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Abstract
Surface plasmon resonance (SPR) has previously been employed to measure the active

concentration of analyte in addition to the kinetic rate constants in molecular binding reac-

tions. Those approaches, however, have a few restrictions. In this work, a Bayesian

approach is developed to determine both active concentration and affinity constants using

SPR technology. With the appropriate prior probabilities on the parameters and a derived

likelihood function, a Markov Chain Monte Carlo (MCMC) algorithm is applied to compute

the posterior probability densities of both the active concentration and kinetic rate constants

based on the collected SPR data. Compared with previous approaches, ours exploits infor-

mation from the duration of the process in its entirety, including both association and disso-

ciation phases, under partial mass transport conditions; do not depend on calibration data;

multiple injections of analyte at varying flow rates are not necessary. Finally the method is

validated by analyzing both simulated and experimental datasets. A software package

implementing our approach is developed with a user-friendly interface and made freely

available.

Introduction
Surface plasmon resonance (SPR) was first applied to the study of molecular binding reactions
in biology and chemistry in the 1980s [1–3]. The first commercial SPR instrument was intro-
duced by BIACore in 1991 [4, 5]. Since then, instruments using SPR have gained increasing
popularity due to their high sensitivity and simple construction, and have become the accepted
standard for measuring the kinetic rate constants for molecular binding interactions. SPR tech-
nology has many practical advantages: 1) it allows real-time detection of binding events; 2) no
labeling is required; 3) it can generally be applied to binding reactions of many types, such as
protein-protein, protein-peptide, protein-DNA, and protein-small molecule; 4) analysis can be
carried out on colored or turbid samples without interference from absorption and scattering.
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Since SPR measures function—binding between analyte and ligand—it is able to determine
active concentration, which is not necessarily identical to the total concentration as measured,
for example by optical density. Two approaches have been proposed. The more widely used
approach is the “calibration-dependent”method [6–8]. Each quantification run, however,
requires a new calibration curve, thereby increasing the time and total material cost. The other
approach does not rely on explicit calibration. Christensen [9] developed the mathematical the-
ory and computed the analytical solutions under the partial mass transport conditions for
molecular interactions within a two-compartment model. This approach has proven to be use-
ful in applications [8, 10]. The method, however, has a few restrictions. It only exploits the ini-
tial binding phase of the sensorgram, requires several injections of analyte at various flow rates
for each unknown sample, and assumes low noise levels on response signals in order to accu-
rately determine the rates of change. These restrictions limit the applicability of this method.
Sigmundsson et al. in 2005 [11] proposed a more general solution for the same process, and
derived a complete analytical solution over the entire binding phase [9]. The solution involves
Lambert’sW function, a special function that is not available in many common statistical soft-
ware packages. Moreover, no user-friendly software implementation has become available as a
result of either effort.

In this work, we develop a Bayesian approach to estimating the active concentration and
kinetic rate constants from SPR experimental data using the same two-compartment model
and quasi-steady state approximation used by Christensen and Sigmundsson [9, 11]. Bayesian
statistical inference has been widely used in many biomedical applications and has been proved
useful for accounting for multiple sources of uncertainty arising from experimental variation,
instrumental noise, etc. [12–16]. In addition, it does not require point estimation or lineariza-
tion of variations, either of which can lead to inconsistency in the estimation in nonlinear mod-
els [17, 18]. Inference of model parameters is given by the posterior density conditional on
observed data. Here, we supply prior probabilities on the parameters and derive a likelihood
function which together with the SPR data themselves allow us to compute the posterior proba-
bility densities on the active concentration and kinetic rate constants. This approach exploits
information from the duration of the process in its entirety, including both association and dis-
sociation phases, under partial mass transport conditions. Compared with the two approaches
mentioned above, ours does not need multiple injections of analyte at varying flow rates as
long as the partial mass transport conditions are met. Finally our methods have been imple-
mented in software and are freely available.

Theory
The theory for molecular binding under conditions of partial mass transport in a two-compart-
ment model was worked out by Christenson [9] and is briefly recapitulated here. If A0 is the
analyte in the bulk flow, As is the analyte on the biosensor surface, B is the ligand immobilized
on the surface and AB is the analyte-ligand complex, the binding process in the SPR biosensor
can be described by the subprocesses,

A0 Ð
kM

kM
AS ð1Þ

and

AS þ B Ð
ka

kd
AB ð2Þ

where kM is the mass transport coefficient, and ka and kd are the association and dissociation
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rate constants, respectively. Process (1) describes the mass transport of the analyte between the
bulk flow (A0) and surface (As); process (2) describes the binding and unbinding of analyte and
ligand on the surface matrix.

The mass action equations for these processes are

hdiff

d½AS�
dt

¼ kMð½A0� � ½AS�Þ � ka½AS�½B� þ kd½AB� ð3Þ

and

d½AB�
dt

¼ ka½AS�½B� � kd½AB� ð4Þ

where hdiff is the characteristic height of the diffusion layer, given [19] approximately by

hdiff �
ffiffiffiffiffiffiffiffiffiffiffiffi
Dh2wl
F

3

r
ð5Þ

D is the analyte diffusion coefficient, F is the bulk flow rate and h, w and l are the height,
width and length of the flow chamber of the SPR system, respectively [19]. The diffusion coeffi-
cient D can be estimated by Stoke’s law and Einstein-Sutherland equation [20] (See details in
S1 Appendix).

