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Abstract: Epidermal growth factor receptor (EGFR) is estimated to be overexpressed in 60~80% of
colorectal cancer (CRC), which is associated with a poor prognosis. Anti-EGFR targeted monoclonal
antibodies (cetuximab and panitumumab) have played an important role in the treatment of metastatic
CRC. However, the therapeutic response of anti-EGFR monoclonal antibodies is limited due to
multiple resistance mechanisms. With the discovery of new functions for gold nanoparticles (AuNPs),
we hypothesize that cetuximab-conjugated AuNPs (cetuximab-AuNPs) will not only improve the
cytotoxicity for cancer cells, but also introduce expression change of the related biomarkers on cancer
cell surface. In this contribution, we investigated the size-dependent cytotoxicity of cetuximab-AuNPs
to CRC cell line (HT-29), while also monitored the expression of cell surface biomarkers in response to
treatment with cetuximab and cetuximab-AuNPs. AuNPs with the size of 60 nm showed the highest
impact for cell cytotoxicity, which was tested by cell counting kit-8 (CCK-8) assay. Three cell surface
biomarkers including epithelial cell adhesion molecule (EpCAM), melanoma cell adhesion molecule
(MCAM), and human epidermal growth factor receptor-3 (HER-3) were found to be expressed at
higher heterogeneity when cetuximab was conjugated to AuNPs. Both surface-enhanced Raman
scattering/spectroscopy (SERS) and flow cytometry demonstrated the correlation of cell surface
biomarkers in response to the drug treatment. We thus believe this study provides powerful potential
for drug-conjugated AuNPs to enhance cancer prognosis and therapy.

Keywords: epidermal growth factor receptor; colorectal cancer; cetuximab; cytotoxicity; gold nanopar-
ticles; surface-enhanced Raman scattering/spectroscopy; phenotypes

1. Introduction

Colorectal cancer (CRC) has been the third leading cause of cancer-related mortality
and the fourth commonly diagnosed cancer worldwide. Nearly two million new cases and
about one million deaths occurred in 2018 [1]. The metastatic disease accounts for up to 20%
of newly diagnosed patients and further develops in 50% of CRC cases [2,3]. The clinical
outcome of patients with metastatic CRC (mCRC) has been improved by the introduc-
tion of cetuximab and panitumumab, two monoclonal antibodies targeting the epidermal
growth factor receptor (EGFR) [3,4]. EGFR, the target of these drugs, plays a key role in
the development and progression of CRC by promoting a variety of functions including
proliferation, survival, invasion, or immune evasion [5]. Cetuximab binds to the extracel-
lular domain of EGFR and prevents ligand-induced activation of intracellular pathways,
such as Raf/MEK/ERK and PI3K/Akt cascades, leading to growth suppression and cell
death [6]. In addition to their effect on ligand binding, cetuximab can promote EGFR inter-
nalization and subsequent degradation, thus decreasing the cell surface level of EGFR [5,6].
However, the overexpression of EGFR in approximately 80% of CRC failed to predict a
therapeutic response to anti-EGFR treatment when used in clinic [6,7]. Only about ten
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percent of genetically unselected patients experience tumor regression when treated with
anti-EGFR antibodies. The KRAS-mutant gene has been demonstrated to be intrinsically
resistant to EGFR-targeting antibodies, which is called primary resistance. While some
reports suggested that BRAF mutation status has clear prognostic value in mCRC, the
predictive value of BRAF mutation status remains controversial for response to cetuximab
treatment [8–10]. Moreover, nearly all patients whose tumor initially respond to cetuximab
treatment, eventually become refractory, which refers to acquired resistance [3,6,11]. It was
reported that aberrant activation of alternative receptors, such as human epidermal growth
factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3) overexpres-
sion, is one of the molecular mechanisms for the resistance to anti-EGFR treatment [12,13].
Typically, HER3, one member of EGFR family (EGFR, HER2, HER3, and HER4), plays a
significant role in the formation of a heterodimer with EGFR on the surface of CRC cells,
activating the intracellular signaling pathway when a ligand binds to the receptor [14,15].
The overexpression of HER3 in 30–80% of mCRC has been associated with the resistance to
EGFR inhibitor [16–18].

