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Abstract 

Background:  Ecomorphs create the opportunity to investigate ecological adaptation because they encompass 
organisms that evolved characteristic morphologies under similar ecological demands. For over 50 years, scorpions 
have been empirically assigned to ecomorphs based on the characteristic morphologies that rock, sand, vegetation, 
underground, and surface dwellers assume. This study aims to independently test the existence of scorpion eco-
morphs by quantifying the association between their morphology and ecology across 61 species, representing 14 
families of the Scorpiones order.

Results:  Without a priori categorization of species into ecomorphs, we identified four groups based on microhabitat 
descriptors, which reflect how scorpion ecospace is clustered. Moreover, these microhabitat groups, i.e., ecotypes, 
have significantly divergent morphologies; therefore, they represent ecomorphs. These ecomorphs largely corre-
spond with the ones previously described in the literature. Therefore, we retained the names Lithophilous, Psammo-
philous, and Pelophilous, and proposed the name Phytophilous for vegetation dwellers. Finally, we sought to map the 
morphology-ecology association in scorpions and found that the morphological regions most tightly associated with 
ecology are at the extremities. Moreover, the major trend in ecomorphological covariation is that longer walking legs 
and relatively slender pedipalps (pincers) are associated with sandy microhabitats, while the inverse morphological 
proportions are associated with rocky microhabitats.

Conclusions:  Scorpion ecomorphs are validated in a naïve approach, from ecological descriptors and whole body 
anatomy. This places them on a more solid quantitative footing for future studies of ecological adaptation in scor-
pions. Our results verify most of the previously defined ecomorphotypes and could be used as a current practice to 
understand the adaptive significance of ecological morphology.
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Introduction
Ecological adaptation is the process whereby organisms 
respond to environmental change by modifying their 
phenotype. Selection triggers adaptation to new environ-
ments and ecological niches, resulting in divergence. If 
the adaptations include changes in external morphology, 

we can observe this type of divergence in the form of 
recurrent morphologies—ecomorphs. Ecomorphs are 
groups of organisms that share a set of morphological 
traits associated with specific ecological requirements. 
Selection for these characteristic morphologies occurs 
in association with enhancing the ecologically relevant 
performance that morphology permits, also modulated 
by associated behaviors [1–5]. Striking examples of eco-
morphs are predominantly known from recent adaptive 
radiations, such as cichlid fish [6] and Anolis lizards [7, 
8]. Although with fewer examples, ecomorphs originating 
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from older radiations are also known, such as beetles and 
salamanders [9, 10].

Scorpions are particularly suitable for studying eco-
morphology because they have a functionally com-
partmentalized anatomy. As such, the functions and 
behaviors related to intraspecific competition, prey inca-
pacitation, defense against predators, feeding, sensing, 
and sexual courtship are carried out by four anatomical 
regions: the pedipalps, prosoma, metasoma, and telson 
[11–16]. In other organisms, these functions may all 
be carried out using a single anatomical region, such as 
the head in lizards [17], while in scorpions, some func-
tions are limited to one or more of these anatomical 
regions. For instance, prey capture and manipulation are 
restricted to the pedipalps, while prey incapacitation and 
defense often include the telson. Consequently, in scor-
pions, differences in these anatomical regions are more 
easily assigned to different functional demands.