Under the quasi-steady state condition (where d[As]/dt = 0 in Eq (3) is assumed) [21], the
analyte concentration at the biosensor surface matrix can be approximated by:

½As� ¼
kM½A0� þ kd½AB�

kM þ ka½B�
ð6Þ

which describes the average of the concentration gradient that forms along the surface [21].
Combining Eqs (4) and (6)and rearranging give

d½AB�
dt

¼ ka½A0�½B� � kd½AB�
1þ ka½B�=kM

ð7Þ

which has been evaluated and demonstrated to be a reasonable approximation for most condi-
tions with the partial mass transport effect [9, 11]. Under experimental conditions, the analyte
bulk concentration [A0] remains constant by a continuous injection of fresh analyte solution at
a fixed flow rate. The amount of free ligand [B] decreases with time until steady-state is
reached. Furthermore, the density of free ligand can be expressed through the conservation
relation as

½B� ¼ ½Bmax� � ½AB� ð8Þ

where [Bmax] is the density of total ligand (bound and unbound) on the surface and [AB] is the
density of bound complex.

The mass transport coefficient, kM, is approximately proportional to the cube root of the
flow rate [22],

kM ¼ CkM

ffiffiffiffiffiffiffiffiffiffiffi
D2F
h2wl2

3

s
ð9Þ

and

CkM
¼ 1:47

1� ðl1=l2Þ2=3
1� l1=l2

ð10Þ
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where l1 and l2 are the lengths to the start and end, respectively, of the detection area from inlet
of the flow cell [22]. For a BIAcore system, these values are known. Therefore, if the molecular
weight and the bulk flow rate of the analyte are also given, kM can be obtained. When l1 and l2
or other parameters (such as h, w or l) are not easily obtained for a biosensor system other than
BIAcore instruments, kM can still be estimated empirically (see discussions in the Results
section).

The response signal, R, output by an SPR sensor is proportional to the amount of complex
formed at the biosensor surface with an empirical factor given by

R ¼ WM G½AB� ð11Þ

where G is the response per mass per area for proteins with an approximate value of 1000
RU�mm2/ng [23] andWM is the molecular weight of analyte. Therefore, Eq (7) now can be
rewritten as

d½R�
dt

¼ ka½A0�ð½Rmax� � RÞ � kd½R�
1þ kað½Rmax� � RÞ=kM

ð12Þ

where Rmax is the maximum value of the response signal when all the immobilized ligands
have been fully bound into complexes, and kM is rescaled to have unit of RU/M/s instead ofm/
s.

The mass transport limitation for a specific analyte-ligand system is determined by both the
amount of free immobilized ligand and the bulk flow rate of the analyte (kM). A limit coeffi-
cient, ka[B]/kM, can be obtained from Eq (7) to identify conditions for mass transport-limited
binding and for kinetic binding (see S1 Appendix for details). Practically, zero and full mass
transport limitation are not easily obtained with a given analyte-ligand system, since to
approach these extreme conditions it is necessary to use a wide range of ligand concentrations.
On the other hand, it is relatively easy to obtain partial mass transportation limitation. In the
next section we describe a Bayesian approach to determining the active concentration as well
as the rate constants under the partial mass transport conditions of SPR responses.

Bayesian Inference
We use Bayesian methods to obtain the posterior distributions of active concentrations, A0,
association/dissociation rate constants, ka and kd, the theoretical maximum response signal,
Rmax, and the initial response level at the beginning of the dissociation phase, R0. As discussed
in the previous section, the analyses are performed on SPR data assuming partial mass trans-
port limitation conditions described by the differential equation Eq (12). The initial-value
problem for Eq (12) does not have a closed-form solution, therefore we carry out inference on
its numerical solution.

In addition to the process model, we must have a measurement, or statistical, model. The
statistical model for the ith SPR sensorgram signal Ri conditional on the parameter vector θ�
{A0, ka, kd,. . .} is

Ri ¼ rðti; yÞ þ εi ð13Þ

where the errors εi are independent, identically-distributed Gaussian random variables with
mean zero and variance σ2.

εi � Nð0; s2Þ ð14Þ
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The following diffuse prior distributions are chosen [24, 25].

ka � Nð5� 1011; 1012Þ ð15Þ

kd � Nð50; 102Þ ð16Þ

Rmax;R0 � Nð5� 104; 105Þ ð17Þ

s2 � InvGammað0:1; 0:1Þ ð18Þ

The variances for the normal distributions are set so to make the prior distributions suffi-
ciently diffuse/non-informative. Given the amount of observed data in a typical SPR experi-
ments, the posterior distributions of these parameters are insensitive to modest variation in the
prior distributions.

For estimation of the posterior density, we use the Markov Chain Monte Carlo (MCMC)
method with the Gibbs sampler to generate samples from the posterior distributions of param-
eters as follows.

• Define the full conditional distributions [26] as

• {π(θ1 | θ2, θ3, .... θp); π(θ2 | θ1, θ3, .... θp); ..... π(θp | θ1, θ2, .... θp−1)}

One cycle of the Gibbs sampler is completed by drawing fykgpk¼1 from these distributions
successively updating the conditional variables

Algorithm

1. define the initial values, yð0Þ ¼ ðyð0Þ1 ; yð0Þ2 ; yð0Þ3 ; . . . : yð0Þp Þ;
2. repeat for j = 1.....M

Generate yðjþ1Þ
1 from pðy1j yðjÞ2 ; yðjÞ3 ; . . . : yðjÞp Þ;

Generate yðjþ1Þ
2 from pðy2j yðjþ1Þ

1 ; yðjÞ3 ; . . . : yðjÞp Þ;
. . .. . .

Generate y ðjþ1Þ
p from pðypj yðjþ1Þ

1 ; yðjþ1Þ
2 ; . . . : y ðjþ1Þ

p�1 Þ;
3. return values {θ(1), θ(2), θ(3), .... θ(M)}

Following an equilibration period, the Markov chain approaches its stationary distribution
and samples from the MCMC closely approximate samples from the posterior parameter dis-
tribution. Using these samples, the posterior means and independent 95% Bayesian credible
intervals (BCI) from the posterior marginal densities are computed.