Additionally, the overexpression of epithelial cell adhesion molecule (EpCAM), a
40-kDa glycoprotein expressed in 85% of colorectal carcinoma was reported to enhance the
proliferative and invasive capacities of tumors and can inhibit differentiation and promote
proliferation [19]. It was also suggested that EpCAM expression may be associated with
CRC carcinogenesis, while the loss of EpCAM expression can be correlated with the pro-
gression, metastasis, and poor prognosis of CRC, which makes EpCAM a useful biomarker
for the clinical diagnosis of CRC [14]. Another important surface biomarker, melanoma cell
adhesion molecule (MCAM), also called CD146, is a known tumor suppressor. Previous
studies reported that the reduced MCAM expression promoted tumorigenesis and cancer
stemness in CRC [20,21]. Therefore, HER3, EpCAM, and MCAM biomarkers have shown
great potential as prognostic markers in CRC for an effective analysis.

Gold nanoparticles (AuNPs) have found a wide range of biomedical applications
(e.g., drug delivery, diagnostics, biosensing, bio-imaging, and theranostics) due to their
appealing features, including high biocompatibility and facile conjugation to biomolecules.
Previous results have shown that drugs conjugated with AuNPs may significantly increase
chemosensitivity and delivery efficacy in a variety of cancer types including colorectal
cancer, oral squamous cell carcinoma, pancreatic cancer, breast cancer, and prostate can-
cer [22–27]. In recent years, an increasing number of studies were performed on the inter-
action of cetuximab-conjugated AuNPs (cetuximab-AuNPs) against EGFR-overexpressing
cancers. It was shown that cetuximab-AuNPs displayed enhanced EGFR endocytosis and
the subsequent suppression of downstream signaling pathway, leading to the inhibition
of cell proliferation and the acceleration of apoptosis compared to AuNPs or cetuximab
alone [28–31]. These findings suggest that AuNPs have promising potential to be used as
drug carriers to increase the therapeutic efficiency of monoclonal antibodies. Moreover,
cetuximab-AuNPs could be added to the standard chemotherapy and radiotherapy, where
the enhanced uptake by specific targeting, and the subsequent improved efficacy of the
therapeutic agents/radiation could be a viable approach for the treatment of cancers with
EGFR overexpression [32–40]. Nevertheless, the size effect of AuNPs on cytotoxicity and
the phenotypic evaluation of EGFR-overexpressing cancers have not been well documented.
Thus, investigating the cytotoxicity effect of AuNPs and cetuximab-AuNPs with different
sizes as well the phenotypic evaluation of cancer biomarkers expression, will advance the
applications of AuNPs in cancer prognosis and therapy.

Furthermore, the unique optical properties conferred by their localized surface plas-
mon resonance (LSPR) [31,41–44] make AuNPs attractive for surface-enhanced Raman
scattering/spectroscopy (SERS), which is a surface sensitive technique that measures Raman
scattering of molecules adsorbed on the surface of the metallic (plasmonic) nanoparti-
cles [45]. SERS has the ability to measure and detect single molecule while having multi-
plexing capabilities [46]. These features make SERS a powerful technique for sensitively
and simultaneously detecting multiple biomarkers [41,47,48]. In this work, AuNPs and
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cetuximab-AuNPs with different sizes were synthesized and it was desired to study their
cytotoxicity on BRAF-mutant HT-29 CRC cells (RAS wild-type) to advance the understand-
ing of treatment response for cancers with BRAF mutation. In addition to cytotoxicity study,
the phenotypic evolution of the cell surface markers, including EpCAM, MCAM, and HER3,
were also studied for their responses to cetuximab and cetuximab-AuNPs treatment, by
taking advantage of AuNPs for therapeutics and enhancement in Raman scattering (SERS
nanotags). Analyzing the phenotypic evolution during treatment will provide insights on
the resistance mechanism of drug treatment.

2. Results and Discussion
2.1. Synthesis and Characterization of Gold Nanoparticles

Although it has been reported that the cytotoxicity and cellular uptake of AuNPs are
size-dependent to a large extent [49–51], AuNPs at the size of 25, 40, 60, and 80 nm were
selected in this study by considering both the cellular uptake efficiency and SERS activity.