Another reason makes scorpions an interesting group 
for studying the ecological adaptation of their morphol-
ogy: they have long been assigned to ecomorphs [18–21]. 
These ecomorphs are considered to be associated with 
microhabitat use, specifically the substrate that scorpi-
ons use. The five major scorpion ecomorphs previously 
identified are vegetation dwellers (corticolous) [22, 23], 
rock climbers (lithophilous) [24, 25], hard soil fossori-
als (pelophilous) [23, 26], sand fossorials (psammophil-
ous) [27, 28], and ground surface vagrants (lapidicolous) 
[20, 29]. Among these, there are substrate specialists and 
substrate generalists, i.e., habitat stenotopes and habitat 
eurytopes, sensu [29]. Psammophiles and lithophiles are 
habitat stenotopes because the extensive morphological 
adaptations for their preferred substrates—loose sand 
and rocks—make such species unfit to occupy other 
substrates. Lapidicolous, corticolous and pelophilous 
ecomorphs are eurytopic [23], with lapidicolous being 
the least specialized group. Other scorpiologists labeled 
ecomorphs differently, yet this reflects a terminological 
difference rather than a conceptual one [23, 30]. Some 
of the described morphological characteristics of these 
ecomorphs are considered functional adaptations. Psam-
mophilous scorpions have longer setae and claws on their 
feet that may spread their mass over a larger area and 
reduce energy wasted on displacing loose sand during 
locomotion. Also, the streamlined metasoma and telson 
are suggested to increase sand burrowing efficiency [28] 
and aid in escape when animals become buried in the 
sand [20]. In pelophilous species, the robust, crab-like 
chelae are proposed to aid in burrowing, although not all 
species with large chelae use them for this function [29]. 
In addition, a lifetime spent inside a burrow is thought 
to reduce telson size due to its diminished use [20]. 
Lithophilous species are associated with dorsoventral 

compression and often elongation of the pedipalps, legs, 
and metasoma. This trend, however, seems more evident 
in rock crevice dwellers than in other rock microhabitats 
[29]. Corticolous species are also associated with some 
elongation of the pedipalps and legs. Other trends in 
corticolous scorpions seem to be more phylogenetically 
specific, such as the elongation of the metasoma in buth-
ids and a general dorsoventral compression of the body 
in non-buthids [29]. Nonetheless, these examples are 
largely empirical, featuring descriptions of both regional 
scorpiofauna or clade-specific groups. No global study 
has tested whether scorpions inhabiting different habi-
tats and continents can be grouped together based on 
their ecological preferences; and whether such groups 
also exhibit morphological coherence across the scorpion 
phylogeny. In sum, there is no overall data-based valida-
tion that scorpion ecomorphs exist.

Confirming that scorpion ecomorphs exist involves 
the simultaneous analysis of morphological and ecologi-
cal traits in a phylogenetic comparative framework. Our 
main questions are: Can scorpions be grouped based on 
microhabitat preference? If so, are these groups mor-
phologically distinct? Do these groups correspond to 
currently recognized ecomorphs? Which morphologi-
cal traits co-vary more strongly with ecology? Given 
the recurrent association of characteristic pedipalp and 
“tail” (metasoma and telson) shapes for each ecomorph, 
we hypothesized that the extremities are the ecologically 
most important anatomical parts.

Materials and methods
Sampling and phylogeny
To explore the morphological diversity (phenotype) 
across the Scorpiones order, we made morphological 
measurements on 61 species. We measured one speci-
men per species, spanning approximately 70% of extant 
families (14 of 20), five continents (North and South 
America, n = 20; Eurasia, n = 15; Africa, n = 24; Oce-
ania, n = 2). The Scorpiones families are represented by 
the Chaerilidae (n = 1), Buthidae (n = 23), Iuridae (n = 1), 
Bothriuridae (n = 3), Chactidae (n = 5), Scorpiopiidae 
(n = 3), Euscorpiidae (n = 1), Troglotayosicidae (n = 1), 
Caraboctonidae (n = 2), Hormuridae (n = 8), Urodaci-
dae (n = 1), Diplocentridae (n = 2), Scorpionidae (n = 5) 
and the Vaejovidae (n = 5). The ecomorphs included are 
those referenced in the literature as psammophilous (e.g., 
Apistobuthus pterygocercus and Vejovoidus longuiun-
guis), lithophilous (e.g., Hadogenes paucidens and Iurus 
dufoureius), pelophilous (e.g., Pandinoides cavimanus 
and Odontobuthus doriae), corticolous (e.g., Tityus trini-
tatis and Opisthacanthus asper) and lapidicolous scor-
pions (e.g., Buthus ibericus and Bothriurus coriaceus). 
Specimens were selected from the scorpion collection at 
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CIBIO in Vila do Conde, Portugal, the RMNH in Leiden, 
the Netherlands, and the MNHN in Paris, France.