Combining the priors and observed data, the full conditional probability can be formulated
as

ka : pðkajkd;A0;Rmax;R0; s
2;Rt; tÞ /

Y
i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

ðka�5�1011Þ2
2�1012 ð19Þ

kd : pðkdjka;A0;Rmax;R0; s
2;Rt; tÞ /

Y
i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

ðkd�50Þ2
2�102 ð20Þ
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A0 : pðA0jka; kd;Rmax;R0; s
2;Rt; tÞ /

Y
i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

ðA0�50Þ2
2�102 ð21Þ

Rmax : pðRmaxjka; kd;A0;R0; s
2;Rt; tÞ /

Y
i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

ðRmax�5�104Þ2
2�105 ð22Þ

R0 : pðR0jka; kd;A0;Rmax; s
2;Rt; tÞ /

Y
i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

ðR0�5�104Þ2
2�105 ð23Þ

s2 : pðs2jka; kd;A0;Rmax;R0;Rt; tÞ /
Y

i
e�

ðRt�rðt;yÞÞ2
2s2 � e�

0:1
2s2 � s�n�2:2 ð24Þ

Because we are using the numerical solution to a dynamical system initial value problem,
we employ the adaptive rejection with Metropolis sampling (ARMS) algorithm [27, 28] with
modifications [29], which allows one to draw samples from an arbitrary distribution. The over-
all inference processes have been summarized in Fig 1 flow chart.

Software Development
The software implementation of the proposed approach was developed in C# for the .NET
framework. The executable is available for free distribution. The program has a simple and
intuitive graphical interface. Fig 2 shows a screenshot of the interface and illustrates its various
components. The input of the program is through text data files. Users can specify the initial
values of the parameters through the interface. The results are then written to files with simu-
lated posterior distributions, allowing further analysis such as MCMC diagnostics, hypothesis
testing and the fitting of models for biological processes.

Because the proposed approach requires numerical solution of the initial value problem for
differential equation Eq (12), the analysis is a computation-intensive task. Special optimization
algorithms have been incorporated to make the software efficient, e.g. the forth-order Runge-
Kutta algorithm for calculating numerical solution and the Nelder-Mead algorithm for finding
maxima and minima of functions.

Experimental Procedures

Reagents
Cabonic anhydrase isozyme II (CAII) (MW = 30kD) from bovine erythrocytes, 4-carboxyben-
zenesulfonamide (4-CBS) (MW = 201.2D) and TWEEN 20 were purchased from Sigma
(St. Louis, MO). N-(3-dimethylaminopropyl-N’-ethylcarbodiimide (EDC), N-hydroxysuccini-
mide (NHS), ethanolamine-HCl and sodium acetate were purchased from Bio-Rad (Hercules,
CA).

Surface plasmon resonance measurements
SPR measurements were carried out on a SensiQ Pioneer biosensor (SensiQ Technologies, Inc.,
OK). The CHOO2 two dimensional surface chip was used in the assay. The ligand CAII was
immobilized via the common amine coupling chemistry. This involved activating the chip
surface with freshly made 2mM EDC and 0.5mMNHS (as suggested by the manufacturer),
injecting CAII in sodium acetate (pH 5.0) and then blocking excess reactive esters with etha-
nolamine. Subsequently, the analyte 4-CBS was injected with a concentration of 50μM at a
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flow rate of 50μl/min for 60 seconds and followed with a dissociation phase for another 60 sec-
onds. The interaction was carried out in PBS with 0.05% TWEEN 20 (pH 7.0) (PBST) at 25˚C.

Data analysis
The SPR response data were first processed in SensiQ Qdat (version 2.2) software for back-
ground subtraction, and then were exported as text files for analyses using the software devel-
opment in this work.

Results
We validated the method using simulated SPR response data, experimental SPR data generated
in our laboratory, and publicly available experimental data.

Validation on Simulated Data
The proposed Bayesian approach was validated by analyzing simulated SPR response data. To
simulated SPR data, a strategy similar to the one employed by Karlsson were adopted [30]. Eq

Fig 1. Flow chart summarizing the inference processes in our proposed Bayesian approach.

doi:10.1371/journal.pone.0130812.g001
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(12) was used to simulate interaction data for reactions with kM = 3.15 x 107 RU/M/S. This kM
value is similar to that in the Inogatran/Thrombin system [30]. The concentration of analyte
was set to 30nM, the maximum immobilized ligand in terms of the response signal (Rmax) was
31.5RU, ka values varied between 1x105 and 3 x 108 /M/s, kd values were adjusted so that the
affinity, KD, was held constant at 1nM. The response curves in Fig 3 represent binding curves
with differing kinetic rate constants, but constant KD. The Gaussian noise at a level of 1.5RUs,
which was equivalent to that (1~3RUs) seen on Bio-Rad Proteon XPR36 biosensors but bigger
than that on BIACORE and SensiQ systems, was added to the simulated data as specified by
Eqs (13) and (14).

The simulated data were then analyzed using the proposed Bayesian method. The parameter
values returned were summarized in Table 1, and the chain trace plots for one set of data
(ka	Rmax/kM = 3.0) are shown in Fig 4. The proposed approach did not return accurate ka, kd
or A0 under the situations of little or no mass transport effect (case i and ii, where ka	Rmax/kM
<1), although Rmax and noise level σ

2 could be determined correctly under the same condi-
tions. As the mass transport effect started to dominate, ka, kd and A0 as well as others (Rmax

and noise level) could all be determined accurately (cases iii~vi, where ka	Rmax/kM was between
1~100). In case of very high mass transport effect conditions (case vii and viii, where ka	Rmax/
kM>100), ka and kd estimations became inaccurate while the affinity constant KD and other
parameters were still correctly determined. Similar behavior has been reported previously [30].