The size and morphology of the synthesized particles were examined by transmission
electron microscopy (TEM). The TEM images of bare AuNPs displayed quasi-spherical
particles with the sizes of 25, 40, 60, and 80 nm (Figure 1A). The surface plasmon resonance
(SPR) of the AuNPs with different sizes were characterized with UV-Vis absorption spec-
troscopy (Figure 1B), in which the maximum absorption peak shifts from 521 to 560 nm
with an increase in particle size from 25 to 80 nm. The largest AuNPs (80 nm) gave a much
broader peak, indicating the wide size distribution of AuNPs (80 nm) compared to AuNPs
at smaller sizes. SERS spectra of Raman reporter 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB)
on AuNPs at different sizes (25, 40, 60, and 80 nm) were tested as shown in Figure 1C. Also,
60 nm AuNPs displayed the highest Raman enhancement for DTNB due to the localized
surface plasmon resonance (LSPR) [52–54].
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reduction and stabilization [55], the citrate-capped AuNPs are known to be electrostati-
cally stabilized due to adsorption of citrate trianions (citrate3−) where the steric repulsion 
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Raman molecules coated AuNPs, if Raman molecules cannot be quickly anchored on the 
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Figure 1. Characterization of gold nanoparticles (AuNPs). (A) Transmission electron microscopy (TEM) images of AuNPs
at sizes of 25, 40, 60, and 80 nm; (B) Normalized UV-Vis spectra of AuNPs at different sizes; (C) surface-enhanced Raman
scattering/spectroscopy (SERS) spectra of Raman reporter 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) on AuNPs at different
sizes (25, 40, 60, and 80 nm).

Meanwhile, it was observed that 80-nm AuNPs were more prone to aggregate during
the preparation of Raman molecule-coated AuNPs and cetuximab-AuNPs (Figure S1,
Supplementary Material). Since AuNPs synthesized in this study were based on citrate
reduction and stabilization [55], the citrate-capped AuNPs are known to be electrostatically
stabilized due to adsorption of citrate trianions (citrate3−) where the steric repulsion of
citrate layers plays important role in stabilizing AuNPs [56]. During the preparation of
Raman molecules coated AuNPs, if Raman molecules cannot be quickly anchored on the
surface of AuNPs to form the self-assembled monolayer (SAM), the AuNPs can approach
each other in close proximity, where van der Waals force dominates to induce aggregation.
Since van der Waals force scales linearly with the size of AuNPs [57], this may explain that
larger AuNPs (80 nm) are more susceptible and ready to aggregate during the process of
functionalization with repeated centrifugations and particle dispersion steps [56,58–60].
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Thus, AuNPs at the size of 25, 40, and 60 nm were used in cytotoxicity study. Because
of the higher SERS activity of AuNPs at the size of 60 nm, it was used for profiling of
the cell surface biomarkers after coating with Raman reporter molecules and conjugating
with antibodies.

The size distribution of AuNPs (25, 40, and 60 nm) was also examined with dynamic
light scattering (DLS), where the average hydrodynamic size was 32.2, 59.7, and 70.8 nm,
respectively (Figure S2 and Table S1), which is slightly higher than that measured with TEM
due to the hydration layer surrounding a particle in the hydrodynamic diameter [61,62].
The size distribution of AuNPs before and after conjugating with cetuximab was also
measured with DLS for 60-nm AuNPs (Figure S2B), which shows the increased size from
70.8 to 88.2 nm, indicating the conjugation of cetuximab on the AuNPs.

The zeta potential of AuNPs and cetuximab-AuNPs was measured by electrophoretic
light scattering (ELS), in which the citrate-capped AuNPs are negatively charged (Table S1).
It was reported that zeta potential of AuNPs is size-dependent [63,64]; however, the increase
of zeta potential is not linear to the size increment, the difference of zeta potential between
AuNPs with sizes of 25 (−25.6 mV) and 40 nm (−33.2 mV) is a bit more significant than that
for 40 and 60 nm (−33.1 mV). The zeta potential of AuNPs increased slightly (became less
negative) from −33.1 to −27.7 mV upon binding with cetuximab, which has an isoelectric
point of 8.5 [31] and was positively charged in the neutral phosphate buffered saline (PBS)
buffer (pH 7.4).

2.2. Effects of Cetuximab-AuNPs on the Cell Viability

Selection of a suitable cytotoxicity assay is vital to accurately evaluate cell viability
without the toxic effects on cells from the dye [65]. Cell counting kit-8 (CCK-8) assay was
used as a colorimetric method for testing cell viability to evaluate the cytotoxic effect of
cetuximab and cetuximab-AuNPs on HT-29 cells [66–68]. Since the cytotoxicity of AuNPs
and cetuximab-AuNPs on cells is dose-dependent [31,69], the cell viability was investi-
gated by applying two different concentrations of cetuximab. The conjugation amount
of cetuximab in cetuximab-AuNPs ranged from 12.14 to 12.43 µg/mL measured by BCA
protein assay for the AuNPs with sizes from 25 to 60 nm, where the amount of cetuximab
in the final cetuximab-AuNPs complex was consistent for different sizes of AuNPs. Taking
AuNPs (60 nm) as an example, the conjugation number of cetuximab molecules on each
AuNP was estimated to be 405 (NCetuximab:NAuNP ≈ 405). The detailed calculation for the
number of cetuximab molecules on AuNPs was provided in the Supplementary Material.