We used recent transcriptome-based phylogenies of 
the Scorpiones order for our comparative analyses [31, 
32]. From there, we drew an ultrametric tree with the 
same topology as the higher-level classifications. The 
interfamilial relationships are congruent in both publi-
cations, except for the position of the Vaejovidae, which 
was revised in [32] and adopted in this study. Species 
that were not present in either phylogenetic analysis were 
treated in one of two ways: species with members of the 
same genus represented in the phylogenies were placed 
at the position of the genus; species without genus repre-
sentation were placed sister to the corresponding family 
clade [33, 34]. In all cases, unclear relationships between 
species were represented with polytomies. Branch 
lengths were adjusted to the tree topology, calculated 
using Grafen’s method [35]. We also performed the same 
analysis using the latest transcriptome-based phylogeny 
of Santibáñez-López et al. [36].

Morphological measurements
We aimed for an unbiased sampling of scorpion anatomy 
by measuring all anatomical regions of the scorpion body. 
Specifically, we did not restrict our sampling to known 
eco-functional traits. We used digital calipers (Absolute 
IP67, Mitutoyo Inc., Kawasaki, Japan) to measure 70 
lengths from six anatomical regions, namely in the pro-
soma, mesosoma, metasoma, telson, walking legs, and 
pedipalps, to the nearest 0.01  mm, following Stahnke 
[37]. Our measurements did not include structures such 
as the chelicerae, carinae, tarsi, or the setal hairs. The 
measured species exhibit considerable size variation, 
and our sampling represents total body lengths from 
22.1 mm in Microbuthus sp. to 158.05 mm in Ha. gran-
ulatus. To reduce the number of variables for statistical 
analysis, we summed trochanter and femur lengths into 
a “proximal leg” part and the patella, tibia, and meta-
tarsus lengths into a “distal leg” part. This division cor-
responds to biomechanically functional units of the leg: 
on one side, the distal muscles, responsible for pretar-
sal (“foot”) movement occupy all distal segments until 
and including the patella; on the other side, most of the 
leg motion occurs around the femoropatellar joint [38]. 
The lengths of the five metasoma segments were added 
together, while their heights and widths were averaged. 
Pedipalp measurements represent averages between left 
and right pedipalps. For details about the measurements 
(description, abbreviation, and illustration), see Addi-
tional file 1: Fig. S1 and Additional file  4: Table S1. The 
final morphological dataset consisted of 36 morphologi-
cal variables, which were log-transformed before further 
analysis (Additional file 5: Table S2). In general, scorpions 

are not characterized by strong sexual dimorphism, so we 
did not differentiate specimens by sex. However, in those 
species with more substantial sexual dimorphism, males 
and females may have subtly different ecological roles 
[39].

Unlike in, e.g., herpetology, no consensually accepted 
single linear measurement corresponds well with over-
all body size in scorpions [40]. Therefore, an isometric 
body size (IsoSize) was calculated by projecting the 36 
linear measurements on an isometric vector. We then 
calculated each linear measurement’s regression residu-
als using IsoSize to obtain size-corrected traits, following 
[41]. Last, we calculated the degree of phylogenetic sig-
nal present in the morphological variables given the phy-
logeny using the function physignal of the of R package 
GEOMORPH. physignal provides a mathematical gener-
alization of the Kappa statistic [42] appropriate for highly 
multivariate data [43].