Validation on experimental data from our laboratory
The proposed approach was further tested with experimental data. The enzyme carbonic anhy-
drase (CAII) and its small molecule inhibitor 4-carboxybenzenesulfonamide (4-CBS) were
chosen to be studied on a SensiQ Pioneer biosensor. In the experiment, about 3000RU of CAII
was amine coupled to the chip surface as the ligand and then 4-CBS was injected at a flow rate
of 50μl/min. This experiment setting resulted in a partial mass-transport limited condition for

Fig 2. Screen Shot of the implemented software. The implemented software has the interface to allow the
user to define the initial values of the parameters (A) and specify the input files (B) as well as controlling the
behavior of the Gibbs sampler inference. It also has the interface to show the summary statistics (C) and
trace plots of estimations (D).

doi:10.1371/journal.pone.0130812.g002
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the interaction, and generated small but detectable responses (Fig 5). The data were then
exported and analyzed to determine the active concentration and the kinetic constants of the
analyte. First, the mass transport coefficient kM, which primarily depended on the diffusion
coefficient, the dimensions of the flow cell and the flow rate, had to be determined. Under the
current experimental condition, the diffusion coefficient D of the analyte, 4-CBS (molecular
weight = 201.2 Dalton), was calculated to be 4.76x10-10 m2/s [20] (Table A in S1 Appendix).
Furthermore, the flow cell dimensions of the SensiQ Pioneer biosensor were given with a width

Fig 3. Simulated SPR response data. (A), the SPR response data were simulated according to Eqs (12),
(13) and (14) with no measurement error. In simulations Rmax was 31.5 RU, A0 was 30nM, ka values varied
between 1x105 and 3x108/M/s, kd values were adjusted so that KDwas constant 1nM and kM was 3.15x107

RU/M/s. The mass transport limiting coefficients (MTLC) of these responses varied between 0.1 (little/no
mass transport effect) and 300 (high/full mass transport effect). (B), same as in A, but measurement error with
a constant standard deviation of 1.5 RUs was added to the simulated data. The level of noise was chosen
based on empirical data obtained from the Bio-Rad Proteon XPR36 biosensor in our lab through a variety of
antibody-antigen interactions (1~3 RUs in our experiments).

doi:10.1371/journal.pone.0130812.g003

Table 1. Parameter values estimated by the proposed Bayesianmethod using the simulated SPR response Data.

ka (1/M/s) kd (1/s) A0 (nM) Rmax (RU) KD (nM) ka*Rmax/kM

Parameters in simulation

I 1.0 x 105 1.0 x 10−4 30.0 31.5 1.0 0.1

Ii 3.0 x 105 3.0 x 10−4 30.0 31.5 1.0 0.3

iii 1.0 x 106 1.0 x 10−3 30.0 31.5 1.0 1.0

iv 3.0 x 106 3.0 x 10−3 30.0 31.5 1.0 3.0

V 1.0 x 107 1.0 x 10−2 30.0 31.5 1.0 10.0

vi 3.0 x 107 3.0 x 10−2 30.0 31.5 1.0 30.0

vii 1.0 x 108 1.0 x 10−1 30.0 31.5 1.0 100.0

viii 3.0 x 108 3.0 x 10−1 30.0 31.5 1.0 300.0

Parameters estimated by the proposed approach

I 1.2 x 105[1.1x105,
1.5x105]

1.1 x 10−4[0.8x10-4, 1.3x10-4] 25.3[20.9, 26.3] 31.0[29.9, 31.9] 0.9[0.63, 1.06]

Ii 1.6 x 105[1.4x105,
1.9x105]

3.1 x 10−4[3.0x10-4, 3.3x10-4] 49.8[45.3, 56.5] 31.8[31.6, 32.0] 1.8[1.66, 2.10]

iii 0.95 x
106[0.8x106,
1.1x106]

1.0 x 10−3[0.9x10-3, 1.0x10-3] 31.2[27.9, 35.0] 31.5[31.3, 31.7] 1.0[0.89, 1.22]

iv 3.3 x 106[2.9x106,
3.8x106]

3.1 x 10−3[2.9x10-3, 3.4x10-3] 28.9[27.3, 30.4] 31.5[31.4, 31.6] 1.1[0.86, 1.20]

V 1.1 x 107[0.9x107,
1.4x107]

1.1 x 10−2[0.9x10-2, 1.3x10-2] 29.1[28.2, 30.2] 31.5[31.4, 31.5] 1.0[0.93, 1.03]

vi 4.0 x 107[2.3x107,
7.8x107]

3.9 x 10−2[2.4x10-2, 7.3x10-2] 29.6[28.7, 30.5] 31.5[31.5, 31.6] 1.0[0.94, 1.03]

vii 0.7 x 108[0.4x108,
1.0x108]

0.7 x 10−1[0.5x10-1, 1.0x10-1] 30.3[29.8, 30.7] 31.5[31.5, 31.6] 1.0[1.00, 1.04]

viii 0.6 x 108[0.2x108,
1.1x108]

0.6 x 10−1[0.3x10-2, 1.1x10-2] 30.9[30.1, 31.8] 31.5[31.5, 31.6] 1.1[1.01, 1.10]

The SPR response data were simulated according to Eqs (12), (13) and (14) with kM = 3.15x107 as in Fig 1. The parameters used in the simulation were

specified in the top section of the table. Then the proposed approach was applied to estimate the parameters, which were listed in the bottom section in

the table with the 95% Bayesian credible intervals (in square brackets). The parameters in the simulation ranged from little mass transport limited

conditions (ka * Rmax/kM = 0.1) to high/full mass transport limited conditions (ka * Rmax/kM = 300).

doi:10.1371/journal.pone.0130812.t001
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0.635mm, a height 0.05mm and a length 3.0mm by the manufacturer. Then with a flow rate of
50μl/min, kM was determined to be 1.03x107 RU/(Ms) according to Eqs (9) and (10) (Table A
in S1 Appendix). Finally, the kinetic parameters and the active analyte concentration were esti-
mated by the proposed Bayesian approach and shown in Table 2. The original sensorgram and
the fitted values were overlaid in Fig 5, which showed a very good fit. The trace plots of each
parameter in the analysis were shown in Fig A in S1 Appendix.

