
within the field of medicine. For instance, ML has already
been applied to improve detection of ovarian and breast can-
cers using ultrasonography [8, 9]. Models use patient-specific
information to predict a medical outcome or to help support
doctors in making a diagnosis [10]. ML also has potential
training applications. An example includes IBM’s Watson-
Paths project (IBM Research), which has been developed to
improve training and diagnostic skills amongst medical stu-
dents at the Cleveland Clinic (http://www.research.ibm
.com). Other examples include ML to prognosticate in mela-
noma, predict susceptibility for cerebrovascular disease, risk
of recurrence of breast cancer, and diagnosis of thyroid dis-
ease [11–13]. Interestingly, these systems often outperform
the diagnostic abilities of specialists in each field.

Currently, there is no standardised method of assessing
the competence of endoscopists who perform endoscopy in
patients with BE. It is perhaps therefore not surprising that
there is considerable variability in diagnostic competence
amongst endoscopy trainees across Europe with almost
one-third admitting to feeling uncertain when performing
endoscopy in BE [14]. A training tool to improve endoscopic
lesion recognition in BE is therefore desirable.

The aims of this study were:

(i) To evaluate the accuracy of expert endoscopists to
detect dysplasia in patients with BE using i-Scan.

(ii) Using the data generated by expert endoscopists to
generate a simple automatic machine-based algo-
rithm to help detect dysplasia in patients with BE.

(iii) To assess if training non-expert endoscopists using
this algorithm could improve their detection of
dysplasia.

2. Methods

2.1. i-Scan Technology. i-Scan is a novel endoscopic post pro-
cessing light filtering technology (PENTAX HOYA Corpora-
tion). Software algorithms with real-time image mapping
technology are embedded with an EPKi processor. The EPKi
processor enables resolution above high-definition television
(HDTV) standard with a resolution of approximately 1.25
megapixels per image. Using distinct digital filters, i-Scan
offers post processing of images to allow the endoscopist to
make additional analyses. There are three image enhance-
ment modes, which are controlled by pressing a button on
the endoscope handpiece (Figure 1):

i. Surface enhancement (i-Scan 1): enhancement of the
structure through recognition of the edges.

ii. Contrast enhancement (i-Scan 2): enhancement of
depressed areas and differences in structure through
the presentation of low-density areas.

iii. Surface and tone enhancement (i-Scan 3): enhance-
ment tailored to individual organs through modifica-
tion of the combination of red, green and blue (RGB)
light components for each pixel.

2.2. Classification System. Classification systems using nar-
row band imaging (NBI, Olympus®) in patients with BE have
already been published [15–19]. Broadly speaking, these take
into account mucosal and microvascular patterns to predict
dysplasia in BE [20]. A recent multi-national consortium of
NBI experts (BING consortium) developed a consensus-
driven NBI classification system based on 60 NBI magnifica-
tion images with encouraging results [21]. In this study, the
mucosa was classified as normal (circular, ridged, or tubular
pattern) or abnormal (absent or irregular patterns) and the
vascular pattern as normal (regular vessels with normal or
long branching patterns) or abnormal (focally or diffusely
distributed vessels following abnormal mucosal architec-
ture). Dysplasia detection was achieved with an accuracy of
85%, (sensitivity 80%, specificity 88%) with substantial inter-
observer agreement (κ = 0 681).

Acetic acid (ACA) chromoendoscopy is increasingly
being used to enhance the endoscopic detection of Barrett’s
dysplasia [22]. When sprayed onto Barrett’s mucosa, an
acetowhitening reaction occurs such that areas of dysplasia
lose their acetowhitening effect faster than areas without
dysplasia. This phenomenon helps facilitate targeted biop-
sies of the Barrett’ mucosa. We previously used data from
the BING consortium to validate a classification system
using i-Scan magnification endoscopy and ACA chromoen-
doscopy reporting similar outcomes (accuracy 83%) with
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substantial interobserver agreement (κ =0.69) [4].We graded
lesions based on mucosal (M) and vascular (V) patterns
as follows:

i. M1: regular circular or villous pits.

ii. M2: distorted or irregular pits or featureless mucosa.

iii. V1: regular and uniform vessels.

iv. V2: irregular, dilated tortuous vessels.