Ecological data and microhabitat clustering
Since the conceptualization of the five scorpion eco-
morphs, not all species have been assigned to one. For 
example, less than 50% of the taxa selected here are 
unambiguously assigned to an ecomorph in the literature. 
In cases where an ecomorph assignment can be found in 
the literature, the assignment is often made based on the 
morphological habitus of the specimens, risking circular 
reasoning. To overcome these limitations, we chose to 
forego the assignments to classical ecomorphs entirely in 
our analysis. Instead, we retrieved descriptors of micro-
habitat use from the literature. We selected descriptors 
referring to substrates, their arrangement, and the activi-
ties scorpions perform in them. Those most frequently 
encountered in the literature were used to record pres-
ence (= 1) vs. unreferenced presence (= 0) for the fol-
lowing 12 parameters: “compact soil”, “loose sand”, “rock 
surface”, “leaf-litter”, “under rocks”, “under vegetation”, 
“dug burrow”, “passive shelter”, “climb bushes”, “climb 
trees”, “rock crevices” and “hanging upside down”. Each 
species was assigned one or more microhabitat uses (see 
Additional file 5: Table S2).

We grouped species with similar microhabitat uses 
together into clusters. To achieve this, we used the matrix 
of 12 microhabitat traits in the following three steps. 
First, we calculated Jaccard distances between pairs of 
species based on all microhabitat descriptors together, 
using the function vegdist of R package vegan [44]. Sec-
ondly, using the obtained distance matrix, we selected 
the number of habitat clusters based on the Bayesian 
Information Criterion (BIC), using the function Mclust 
of R package mclust [45] (Additional file 2: Fig. S2). We 
selected the number of clusters corresponding to the 
first k preceding a plateau in BIC values. The number 
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of clusters, four (see “Results”), was used to compute 
a k-means clustering. The distance matrix was used as 
input for a Principal coordinate analysis (PCoA), result-
ing in 26 axes. Lastly, we reviewed the ecological com-
position of each microhabitat cluster by calculating two 
matrix correlations (Spearman’s as well as Pearson’s ρ): 
(1) between the microhabitat traits and the PCoA scores 
to obtain PCoA-to-microhabitat correspondence; (2) 
between the resulting matrix from 1) and the k-means 
cluster centers to obtain microhabitat-to-cluster corre-
spondence. Cluster terminology reproduces the different 
associations of each cluster to the microhabitat traits.

To visualize the scorpion ecospace, we performed 
multiple correspondence analyses (MCA) using func-
tion MCA of R package FactoMineR  [46]. MCA uses 
the PCoA scores of microhabitat traits to plot barycenter 
points of categories (n-individual mean scores) and bar-
ycenter points of individuals (n-category mean scores) 
simultaneously; for visual clarity, however, only the latter 
were plotted.

Ecology‑morphology associations
We searched for strongly eco-covarying traits by explor-
ing which morphological traits co-vary most with 
ecology across all species. To this end, we applied a phy-
logenetic Partial Least Squares (PLS, using the phylogeny 
shown in Fig. 2) to the multivariate sets of ecological and 
morphological variables using the function phylo.inte-
gration [47–49] of R package GEOMORPH [50]. Here, 
multivariate ecology consisted of 26 microhabitat traits 
(PCoA axes), and multivariate morphology consisted of 
36 size-corrected morphological traits. Permutations 
with 10,000 cycles were used to test for significance of the 
multivariate correlation between vectors of morphology 

and ecology. The resulting matrix of morphological 
traits with maximized ecological covariance is hereafter 
referred to as the matrix of eco-projected morphology.

Ecomorphological distinctiveness between microhabitat 
clusters
To corroborate the existence of ecomorphs in scorpions, 
we examined whether microhabitat clusters exhibit dis-
tinctive phenotypes as represented by ecologically cor-
related morphology. For this purpose, we performed a 
MANOVA with the matrix of eco-projected morphology 
as the dependent variable and microhabitat cluster as a 
predictor while accounting for phylogenetic autocorre-
lation using generalized least squares (GLS). To test for 
significance, we used randomization of residuals over 
10,000 permutations, as implemented in the function 
lm.rrpp of the RRPP R package [51, 52]. Then, to iden-
tify which microhabitat clusters differed significantly, we 
employed distance-based testing of pairwise differences 
between microhabitat cluster means, as implemented in 
the function pairwise of RRPP [53, 54]. For illustration, 
we plotted group means rotated to their principal com-
ponents and with 95% confidence ellipses around them, 
using the plotting tools of the RRPP R package.