Fig 4. The trace plots for evaluation of the simulated SPR response data. The SPR response data were
simulated as in Fig 2 with Rmax 31.5RU, ka 3x10

6/M/s, kd 3x10
-3/s, kM 3.15x107RU/M/s, A0 30nM and σ2 1.5.

The data were analyzed as described in the text. The trace plots are shown for six parameters in the analysis
of the data set with ka * Rmax/kM = 3.0. The returned parameters are summarized in Table 1.

doi:10.1371/journal.pone.0130812.g004

Fig 5. The kinetic analysis of the emzyme CAII and its small molecule inhibitor 4-CBS in the SensiQ Pioneer biosensor. CAII was immobilized by the
amine coupling chemistry at a level of about 3000RU, and then 50μM 4-CBS was injected at a flow rate of 50μl/min at 25˚C. The generated sensorgram data
were exported and analyzed by the proposed Bayesian approach. The diffusion coefficient and mass transport coefficient were first derived, and then the
kinetic parameters as well as the active concentration were determined. The fitted values of the responses were overlaid with the original sensorgram (the
red dashed line) on the top figure, and the residuals were showed on the bottom.

doi:10.1371/journal.pone.0130812.g005
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The active concentration A0 of the analyte was determined in our analysis to be 2.0 ± 0.22 μM,
which was about 4% of the total concentration (50μM of the analyte). This percentage of the
active concentration in the total concentration was similar to that of the active phosphorylated
GST-CEACAM1-4L protein determined by both SPR and other radioactivity based method [11].
Moreover, our analysis showed that the dissociation rate constant kd was (4.23 ± 0.12)×10−2 s−1,
which is consistent with what has been reported in the literature ((3.65 ± 0.06)×10−2 s−1) [31].
On the other hand, the estimated association rate constant ka, (4.67 ± 0.66)×105 M−1s−1, was
about ten times higher than what was reported ((4.8 ± 0.2)×104 M−1s−1) in an analysis that did
not take into account the difference between active concentration and total concentration [31].
Thus, the discrepancy is not a surprise since the active concentration was more than ten times
lower than the total concentration. When we used the total concentration of analyte (50μM)
rather than the active concentration, we get a value for ka (1.4×10

4 M−1s−1) that was similar to
the previously-reported value. We argue that it is as more appropriate to use the active concen-
tration under these circumstances, and that this comparison illustrates the importance of
doing so.

Validation on publicly available data
In order to further validate the proposed approach, we analyzed two publicly available experi-
mental data sets generated using other popular biosensors. The first dataset was from Caston-
guay et al.[32], in which the bone morphogenetic protein 10 (BMP10) interacted with
immobilized human endoglin extracellular domain-Fc chimera (hEngECD-FC) in a Biacore
3000 system. The second dataset was generated on a Proteon XPR36 biosensor from the work
of Abdiche et al.[33], in which human calcitonin gene-related peptide-α (CGRPα) reacted with
immobilized 4901 IgG. These two datasets were selected because they were generated under
partial mass transport-limited conditions and the molecular weights of the analytes in them
were known. With the latter information, the diffusion coefficient and then the mass transport
coefficient could be derived from Eqs (5), (9) and (10) (also see details in S1 Appendix about
the diffusion coefficient D). Therefore, the proposed approach could be applied to estimate the
active concentration of analyte A0 and rate constants ka and kd. The results are listed in
Table 2, together with parameter estimates from the original reference papers for comparison.

In the first case, the SPR response data between BMP10 and hEngECD-hFC were generated
on a Biacore 3000 system, in which the detection area of the flow chamber has been very well
documented. The parameters, such as the width, length and height of the measured SPR, are
known [9, 11] (Table A in S1 Appendix). The diffusion coefficient was approximated using the
available molecular weight of the analyte BMP10 (see details in S1 Appendix). The mass trans-
port coefficient kM was thus determined to be approximately 8x108 RU/M/s (Table A in S1
Appendix) and used to estimate the active analyte concentration and the kinetic rate constants
(Table 2 and Fig B in S1 Appendix). The fitted curve was overlaid with the raw sensorgrams in
Fig 6A. In the second dataset, the interaction between hCGRPα and 4901 IgG was measured
on a Proteon XPR36 system. In this case, the parameters for the detection flow chamber were
not available. Similar parameters as in the Biacore systems, however, can still be assumed to
approximate kM; this has been verified empirically (data not shown). As shown in Table A in
S1 Appendix, the mass transport coefficient kM between analyte hCGRPα and immobilized
4901 IgG was determined to be about 8.5x107 RU/M/s. Finally, the active concentration and
rate constants were estimated (Table 2 and Fig C in S1 Appendix) and the fitted curved were
showed in Fig 6B. Overall, the fitted SPR responses based on the estimated parameters matched
the observed sensorgrams very well in both cases.
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As shown in Table 2, our method obtained similar dissociation rate constant kd but different
association rate constant ka compared with the ones estimated in the original reference papers
in both tests. Again, this was reasonable, since kd estimation didn’t depend on the actual ana-
lyte concentration and can be determined correctly without knowing it. On the other hand, ka
estimation relied on the accurate information of the analyte concentration, more precisely the
active concentration of the analyte. In the original papers, the total analyte concentrations were
taken as a known input in the estimation. These values, however, were different from the active
concentrations of analyte. In the first dataset, the active concentration was determined to be
about 50% of the total concentration, and the difference between the two concentrations
resulted in a higher and probably more accurate estimation of association constant ka. In the
second dataset, the difference in ka estimation came in not only due to the difference between
the active concentration in our approach and the total concentration in the original, but also
due to the way in which the data analysis was carried out in the original paper. In the reference
paper, a Langmuir model that assumed no mass transport effect was used. Under these condi-
tions, one expects to underestimate the kinetic rate constants. The proposed Bayesian method
assumed a model with non-negligible mass transport and was thus more likely to produce
more accurate estimates.