Expert endoscopists used the same classifications in the
current study. We also took into consideration the presence
of nodularity and ulceration (Figure 2). We believed this to
be important as both of these features are associated with
higher rates of dysplasia in patients with BE and can be easily
recognised at endoscopy [23].

2.3. Data Mining and Machine Learning. Data mining is the
process of selecting, exploring, and modelling large amounts
of data in order to discover unknown patterns or relation-
ships [24].

Several types of data classification algorithms exist to
classify data into two or more categories. We used decision
trees as they output rules that are easily understood by doc-
tors. We entered the endoscopic assessments of three expert
endoscopists (Matthew R. Banks, Raf Bisschops, and Rehan
J. Haidry) into the “WEKA” ML package to help construct
the predictive model [25].

2.4. Patients. This study was a UK Health Regulatory Agency
(HRA) approved national clinical trial (REC reference 08/
H0808/8, study number 08/0018). Patients undergoing sur-
veillance endoscopy for BE were invited to participate. All
provided written informed consent. They were asked to stop
any anticoagulant therapy for 7 days before endoscopy.
Patients in whom acquisition of oesophageal biopsies was
contraindicated (coagulopathy, inability to stop anticoagu-
lants, or oesophageal varices) were excluded.

2.5. Endoscopy and Recording. High-definition (HD) video
recordings were collected from 40 patients at University
College London Hospital over an 18-month period. All
patients were taking proton pump inhibitors.

Endoscopy was performed using a PENTAX EG-2990i
or EG29-i10 HD video gastroscope (PENTAX HOYA,
Japan). All procedures were performed by one of three
endoscopists with a specialist interest in BE (Laurence B.
Lovat, Matthew R. Banks, Rehan J. Haidry). Patients were
given conscious sedation using intravenous midazolam and
fentanyl. In cases of excessive oesophageal peristalsis, an
antispasmodic agent such as hyoscine-N-butylbromide
(Buscopan) was administered intravenously.

Once the endoscopist had selected an area of interest, the
area was cleaned with sterile water. A mucolytic agent such as
“N-acetylcysteiene” was used to improve mucosal clarity.
The endoscopist switched between white light endoscopy
and each separate “i-Scan”mode ensuring each was recorded
for 10 seconds. A corresponding biopsy was then taken from
all recorded areas to confirm the histological diagnosis. In 12
cases, 3% (ACA) was also applied to the BE segment prior to
biopsy. In these cases, the same protocol for recording was
used both before and after the application of ACA. ACA
was applied at the discretion of the endoscopist. The endos-
copist did not classify recordings in real time. Once complete,
patients continued to routine endoscopy including acquisi-
tion of further biopsies for clinical purposes if relevant.

2.6. Histology. All biopsy specimens were reviewed by one of
two expert gastrointestinal pathologists (Manuel Rodriguez-
Justo and Marco Novelli) who were blinded to endoscopists’
interpretations. All biopsies were reported according to the
revised Vienna classification [26]. Cases of suspected dyspla-
sia were reviewed by both pathologists in line with current
recommendations [27].

2.7. Postendoscopy Assessment. Recordings were downloaded
to a secure memory drive after the procedure. Recordings
were edited using iMovie (Apple Inc.®) to construct individ-
ual video files lasting up to 60 seconds that included record-
ings of each separate “i-Scan”mode. Once the corresponding
histology had been reviewed, information was anonymised
and entered into a structured database. Later, all videos were
transferred to an encrypted memory stick for each expert
to review.