Since cetuximab-AuNPs (coated with 0.05% w/v BSA) were used to treat the cells
in this study, the stability of the conjugates in the cell culture media (McCoy’s 5A media
supplemented with 10% (v/v) FBS) was further investigated over 72 h by monitoring UV-Vis
spectrum of cetuximab-AuNPs (Figure S3A). The average decrease of UV-Vis absorbance
over 72 h is around 0.03 (a.u.) per 24 h from the initial absorbance of 1.38 (a.u.). Meanwhile,
neither peak shifts nor shoulder peaks are observed in the absorption spectra, illustrating
that cetuximab-AuNPs are stable in the cell culture media over 72 h. The stability was also
analyzed with DLS (Figure S3B), where the particle size distribution exhibits no significant
change over 72 h. The stability of antibody-conjugated AuNPs in the biological system
has been illuminated in our previous study [70], which illustrated that increasing the
protein thickness by antibody functionalization, protein coating, or inclusion of extra protein
components in the detection environments can improve the stability of the particles.

For the cytotoxicity study, the required amount of cetuximab-AuNPs were calculated
and concentrated to 20 µL to ensure that the same amount of cetuximab was added in each
well of the 96-well plate. As indicated in Figure 2A with the cetuximab concentration of
5 µg/mL, the cells without cetuximab treatment (treated with PBS) were set as control with
100% viability, no significant decrease in cell viability was observed in the cetuximab, AuNPs,
or cetuximab-AuNPs treated groups for 48 h. The comparison between AuNPs (25, 40, or
60 nm) alone and the corresponding cetuximab-AuNPs counterparts showed no significant
difference. This may be attributed to the insufficient concentration of cetuximab (5 µg/mL)
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for inducing a response from HT-29 cancer cells. Therefore, an increased concentration of
both cetuximab (10 µg/mL) and AuNPs was applied to evaluate the effects of AuNPs with
different sizes for treating HT-29 cells (Figure 2B).
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Figure 2. Cytotoxicity study by CCK-8 assay for HT-29 cells treated with cetuximab, AuNPs and cetuximab-AuNPs with
sizes of 25, 40, and 60 nm for 48 h. (A) Low concentration of cetuximab (5 µg/mL); (B) High concentration of cetuximab
(10 µg/mL). The cells treated with phosphate buffered saline (PBS) only and with cetuximab only were shown as green bar
and purple bar, respectively. Error bar represents standard deviation (SD) of 5 replicates in 96-well plate.

When the amount of cetuximab and cetuximab-AuNPs was doubled, cetuximab
(10 µg/mL) had a significant effect on cell cytotoxicity by decreasing the cell viability by
19.7%, in which the cell viability was 80.3% ± 5.0% compared to the PBS control (100.0% ±
1.0%), as indicated in Figure 2B. Meanwhile, the doubled amount of AuNPs also showed
significant cytotoxicity to HT-29 cells, where the cell viability was 83.0% ± 4.0%, 68.3% ±
3.1%, and 53.0%± 4.1% after treating with AuNPs at sizes of 25, 40, and 60 nm, respectively.
Due to the cytotoxicity of both cetuximab and AuNPs, cetuximab-AuNPs showed increased
synergistic cytotoxicity compared to the individual cetuximab and AuNPs.