In conclusion, the proposed Bayesian approach in this work, assuming a partial mass trans-
port-limited model and exploiting the activate analyte concentration, led to more accurate esti-
mation of kinetic rate constants than was obtained using other methods

Software Availability
Project name: SPR_MCMC; Projection home page: https://sourceforge.net/projects/sprmcmc/;
Operating systems: Windows; Programming Language: C#; License: Free for academic use.

Table 2. Parameter values estimated by the proposed Bayesian approach using the experimental SPR response data.

ka (1/M/s) kd (1/s) A0 (nM) KD (nM)

Dataset #1 (SensiQ Pioneer)

in literature [31] 4.8x104 3.65x10-2 - 760

by the proposed approach 4.67x105[3.66x105, 5.84x105] 4.2x10-2[4.04x10-3, 4.45x10-3] 2020[1705, 2415] 92.1[76, 110]

Dataset #2 (Biacore 3000)

in the reference [32] 5.47x107 3.9x10-3 1.25 0.0713

by the proposed approach 2.30x108[2.16x108, 2.44x108] 4.4x10-3[4.30x10-3, 4.65x10-3] 0.612[0.61, 0.62] 0.01946[0.0191, 0.0199]

Dataset #3 (Proteon XPR36)

in the reference [33] 1.15x105 6.71x10-4 300 5.780

by the proposed approach 3.6x107[2.7x107, 4.7x107] 8.2x10-4[7.5x10-4, 9.2x10-4] 13.73[13.4, 14.1] 0.023[0.018, 0.030]

Three tests were carried out. In the first experiment, the interaction data between CAII and 4-CBS were studied on a SensiQ Pioneer biosensor under a

partial mass-transport limited condition. The data were analyzed and the resulted kinetic parameters and active concentration. In the other two tests, two

datasets were collected from the literature. Dataset #1 was from the work done by Castonguay et al.[32], in which BMP10 interacted with immobilized

human EngECD-Fc in a Biacore 3000 system. Dataset #2 was from a different work done by Abdiche et al.[33], in which human CGRPα bound

immobilized 4901 IgG in a Proteon XPR36 biosensor. The two datasets were then analyzed by the proposed approach to estimate the active

concentration of analyte A0, rate constants ka and kd, and the dissociation constant KD. The returned parameters as well as the parameters estimated in

the original reference papers were listed. The 95% Bayesian credible intervals for the estimation were also provided in the square brackets. The biosensor

used to collect the experimental data was indicated in the parentheses.

doi:10.1371/journal.pone.0130812.t002
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Fig 6. The kinetic analysis of BMP10 with hEndECD-hFC in BiaCore 3000 and hCGRPαwith 4901 IgG in Proteon XPR36 by the proposed Bayesian
approach. Two sets of data were extracted from literature. (A), the interaction between BMP10 and immobilized hEngECD-hFc was measured in a Biacore
3000 system [32]. (B), the analyte human CGRPα and immobilized 4901 IgG were studied in a Proteon XPR36 biosensor [33]. The values of mass transport
coefficient kM were derived according to Eqs (9) and (10) for both cases. The two datasets were then analyzed by the proposed approach to estimate the
active concentration of analyte A0, rate constants ka and kd, and the dissociation constant KD. The returned parameters were listed in Table 2. The raw
sensorgrams (solid lines) and fitted curves (dashed lines) were overlaid.

doi:10.1371/journal.pone.0130812.g006

Estimation of Active Concentration and Affinity

PLOS ONE | DOI:10.1371/journal.pone.0130812 June 22, 2015 15 / 17



Supporting Information
S1 Appendix. The supporting information for the Bayesian inference approach to estimate
the active concentration and affinity constants.
(DOCX)

Author Contributions
Conceived and designed the experiments: TBK FF. Performed the experiments: FF. Analyzed
the data: TBK FF. Contributed reagents/materials/analysis tools: TBK FF. Wrote the paper:
TBK FF.

References
1. Bendow B, Lengeler B. Electronic structure of noble metals and polariton-mediated light scattering:

Springer-Verlag; 1978.

2. Flanagan MT, Pantell RH. Surface plasmon resonance and immunosensors. Electronics Letters. 1984;
20(23):968–70. doi: 10.1049/el:19840660

3. Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing.
Sensors and Actuators. 1983; 4(0):299–304. http://dx.doi.org/10.1016/0250-6874(83)85036-7.

4. Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, et al. Real-time biospecific
interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques.
1991; 11(5):620–7. PMID: 1804254

5. Karlsson R, Michaelsson A, Mattsson L. Kinetic analysis of monoclonal antibody-antigen interactions
with a new biosensor based analytical system. J Immunol Methods. 1991; 145(1–2):229–40. Epub
1991/12/15. PMID: 1765656.