2.8. Expert Review and Interpretation of Videos. All videos
were reviewed blindly by three expert endoscopists (Matthew

(a) (b) (c) (d)

Figure 1: Endoscopic appearances of a flat segment of nondysplastic Barrett’s in each separate i-Scan mode. (a) - WLE, (a) i-Scan 1, (c) i-Scan
2, and (d) i-Scan 3.
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R. Banks, Raf Bisschops, and Rehan J. Haidry). All were part
of the group that developed our i-Scan classification system
for dysplasia detection in BE [4]. They were required to pro-
vide the following information for each video: M and V
scores, presence of nodularity, and ulceration and prediction
of histological diagnosis (ND-BE or D-BE). They were also
asked to score how certain they were of the diagnosis on a
scale of 1–6 (1 completely uncertain, 6 completely certain).

2.9. Construction of a Decision Tree for Dysplasia Prediction.
Data generated was entered into the WEKA package. This
was then used to construct the simplest DT for dysplasia pre-
diction that gave a high accuracy but which was also easy
enough to teach to non-expert endoscopists.

2.10. Non-expert Review and Interpretation of Videos. Two
groups of non-expert endoscopists took part in the study.
The first group comprised specialist registrars (SpRs) in gas-
troenterology who had varying levels of experience in endos-
copy and BE assessment. The second group was final year
medical students who had no prior experience in either
endoscopy or BE.

Both groups were invited to visit a website that hosted all
the videos, which were presented in a random fashion. When
scoring videos before training, both groups were only asked
to record their overall suspected diagnosis and how certain
they were of this. Each individual scorer had their own
unique access to the website and was unaware of the scoring

given by other participants. Once all videos had been scored,
individuals were given online access to a 4-minute training
presentation. This presentation used a different set of endo-
scopic videos to highlight the different mucosal and vascular
patterns seen both with and without ACA. At the end of this
video, the decision tree for dysplasia prediction constructed
from expert opinion was presented. The training presenta-
tion could be repeated as many times as individuals wished.
After training, both groups then scored the original 40
videos. In addition to the suspected diagnosis and certainty,
both groups were also asked to record their interpretation
of the M and V scores as well as the presence of nodularity
or ulceration.

2.11. Statistical Analysis. Accuracy, sensitivity, and specificity
values were calculated before and after training. Student’s
paired t-test was used to assess differences, and p< 0.05 was
considered to be statistically significant.

3. Results

Video recordings from 40 patients were collected. Twelve
had an endoscopy performed using ACA with recordings
collected both before and after. Biopsy samples obtained
from 23 cases revealed ND-BE and 17 showed D-BE
(low-grade dysplasia, 4; high-grade dysplasia, 12; intramuco-
sal cancer, 1). In the cases in which ACA was used, 5 had

(a) (b) (c)

(d) (e) (f)

Figure 2: Endoscopic appearances of different mucosal, microvascular patterns, and architecture of Barrett’s segment using i-Scan. Arrows
denote particular areas of interest. (a) M1: regular circular, oval pits; (b) M1: villous/gyrus ridged pits; (c) M2: distorted, featureless mucosa
with surface ulceration; (d) V1: regular uniform vessels; (e) V2: irregular, “corkscrew-like” vessels; (f) nodularity with surrounding distortion
of the normal mucosal surface pattern.
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D-BE (low-grade dysplasia, 1; high-grade dysplasia, 3;
intramucosal cancer, 1) and 7 had ND-BE.

3.1. Dysplasia Prediction amongst Experts. The mean sensitiv-
ity and specificity of dysplasia prediction amongst experts
were 88% and 86%, respectively (Table 1). The mean sensitiv-
ity of detecting D-BE increased to 93% in the 12 patients who
also underwent ACA chromoendoscopy, but this difference
was not statistically significant (p = 0 5). Negative predictive
values (NPV) were calculated for a hypothetical endoscopic
surveillance population in which dysplasia is present in 5%
of attendees.

3.2. Construction of a Decision Tree for Dysplasia Prediction.
Addition of ACA chromoendoscopy did not lead to a signif-
icant difference in dysplasia prediction. The decision tree was
therefore constructed without considering experts’ answers
after ACA was used. As each expert interpreted videos differ-
ently, we hypothesised that a model that aggregated their
opinions would be helpful. The decision tree was based on
aggregated data from all 3 experts equally. Thus, all the infor-
mation for all dysplastic lesions was aggregated and the
machine identified the simplest way to classify based on com-
bining all possible information. The same process was used
for all nondysplastic lesions. This is a validated approach in
data mining [28]. The final DT is shown in Figure 3.