The effects of cetuximab-AuNPs decreased the cell viability significantly by greater
than 60% for each size of AuNPs (25, 40, and 60 nm), where AuNPs at a size of 60 nm
had the greatest effect on cell viability of HT-29 cells, which was decreased to 19.1%. The
highest impact of 60 nm AuNPs on cell cytotoxicity can be attributed to the higher cell
uptake efficiency of 60 nm AuNPs and the subsequent internalization and degradation of
EGFRs in lysosome. Previous studies illustrated that AuNPs with a size of 40–60 nm have
the highest cellular uptake efficiency, which endows AuNPs not only as simple carriers for
biomedical applications but also play an active role in mediating biological effects [49–51,71].
Furthermore, it was demonstrated that the internalization and subsequent degradation
of EGFRs in lysosome are important determinants for inhibiting cell proliferation and in-
ducing apoptosis [3,5,72,73]. Taken together, these two effects have resulted in the highest
cytotoxicity of cetuximab-AuNPs (60 nm) for treating HT-29 cells. The apoptosis study with
annexin-FITC/PI analysis (Figure S4 and Table S2) further demonstrated that cetuximab-
AuNPs significantly accelerated HT-29 cells apoptosis (27.86% apoptotic cells), compared
with cetuximab (15.68%) and AuNPs (12.22%), which was probably due to the enhanced
EGFR endocytosis and the subsequent suppression of downstream signaling pathway [31].
Conjugation of cetuximab to AuNPs enhances cetuximab induced endocytosis of EGFR
which may have altered the cellular processes associated with ligand binding [74]. It was
reported that the cellular uptake of AuNPs was significantly affected by the nanoparticle
size, concentration, and the cell type [51,71,75]. The cytotoxicity study in this contribution
showed that the cytotoxicity of AuNPs is dose and size-dependent for HT-29 cells, and ce-
tuximab conjugated to AuNPs demonstrated significantly improved cytotoxicity compared
to cetuximab used alone.
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2.3. Profiling the Cell Surface Markers in Response to Cetuximab and
Cetuximab-AuNPs Treatment

Although the use of cetuximab has greatly improved the clinical outcomes of metastatic
CRC, the discovery of resistance to anti-EGFR monoclonal antibodies stimulated interest in
the study of drug resistance, including abnormal molecules in the EGFR pathway, abnormal
activations between the paralleled pathways, and other mechanisms [12]. In this study, the
surface markers EpCAM, MCAM, and HER3 of HT-29 cells after treating with cetuximab
or cetuximab-AuNPs, were profiled with multiple SERS nanotags, which were coated
with the individual Raman reporter (MMC, DTNB, or TFMBA) and conjugated with the
corresponding antibody, to provide a unique Raman fingerprint for each surface marker.
As indicated in Figure 3A, MMC at 1173 cm−1 is for EpCAM, DTNB at 1340 cm−1 is for
MCAM, and TFMBA at 1379 cm−1 is for HER3. The characteristic peaks for Raman reporters
in the multiplex detection (Figure 3B) were used to profile the plot of frequency vs. signal
distribution [18].
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Figure 3. (A) SERS spectra of individual SERS nanotags; (B) SERS spectra of 3-plex SERS nanotags. The arrows indicate the
characteristic peak of each nanotag for detecting the corresponding biomarker.

The cell surface biomarker’s expression (signal) distribution curve (Figure 4A) was ob-
tained by extracting the intensity of the characteristic peaks for the respective marker from
the 150 Raman measurements for each sample, then the frequency for each intensity range
was counted, this allows the profiling of the expression levels for multiple markers [18].
It was hypothesized that the wider signal distribution of the respective surface marker
represents the more heterogeneous phenotypes. The peak shift of the frequency-intensity
plot indicated the change in the expression level for the respective marker. Isotype-matched
immunoglobulins (IgG) antibodies were used as the control. Flow cytometry was used
as a standard method to validate the SERS signal intensity distribution for the respective
surface marker (Figure 4B). As illustrated in Figure 4, EpCAM and MCAM have shown
higher expression level on the surface of HT-29 cells, while HER3 showed relatively low
expression on the cells, the percentage of cells expressing the respective biomarkers is also
demonstrated in Figure S5.

The cell signature is defined as the relative expression levels of three biomarkers. In
our study, we studied three cell surface markers simultaneously to profile the cell signature
and investigate its evolution during drug treatment. Moreover, the intensity distribution
shifts to the lower signal for cell surface biomarkers MCAM and HER3 on HT-29 cells
(Figure 5), which demonstrates the decreased expression level in response to cetuximab
treatment compared to the untreated cells, while EpCAM showed no significant change in
the expression level in response to cetuximab or cetuximab-AuNPs treatment detected by
flow cytometry (Figure S5). However, SERS detection demonstrated a slight shift to the
lower signal and the higher heterogeneity of the EpCAM expression (Figure 5).
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The application of cetuximab-AuNPs would increase the endocytic capacity and hence
the degradation of EGFR. The absence of EGFR plays a key role in the decreased activation
of cell signaling pathway after drug treatment, thus leading to the inhibition of surface
markers expression. For the cells treated with cetuximab-AuNPs, the expression of MCAM
and HER3 were decreased, while the EpCAM expression showed no significant decrease
but higher heterogeneity which may be a good sign for further exploration on the genetic
profiles to determine the signaling pathway for explaining the cells phenotype. As the
phenotype was only studied at a single time point for drug treatment (t = 48 h). It is
suggested that a systematically dynamic study on the phenotype will help to enhance
our understanding for the potential signaling pathway and the related drug resistance
mechanism. This further substantiates the evidence that AuNPs have effects on cytotoxicity
and the related surface biomarkers expression on cancer cells and may be a promising
therapeutic solution to enhance prognostic analysis for colorectal cancer.