6. Chavane N, Jacquemart R, Hoemann CD, Jolicoeur M, De Crescenzo G. At-line quantification of bioac-
tive antibody in bioreactor by surface plasmon resonance using epitope detection. Anal Biochem.
2008; 378(2):158–65. Epub 2008/05/07. doi: 10.1016/j.ab.2008.04.019 PMID: 18457651.

7. Kikuchi Y, Uno S, Nanami M, Yoshimura Y, Iida S, Fukushima N, et al. Determination of concentration
and binding affinity of antibody fragments by use of surface plasmon resonance. Journal of bioscience
and bioengineering. 2005; 100(3):311–7. Epub 2005/10/26. doi: 10.1263/jbb.100.311 PMID:
16243282.

8. Richalet-Secordel PM, Rauffer-Bruyere N, Christensen LL, Ofenloch-Haehnle B, Seidel C, Van Regen-
mortel MH. Concentration measurement of unpurified proteins using biosensor technology under condi-
tions of partial mass transport limitation. Anal Biochem. 1997; 249(2):165–73. Epub 1997/07/01. doi:
10.1006/abio.1997.2183 PMID: 9212868.

9. Christensen LL. Theoretical analysis of protein concentration determination using biosensor technol-
ogy under conditions of partial mass transport limitation. Anal Biochem. 1997; 249(2):153–64. Epub
1997/07/01. doi: 10.1006/abio.1997.2182 PMID: 9212867.

10. MehandMS, Srinivasan B, Crescenzo GD. Estimation of analyte concentration by surface plasmon res-
onance-based biosensing using parameter identification techniques. Anal Biochem. 2011; 419(2):140–
4. http://dx.doi.org/10.1016/j.ab.2011.08.051. doi: 10.1016/j.ab.2011.08.051 PMID: 21945965

11. Sigmundsson K, Masson G, Rice R, Beauchemin N, Obrink B. Determination of active concentrations
and association and dissociation rate constants of interacting biomolecules: an analytical solution to
the theory for kinetic and mass transport limitations in biosensor technology and its experimental verifi-
cation. Biochemistry. 2002; 41(26):8263–76. Epub 2002/06/26. PMID: 12081475.

12. Conlon EM, Song JJ, Liu A. Bayesian meta-analysis models for microarray data: a comparative study.
BMC Bioinformatics. 2007; 8:80. Epub 2007/03/09. 1471-2105-8-80 [pii] doi: 10.1186/1471-2105-8-80
PMID: 17343745.

13. Frigessi A, van deWiel MA, Holden M, Svendsrud DH, Glad IK, Lyng H. Genome-wide estimation of
transcript concentrations from spotted cDNAmicroarray data. Nucleic acids research. 2005; 33(17):
e143. Epub 2005/10/06. 33/17/e143 [pii] doi: 10.1093/nar/gni141 PMID: 16204447.

14. Gelman A, Chew GL, Shnaidman M. Bayesian analysis of serial dilution assays. Biometrics. 2004; 60
(2):407–17. Epub 2004/06/08. doi: 10.1111/j.0006-341X.2004.00185.x BIOM185 [pii]. PMID:
15180666.

15. Sivaganesan M, Seifring S, VarmaM, Haugland RA, Shanks OC. A Bayesian method for calculating
real-time quantitative PCR calibration curves using absolute plasmid DNA standards. BMC

Estimation of Active Concentration and Affinity

PLOS ONE | DOI:10.1371/journal.pone.0130812 June 22, 2015 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130812.s001
http://dx.doi.org/10.1049/el:19840660
http://dx.doi.org/10.1016/0250-6874(83)85036-7
http://www.ncbi.nlm.nih.gov/pubmed/1804254
http://www.ncbi.nlm.nih.gov/pubmed/1765656
http://dx.doi.org/10.1016/j.ab.2008.04.019
http://www.ncbi.nlm.nih.gov/pubmed/18457651
http://dx.doi.org/10.1263/jbb.100.311
http://www.ncbi.nlm.nih.gov/pubmed/16243282
http://dx.doi.org/10.1006/abio.1997.2183
http://www.ncbi.nlm.nih.gov/pubmed/9212868
http://dx.doi.org/10.1006/abio.1997.2182
http://www.ncbi.nlm.nih.gov/pubmed/9212867
http://dx.doi.org/10.1016/j.ab.2011.08.051
http://dx.doi.org/10.1016/j.ab.2011.08.051
http://www.ncbi.nlm.nih.gov/pubmed/21945965
http://www.ncbi.nlm.nih.gov/pubmed/12081475
http://dx.doi.org/10.1186/1471-2105-8-80
http://www.ncbi.nlm.nih.gov/pubmed/17343745
http://dx.doi.org/10.1093/nar/gni141
http://www.ncbi.nlm.nih.gov/pubmed/16204447
http://dx.doi.org/10.1111/j.0006-341X.2004.00185.x
http://www.ncbi.nlm.nih.gov/pubmed/15180666


Bioinformatics. 2008; 9:120. Epub 2008/02/27. 1471-2105-9-120 [pii] doi: 10.1186/1471-2105-9-120
PMID: 18298858.

16. Feng F, Sales AP, Kepler TB. A Bayesian approach for estimating calibration curves and unknown con-
centrations in immunoassays. Bioinformatics. 2011; 27(5):707–12. doi: 10.1093/bioinformatics/btq686
PMID: 21149344

17. Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. London: Chapman and
hall; 1995.

18. Dellaportas P, Stephens DA. Bayesian Analysis of Errors-in-Variables Regression Models. Biometrics.
1995; 51(3):1085–95.