Results
Microhabitat clusters as a proxy for ecomorphs
Based on the BIC, the ecological data supports the exist-
ence of four clusters (Additional file 2: Fig. S2). In terms 
of ecological composition, the microhabitat clusters show 
different associations with microhabitat traits (Table  1, 
Additional file  3: Fig. S3): Cluster 1 is primarily domi-
nated by species occurring on loose sand and digging 
burrows; Cluster 2 mainly contains species found under 

Table 1  Microhabitat cluster affiliation with microhabitat traits

Values correspond to Pearson’s ρ correlation, on which the terminology adopted for the ecomorphs was based

K-means clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4
Microhabitat traits Psammophilous Phytophilous Pelophilous Lithophilous

Under vegetation − 0.42 0.82 − 0.53 − 0.26

Leaf litter − 0.39 0.73 − 0.53 − 0.08

Passive shelter − 0.41 0.56 − 0.26 − 0.06

Climb trees − 0.13 0.32 − 0.29 − 0.02

Under rocks − 0.61 0.31 0.25 0.08

Climb bushes − 0.06 0.24 − 0.24 − 0.05

Hanging upside down − 0.07 − 0.05 0.08 0.13

Rock crevices − 0.23 − 0.18 0.08 0.80

Compact soil − 0.21 − 0.18 0.69 − 0.31

Rock surface − 0.19 − 0.24 0.14 0.77

Loose sand 0.83 − 0.40 − 0.23 − 0.36

Dug burrow 0.54 − 0.66 0.47 − 0.29
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vegetation, in leaf litter and using passive shelters; Clus-
ter 3 is mostly comprised of species found in compact 
soil and digging burrows and Cluster 4 has a higher con-
tribution of scorpions exploring both the crevices and the 
surface of rocks (Fig. 1, Table 1). It is worth noting that 
scorpions that rest hanging upside down are closest to 
cluster 4, while those climbing trees and bushes only pos-
itively correlate with cluster 2. Therefore, we named these 
clusters “Psammophilous”, “Phytophilous”, “Pelophilous” 
and “Lithophilous”, respectively, following the most com-
mon ecomorph terminology (Fig.  1, Table  1, Additional 
file 5: Table S2). Dimensions 1 and 2 of the MCA together 
capture about 40% of the microhabitat variation. Across 
this ecospace, the microhabitat clustering produced eco-
morph groups with reduced overlap (Fig. 1).

Our phylogenetic tree of scorpions reveals that most 
scorpion families contain representatives of at least two 
ecomorphs (Fig. 2). In this study, the exceptions are the 
Vaejovidae and Diplocentridae families, as we sampled 
only Psammophilous and Pelophilous species respec-
tively from, despite other ecomorphs existing in these 
families. This is an artifact of the limited sampling of 
these families, especially of the highly speciose and 
diverse Vaejovidae. At the superfamily level, the Iuroidea 
has representatives of all ecomorphs, while the Buthoidea 

lacks the Lithophilous ecomorph in our sampling. As a 
reminder, the absence of the Lithophilous ecomorph 
does not imply that Buthoidea scorpions are not associ-
ated with rocks. Although more prevalent in Lithophil-
ous species, rock surfaces are also part of the Pelophilous 
niche (Table 1).

The phylogenetic history of scorpions has a significant 
influence in their morphology. As such, the metasoma 
average width and height are the traits with the highest 
phylogenetic signal among the sampled taxa (Additional 
file 8: Table S5).