According to this tree, the most important attribute (i.e.
the root of the tree) was the presence or absence of nodularity
or ulceration. If there is nodularity or ulceration, according to
our proposed DT, the lesion in question is dysplastic. If,
however, the Barrett’s segment is flat, only then should the
assessment of the mucosal pattern be made. When normal
(M1), there is no dysplasia, but when abnormal (M2), the
lesion in question should be considered dysplastic. This
DT, which combined all the experts’ assessments led to an
overall accuracy for dysplasia prediction of 92%, sensitivity
97%, and specificity of 88%. This was higher than the accu-
racy of any individual expert.

3.3. Dysplasia Prediction amongst Non-experts. In total, 13
SpRs and 9 medical students analysed all 40 videos both
before and after training (Table 2). Mean and standard
deviation for the accuracy of dysplasia prediction before
training in each group was 65%± 9.5% and 53%± 7.5%,
respectively. After training, the mean accuracy amongst
SpRs increased to 68%± 9.0% (p = 0 07) and for medical
students to 63%± 8.9% (p = 0 0005). When analysed
together, the average accuracy amongst both groups before
and after training increased significantly from 60% to 66%
(p = 0 0005).

Table 1: Comparison of sensitivity and specificity between cases before and after acetic acid for all 3 experts. ND-BE: no dysplasia;
D-BE: dysplasia.

Expert 1 (%) Expert 2 (%) Expert 3 (%) Total (%)

Before acetic acid

Sensitivity, % (95% C.I.) 94 (71–99) 76 (50–93) 94 (71–99) 88 (76–96)

Specificity, % (95% C.I.) 87 (66–97) 87 (66–97) 83 (61–95) 86 (75–93)

Negative predictive value, % 99.6 98.5 99.6 86 (75–93)

After acetic acid

Sensitivity, % (95% C.I.) 100 (48–100) 80 (28–99) 100 (48–100) 93 (68–99)

Specificity, % (95% C.I.) 71 (29–96) 85 (42–99) 57 (18–90) 71 (47–89)

Negative predictive value, % 100 98.8 100 71 (47–89)

Is Barrett’s segment flat?

Yes

M1 M2

Mucosal pattern

No dysplasia Dysplasia

Dysplasia

No

Figure 3: Decision tree constructed from expert opinion that was
used to train non-expert endoscopists. M1: regular circular (oval)
or villous/gyrus ridged pits; M2: distorted irregular pits or
featureless mucosa. Flat means absence of endoscopically visible
nodularity or ulceration.

Table 2: Accuracy, sensitivity, and specificity amongst both groups
on non-experts before and after web-based training.

Registrars
(n = 13)

Medical students
(n = 9)

Both groups
(n = 22)

Accuracy

Before training (%) 65 53 60

After training (%) 68 63 66

p value 0.07 <0.001 <0.001
Sensitivity

Before training 71 83 76

After training 83 84 83

p value <0.0001 0.44 <0.001
Specificity

Before training 60 31 48

After training 57 49 54

p value 0.20 <0.0001 0.02
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The sensitivity of dysplasia prediction amongst SpRs
significantly increased after training from 71%± 13.1% to
83%± 12.0% (p < 0 0001). In contrast, the sensitivity of dys-
plasia prediction amongst medical students did not increase
significantly after training (83% before training, 84% after
training; p = 0 44).

There was no change in specificity of dysplasia prediction
amongst SpRs after training (60% before training versus 57%
after, p = 0 2). In contrast, the specificity of dysplasia predic-
tion improved dramatically after medical student training
from 31% to 49% (p < 0 0001).