19. Christensen LLH. Theoretical Analysis of Protein Concentration Determination Using Biosensor Tech-
nology under Conditions of Partial Mass Transport Limitation. Analytical Biochemistry. 1997; 249
(2):153–64. http://dx.doi.org/10.1006/abio.1997.2182. PMID: 9212867

20. Knowles PF. Biophysical chemistry: Part II ‘Techniques for the study of biological structure and func-
tion’: By CR Cantor and PR Schimmel. pp 503. WH Freeman and Co, Oxford. 1980. £20.70/£10.60
(paperback) ISBN 0-7167-1189-3/0-7167-1190-7 (paperback). Biochemical Education. 1981;9(4):157-
. doi: 10.1016/0307-4412(81)90143-6

21. Segel LA, Slemrod M. The quasi-steady state assumption: a case study in perturbation. SIAM Rev.
1989; 31(3):446–77. doi: 10.1137/1031091

22. Sjoelander S, Urbaniczky C. Integrated fluid handling system for biomolecular interaction analysis.
Analytical Chemistry. 1991; 63(20):2338–45. doi: 10.1021/ac00020a025 PMID: 1759716

23. Stenberg E, Persson B, Roos H, Urbaniczky C. Quantitative determination of surface concentration of
protein with surface plasmon resonance using radiolabeled proteins. Journal of Colloid and Interface
Science. 1991; 143(2):513–26. http://dx.doi.org/10.1016/0021-9797(91)90284-F.

24. Box GEP, Tiao GC. Bayesian Inference in Statistical Analysis. New York: JonhWiley and Sons; 1973
reprinted 1992. 580 p.

25. Kass RE, Wasserman L. The Selection of Prior Distributions by Formal Rules. Journal of the American
Statistical Association. 1996; 91(435):1343–70. doi: 10.1080/01621459.1996.10477003

26. Gilks WR, editor. Full Conditional Distributions. London, UK: Chapman & Hall; 1996.

27. Gilks WR, Best NG, Tan KKC. Adaptive Rejection Metropolis Sampling within Gibbs Sampling. Journal
of the Royal Statistical Society Series C (Applied Statistics). 1995; 44(4):455–72. doi: 10.2307/
2986138

28. Gilks WR, Wild P. Adaptive Rejection Sampling for Gibbs Sampling. Journal of the Royal Statistical
Society Series C (Applied Statistics). 1992; 41(2):337–48. doi: 10.2307/2347565

29. Martino L, Read J, Luengo D. Improved Adaptive Rejection Metropolis Sampling Algorithms. ARXIV.
2012;arXiv:1205.5494.

30. Karlsson R. Affinity analysis of non-steady-state data obtained under mass transport limited conditions
using BIAcore technology. Journal of Molecular Recognition. 1999; 12(5):285–92. doi: 10.1002/(sici)
1099-1352(199909/10)12:5<285::aid-jmr469>3.0.co;2-y PMID: 10556876

31. Day YS, Baird CL, Rich RL, Myszka DG. Direct comparison of binding equilibrium, thermodynamic, and
rate constants determined by surface- and solution-based biophysical methods. Protein science: a pub-
lication of the Protein Society. 2002; 11(5):1017–25. Epub 2002/04/23. doi: 10.1110/ps.4330102 PMID:
11967359; PubMed Central PMCID: PMC2373566.

32. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, et al. Soluble endoglin
specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel
formation, and suppresses tumor growth. J Biol Chem. 2011; 286(34):30034–46. PMID: 21737454. doi:
10.1074/jbc.M111.260133

33. Abdiche Y, Malashock D, Pinkerton A, Pons J. Determining kinetics and affinities of protein interactions
using a parallel real-time label-free biosensor, the Octet. Anal Biochem. 2008; 377(2):209–17. http://dx.
doi.org/10.1016/j.ab.2008.03.035. doi: 10.1016/j.ab.2008.03.035 PMID: 18405656

Estimation of Active Concentration and Affinity

PLOS ONE | DOI:10.1371/journal.pone.0130812 June 22, 2015 17 / 17

http://dx.doi.org/10.1186/1471-2105-9-120
http://www.ncbi.nlm.nih.gov/pubmed/18298858
http://dx.doi.org/10.1093/bioinformatics/btq686
http://www.ncbi.nlm.nih.gov/pubmed/21149344
http://dx.doi.org/10.1006/abio.1997.2182
http://www.ncbi.nlm.nih.gov/pubmed/9212867
http://dx.doi.org/10.1016/0307-4412(81)90143-6
http://dx.doi.org/10.1137/1031091
http://dx.doi.org/10.1021/ac00020a025
http://www.ncbi.nlm.nih.gov/pubmed/1759716
http://dx.doi.org/10.1016/0021-9797(91)90284-F
http://dx.doi.org/10.1080/01621459.1996.10477003
http://dx.doi.org/10.2307/2986138
http://dx.doi.org/10.2307/2986138
http://dx.doi.org/10.2307/2347565
http://dx.doi.org/10.1002/(sici)1099-1352(199909/10)12:5&lt;285::aid-jmr469&gt;3.0.co;2-y
http://dx.doi.org/10.1002/(sici)1099-1352(199909/10)12:5&lt;285::aid-jmr469&gt;3.0.co;2-y
http://www.ncbi.nlm.nih.gov/pubmed/10556876
http://dx.doi.org/10.1110/ps.4330102
http://www.ncbi.nlm.nih.gov/pubmed/11967359
http://www.ncbi.nlm.nih.gov/pubmed/21737454
http://dx.doi.org/10.1074/jbc.M111.260133
http://dx.doi.org/10.1016/j.ab.2008.03.035
http://dx.doi.org/10.1016/j.ab.2008.03.035
http://dx.doi.org/10.1016/j.ab.2008.03.035
http://www.ncbi.nlm.nih.gov/pubmed/18405656