Ecology‑morphology associations
Examination of the multivariate association between 
morphology and ecology yielded significantly correlated 
PLS vectors (r = 0.698, z = 3.228, p < 0.001) (Fig. 3). Vec-
tors of ecology and morphology revealed that scorpions 
living under and on rock surfaces are associated with 
pedipalps with (dorsoventrally) higher femurs, wider 
patellas, and both wider and higher chelae. They are also 
associated with leg pairs 1 and 2 having shorter proximal 
parts and leg pairs 2 and 3 having shorter distal parts. 
Conversely, scorpions living in loose sand and digging 
burrows have inverse anatomical proportions (Fig. 3). As 
a reminder, we attributed the term eco-projected mor-
phology to the morphological dataset resulting from this 
PLS; in it, the morphological traits with the highest eco-
logical correlation, i.e., strongly eco-covarying traits, are 
located in the walking legs and the pedipalps of scorpions 
(Fig. 3).

Ecomorphological distinctiveness between ecomorphs
MANOVA comparisons show significant differences in 
eco-projected morphology across the four microhabi-
tat clusters (Table  2). Consequently, microhabitat clus-
ters are hereafter called ecomorphs; posthoc tests show 
which ecomorphs are significantly different (Additional 
file 6: Table S3). Mean morphologies and respective con-
fidence ellipses, estimated from the MANOVA, confirm 
the reduced overlap between the different ecomorphs 
(Fig.  4). The illustrations of four scorpions approximate 
the mean morphologies of each ecomorph.

Discussion
In this paper, we independently corroborate the existence 
of scorpion ecomorphs, and show that they are largely 
congruent with, but not identical to those previously 
defined. Moreover, we found that some parts of the scor-
pion body vary more strongly with ecology than others, 
yet not those body parts we expected.
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Fig. 1  PCoA map of scorpion ecospace. The ecospace is depicted 
by species (dots) colored according to ecomorph affiliation. 
Dots are colored based on the four clusters obtained with the R 
package mclust. For illustration purposes, and because it explains 
approximately the same variation as the second PCoA dimension, we 
plotted the third PCoA dimension in the vertical axis. Moreover, only 
species with a cos2 correlation higher than 0.70 with both dimensions 
for the pelophilous and phytophilous ecomorphs, and a cos2 
correlation higher than 0.45 for the psammophilous and lithophilous 
ecomorphs are labeled. Percentage values refer to the variation 
explained by each axis. See Additional file 3: Fig. S3 for contributions 
of microhabitat variables to axis composition
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Microhabitat clusters are ecomorphs
To start with a clean slate and avoid circular reasoning, 
we summarized microhabitat use in clusters rather than 
assigning species to previously defined ecomorphs. The 
number of clusters recovered in this study, four, differs 
from the five ecomorphs previous literature would have 
assigned our sampling to [29, 55]. We validated that our 
microhabitat clusters represent ecomorphs by show-
ing that morphological variation is significantly different 
between them (Table  2). This validation accounted for 
two factors that mask anatomical similarity: body size 
and phylogeny.

Our results corroborate most ecomorphs already 
defined in bibliography, and thus we generally use the 
same names for the sake of continuity. However, we pro-
pose changing the designation “Corticolous” to “Phyt-
ophilous” as we feel that this name is more apt given the 
microhabitat descriptors associated with that ecomorph: 
“under vegetation”, “leaf-litter” and “passive shelter”. Con-
trary to the five ecomorphs from literature, we found our 
ecospace was best segmented into four clusters, where 
adding a fifth cluster did not improve the model. Our 
classification of scorpion ecomorphs, therefore, lacks 
the ecologically “catch-all” Lapidicolous ecomorph. The 
Phytophilous ecomorph, positively associated with six 
different microhabitats, contains the most generalist spe-
cies, followed by the Pelophilous ecomorph. This trend 
corroborates Prendini’s [29] hypothesis that vegetation 
climbers and hard soil fossorials are microhabitat gener-
alists. The Psammophilous and Lithophilous ecomorphs 
remain as habitat specialists, with strong correlations 
with a maximum of two microhabitats (Fig. 1, Table 1).