4. Discussion

By using data from three expert endoscopists, a simple classi-
fication system derived from machine learning technologies
predicted D-BE correctly in 96% of cases with a mean sensi-
tivity and specificity of 93% and 99%. This is better than any
single expert’s analysis. Although data mining techniques
have been used to predict medical outcomes [29] and have
also been proposed to help train doctors [30], to our knowl-
edge, machine learning has never been actually applied to
medical student teaching and certainly not to improve the
endoscopic detection of pre-malignant lesions in the gastro-
intestinal tract. The only reference in world literature in
using machine learning in this way that we could find was
to train helicopter pilots [31].

The accuracy of the classification system generated from
this small dataset is comparable to select published data using
NBI which demonstrated a sensitivity of dysplasia/early
cancer detection of 87% both with and without ACA [32].

In contrast to existing classification systems, which are
often complex, our proposed algorithm, which was entirely
machine generated, is relatively simple [15–19]. The first
question is whether the BE segment is flat. Only if nodularity
or ulceration is not seen does the system require the user to
interpret mucosal architecture. Microvascular patterns can
be completely ignored. This is potentially useful, as during
the development of our i-Scan classification system of BE
dysplasia, we found that experts usually found interpretation
of different microvascular patterns more difficult than muco-
sal surface patterns [4]. The simple machine learning-derived
algorithm therefore lends itself well to training.

For non-expert endoscopists, high sensitivity of dysplasia
detection is crucial, to ensure adequately targeted biopsies.
Before training, medical students, who had no previous expe-
rience, had a higher sensitivity of dysplasia detection (83%)
than SpRs with varying levels of experience (71%). However,
specificity amongst medical students was considerably lower
than SpRs (31% versus 60%). This is probably because stu-
dents were more likely to “overcall” normal areas whereas
SpRs did the opposite. Interestingly, after web-based training,
specificity rose significantly amongst medical students with-
out loss of sensitivity and significant improvement in overall
detection. In contrast, specificity amongst SpRs fell slightly
after training (57%) but sensitivity improved significantly
(83%) as did the overall accuracy of dysplasia detection albeit
the difference reached was not statistically significant. From
this, we can conclude that after training, students were more

confident in making a diagnosis of ND-BE without loss of
sensitivity at detecting D-BE whist for SpRs, the sensitivity
at detecting D-BE improved significantly without loss of
specificity. However, neither group was able to reach the
accuracy of the experts. Reassuringly, when both groups of
non-experts were combined, the diagnostic accuracy, sensi-
tivity, and specificity improved significantly after training.

Preservation and incorporation of valuable endoscopic
innovations (PIVI) define thresholds that are used to direct
endoscopic technology development towards resolving
important clinical issues in endoscopy. In response to the
limitations of endoscopic surveillance of BE that are cur-
rently practiced, the American Society for Gastrointestinal
Endoscopy (ASGE) published a PIVI to address real-time
imaging of BE [33]. They concluded that to eliminate the
need for random mucosal biopsies in BE, any imaging tech-
nology with targeted biopsies should have a sensitivity of
90% or greater, a specificity of 80%, and a negative predictive
value of at least 98%. Expert assessment did reach the PIVI,
but despite improvement in sensitivity and specificity when
non-experts used the DT, it did not reach the PIVI standards.
It may be useful to expand the current dataset and number of
non-experts to evaluate this further.

A similar web-based educational tool to improve the
detection and delineation of Barrett’s oesophagus-related
neoplasia (BORN) has also been published in abstract format
[34]. In this study, endoscopy recordings from patients with
BORN and non-dysplastic BE were shown to 3 expert endos-
copists. After experts had used specialist software to delineate
BORN lesions, 68 assessors from the USA and Europe
(trainee, junior, and senior gastroenterologists) were asked
to detect and delineate these in 4 sets of 20 videos (48 BORN,
32 non-dysplastic) with online training and tailored feedback
after each set. Detection and delineation scores significantly
increased over the 4 sets (detection score increase: 11%,
median delineation score increase: 52%; p < 0 0001) with no
significant difference between trainees, juniors, and seniors.
After removal of 55 videos that were classed as being either
“too easy” or “too difficult,” the study was repeated for a
new group of 121 assessors across the USA, Canada, and
Europe with similar outcomes across all levels of seniority
(detection score increase: 26%, median delineation score
increase: 77%; p < 0 0001). Although the results of this study
are not directly comparable with ours, its findings are
strengthened by the considerably greater number of videos
and assessors with varying levels of experience across multi-
ple centres worldwide that were studied. Until the methods
and results of this study are fully published, it remains
unclear what exact training was delivered after consecutive
video sets and if a classification system was presented to
assessors or not.