We acknowledge that these results, particularly on the 
number of clusters recovered and the species they consist 
of, are dependent on the choice and number of sampled 
taxa, and the prevalent phylogenetic hypothesis. After 
we completed the statistical analysis, a new phylogenetic 
hypothesis was published, placing Hadrurus outside 
the Caraboctonidae, among other topological changes 
[36]. The overdue molecular phylogenetic reappraisal of 
the phylogenetic relationships among scorpion taxa has 
recently accelerated, making this latest revision one of 
many to come before the high-level phylogenetic hypoth-
esis of scorpions can be expected to converge to a stable 
situation. Performing our analysis again using this latest 
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Fig. 2  Phylogenetic relationships of the scorpion species included 
in this study. Names of the families and superfamilies are indicated. 
Paraphyletic families are indicated with an asterisk. Colors correspond 
to microhabitat ecomorph affiliation. Tree topology is based on 
Santibáñez-López et al. (2019) [32] and Sharma et al. (2015) [31]
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transcriptome-base phylogeny confirms the validity of 
scorpion ecomorphs since the same microhabitat clusters 
are morphologically distinct, although to a lower magni-
tude of correlation. Moreover, longer walking legs remain 
significantly associated with digging burrows and micro-
habitats with loose sand, but also under rocks (Additional 
file 9: Table S6). Under this slightly different phylogenetic 
hypothesis another body section gains more ecological 

relevance: the metasoma and telson. Wider, higher and 
longer metasomas and telsons are associated with com-
pact soil and rock surface microhabitats but also with 
climbing bushes and trees.

Overall, we sampled 61 of the approximately 2.500 
species of scorpions described: less than 3%. Although 
we strove for a broad sampling, families such as the 
species-rich radiation of the Vaejovidae and the Aus-
tralo-Papuan radiations of Hormurids, Scorpiopids, and 
Urodacids, among others, were underrepresented. More-
over, the clustering results may be further influenced by 
not including representatives of the troglophilous eco-
morph, and future studies should attempt to include a 
sufficient sample of this minor, yet more specialized, 
ecomorph. Future taxonomical updates will converge 
towards a more robust picture of the Scorpiones tree of 
life. We here provide a method that can accommodate 
virtually any phylogenetic assemblage and topology.

The extremities are rich in eco‑covarying traits
The strongly eco-covarying traits, highlighted in PLS 
axes (Fig. 3), span two quite different anatomical regions: 
scorpions with relatively slenderer pedipalps and rela-
tively longer legs in one extreme and scorpions with 
more robust pedipalps and shorter legs in the other. 
These shapes are the theoretical limits of morphological 
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Fig. 3  Phylogenetic PLS between scorpion ecology (Y-axis) and morphology (X-axis). Morphological traits with the highest covariation with 
ecology are labeled on the X-axis. Scorpion illustrations correspond to sand burrowing microhabitats (on the left, minimum extreme of the 
morphology PLS vector) and microhabitats found on and under rocks (on the right, maximum extreme of the morphology PLS vector). Colors 
correspond to microhabitat ecomorph affiliation

Table 2  MANOVA comparisons of eco-projected morphology across microhabitat clusters

Significance testing is based on 10,000 cycles of residual permutations. Degrees of freedom (Df), Sums of Squares (SS), R squared (R2), F value (F), effect size (Z), and 
corresponding p-value. Significant effects at an alpha of 0.05 are marked in bold font

MANOVA Df SS MS Rsq F Z P

hab 3 646.4 215.475 0.121 2.603 2.484 0.006
Residuals 57 4718.1 82.773 0.880

Total 60 5364.5
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variation associated with sand fossorial or rock-dwelling 
microhabitats, respectively (but not rock crevice micro-
habitats). In fact, such rock eurytopes seem to be eco-
logically closer to the semilithophilous ecomorph sensu 
[29]. These trends, shown by the PLS, are relative. While 
in absolute terms, e.g., a loose sand burrowing scorpio-
nid (a family of scorpions with typically robust pedipalps) 
may still have more robust pedipalps than, e.g., a rock-
dwelling buthid, it will have slenderer pedipalps rela-
tive to other scorpionids (taxonomical relationships are 
depicted in Fig. 2).

The extremities are of major importance for scorpions 
to interact with the environment: the walking legs oper-
ate on the substrate in locomotion, and the pedipalps are 
used to navigate, obtain prey, defend and mate [56–58]. 
Different microhabitats may pose different demands on 
the functions of these two anatomical modules. Nonethe-
less, pedipalps and walking legs also share many develop-
mental pathways [59], potentially leaving them less free 
to vary with ecology. Developmental linkage is more evi-
dent for structures along the body axis, as they share many 
developmental pathways [59, 60]. The ecomorphologi-
cal paradigm predicts that the various ecomorphological 
associations uncovered here are likely functional, but this 
cannot be concluded from correlation alone. Nevertheless, 
these results can be an informed starting point for experi-
mental validation of the functional value of those traits.

Based on the numerous mentions of the ecological role 
and morphological distinctiveness that the pedipalps and 
the “tail” (metasoma and telson) get in descriptions of 
scorpion ecomorphs, we hypothesized that in our data-
set they would co-vary the most with ecology. To our 
surprise, variation in the metasoma and telson is not as 
strongly correlated with microhabitat use as the walk-
ing legs given our phylogenetic sampling and topology. 
As mentioned before, it looks like the appendages that 
directly interact with the substrate (walking legs) or to 
navigate through the environment (pedipalps), are more 
strongly associated with ecology. A potential reason for 
“tail” traits not emerging as part of a general ecomorpho-
logical trend in scorpions involves phylogenetic-specific 
associations. In fact, the phylogenetic signal of the meta-
soma average height and width are the highest among all 
the morphological measurements; and the width of the 
telson vesicle within the ten highest values (Additional 
file 8: Table S5). Accordingly, when the phylogenetic his-
tory of scorpions is not taken into account, the pedipalps 
and both the metasoma and the telson are the anatomi-
cal regions with the strongest association with ecology 
(Additional file  7: Table  S4). Our data shows that mor-
phological variation in the metasoma and telson has a 
stronger phylogenetic signal than an ecological signal 

[29] noted that the elongation of the metasoma in cor-
ticolous (i.e., phytophilous) scorpions was only verified 
in the Buthidae family. This observation highlights that 
morphological variation in the “tail” of scorpions may 
have a strong phylogenetic signal overall, or even vary by 
family. The latter may be supported by the gain in eco-
morphological relevance by the “tail” in the supplemen-
tary analysis that adopts a redefined Caraboctonidae 
family. Conversely, this may indicate that the ecomor-
phological importance of walking legs proportions may 
have been partly obscured by phylogenetic signal.

Because we found several morphological traits associ-
ated with ecology, the use of such characters for phylo-
genetic inference is not advised. For example, there are 
species placed at the extremes of Fig. 3, such as Scorpio 
maurus, and Opistophthalmus wahlbergi, which belong 
to same family, the Scorpionidae. These species are, 
therefore, quite divergent in both ecology and morphol-
ogy. Phylogenetically neutral morphological traits would 
place these two species closer together than with species 
from other taxonomic families.

Conclusions
This study is the first broad quantitative approach to 
scorpion ecomorphs. We were able to identify associa-
tions between ecology and morphology, which transcend 
taxonomical relatedness. The ecomorphological para-
digm predicts that the various associations we uncovered 
are likely functional, but correlation alone is not con-
clusive evidence. Nevertheless, these results can be an 
informed starting point for experimental validation of the 
functional value of those traits.
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