The novelty of this study from a data mining perspective
is that our DT, which was based on expert knowledge, is
being used not to improve diagnosis but as an aid to training.
To date, DT algorithms have been used as diagnostic support
tools as experts can typically easily understand the simple
rules generated [10]. In contrast, the approach here is to
use DT's to create a logical process that doctors in training
can use to assess a new clinical scenario, in this case,
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unfamiliar endoscopic findings. The reason that DT's are so
suited to this purpose is that they are generated to identify
themost important features first. Accuracy of diagnosis could
be improved in our dataset by using more complex trees. This
would defeat the purpose of creating a simple tool which can
be used to rapidly train junior doctors. Clearly, this brief
training does not elevate the trainees to the level of expert,
but it does significantly enhance competence. It is interesting
to speculate as to whether higher detection rates after this
training might be associated with greater competence when
fully trained as it does in other areas of endoscopy [35].

Despite the encouraging data that we have presented,
there are some limitations when using ML in this setting.
The software that is used to derive machine-based algorithms
can sometimes be prone to “overfitting” or being specific to
only the specific data analysed. Another problem of many
of these methods is that they are often prone to finding
spurious associations [36]. This means that although they
perform well when applied to the original training set, they
are not useful when applied to new data. Practically, this
could be evaluated by expanding the current dataset to include
new videos for external validation through asking users to
score new lesions using our proposed decision tree. Lastly,
all of the videos used in the study were taken from patients
having an endoscopy performed using i-Scan image enhance-
ment technology (PENTAX). This is still a relatively emerging
technology compared to, for instance, NBI (Olympus) that is
used in most endoscopy units. Therefore, unless the current
training set is expanded to include videos of patients having
endoscopy for BE with NBI (Olympus), the application of
our algorithm to most hospitals would remain limited.

Although our algorithm appears to be more accurate
than current classification systems, data for the two are
not entirely comparable. Whereas existing classification sys-
tems only include patients with “flat” BE, high-definition
endoscopy now allows the endoscopist to appreciate that
many of these areas have subtle nodularity or ulceration
[4, 37, 38]. We therefore also included patients with these
lesions. We already know that the latter is more likely to
harbour dysplasia or cancer and skew opinion. One could
argue, however, that the inclusion of patients with “non-
flat” BE is likely to be more representative of what is seen
in day-to-day clinical practice.

Our classification system did not consider findings using
ACA chromoendoscopy as no benefit was found when this
was used. This is despite larger studies having demonstrated
that the diagnostic accuracy is higher with targeted biopsies
taken after ACA compared to a standard biopsy protocol
[22]. More recently a two-staged training module was devel-
oped to evaluate the use of ACA for the detection of Barrett’s
neoplasia [39]. In this study, initial online training signifi-
cantly improved the sensitivity of dysplasia detection from
83% to 95%. In contrast to our study, they then invited indi-
viduals to a one-day interactive seminar including live cases
which further increased sensitivity of dysplasia detection to
98%. Furthermore, this group used 40 images and 20 videos
to develop their training module compared to only 12 video
cases of ACA in our study (although no difference in assess-
ment between images and videos was observed). Based on

these data, it would not be unreasonable to speculate that
had a larger cohort of ACA data been used in our study,
there is a greater likelihood that ACA would have been
incorporated into a decision tree for dysplasia prediction.

5. Conclusion

ML is able to define rules learned from expert opinion. These
generate a simple algorithm to accurately predict dysplasia.
Once taught to non-experts, the algorithm significantly
improves dysplasia detection rates. This opens the door to
standardised training and assessment of competence for those
who perform endoscopy in BE. It may shorten the learning
curve and might also be used to compare competence of
trainees with recognised experts for accreditation purposes.
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