3. Conclusions

In summary, different sizes of AuNPs were proven to induce cytotoxicity for colorectal
cancer HT-29 cells when conjugated with cetuximab. Among them, AuNPs of 60 nm
conjugated with cetuximab showed the highest cytotoxicity for HT-29 cells when compared
to the free cetuximab in the CCK-8 assay. To further investigate the effects of cetuximab
and cetuximab-AuNPs (60 nm) on the phenotypes of cells, the signature of cell surface
markers EpCAM, MCAM, and HER3 were profiled with the multiple antibody conjugated
SERS nanotags. The results showed the evolution of cell surface signature, in which not
only the expression levels of MCAM and HER3 decreased significantly but also the cell
surface signatures (the relative ratio of these markers) changed after being treated with
cetuximab or cetuximab-AuNPs. Cetuximab-AuNPs had similar yet increased effects on the
evolution trend of cell surface signatures, which may be attributed to the upregulation of
the parallel pathways when the EGFR signaling pathway was inhibited by cetuximab, and
the decreased expression of MCAM and HER3 may contribute to the complex mechanisms
of resistance to anti-EGFR treatment. Therefore, this study provides a further promising
outlook for treating cells by conjugating cetuximab on AuNPs and profiling the evolution
of cell surface signatures by multiplex detection with SERS nanotags.

4. Materials and Methods
4.1. Chemicals

The Raman molecules 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and 7-mercapto-
4-methylcoumarin (MMC) were obtained from Sigma-Aldrich, 2,3,5,6-tetrafluoro-4-mer-
captobenzoic acid (TFMBA) was purchased from Tokyo Chemical Industry (TCI, Tokyo,
Japan). Gold(III) chloride trihydrate (HAuCl4·3H2O) and sodium citrate tribasic dihydrate
used for synthesis of gold nanoparticles (AuNPs) were purchased from Sigma-Aldrich.
Monoclonal antibodies anti-EGFR (research grade cetuximab biosimilar, MAB9577), anti-
EpCAM (MAB9601), anti-MCAM (MAB932), anti-HER3 (MAB3481), and IgG isotype control
(MAB002) were purchased from R&D systems. The 3,3′-dithiobis(sulfosuccinimidyl propi-
onate) (DTSSP) supplied by Sigma-Aldrich were used for conjugating antibodies to AuNPs.
Micro BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) was used for analyzing
the amount of protein conjugated to AuNPs. Cell Counting Kit-8 (CCK-8) purchased from
Sigma-Aldrich were used for determining the cell viability in the cytotoxicity assay. Annexin
V-FITC apoptosis detection kit (Cat No. APOAF, Sigma-Aldrich, St. Louis, MO, USA) was
used to test the apoptosis of cells upon treatment. Cell line HT-29 were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA).

4.2. Instruments

Transmission electron microscope (TEM, Philips CM10) was used to visualize the
size and morphology of AuNPs. Zetasizer (Malvern, UK) was applied to examine the
hydrodynamic size and zeta potential of AuNPs. UV-Vis spectroscopy (Cary 5000, Agilent,
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Santa Clara, CA, USA) was employed to check the optical characteristics of AuNPs. A Raman
microscope equipped with a 785-nm wavelength laser (IM-52, Snowy Range Instruments)
was utilized for SERS measurement. BD LSRFortessa X-20 flow cytometer (BD Biosciences,
San Jose, CA, USA) was used to test the flow cytometry.

4.3. Synthesis of Gold Nanoparticles

Gold nanoparticles (AuNPs) were synthesized by citrate reduction of gold chloride
with sodium citrate in aqueous solution as reported [55]. Briefly, 50 mL of HAuCl4 (0.01%
w/v) was heated until boiling, then 0.75, 0.5, 0.35, and 0.25 mL of sodium citrate (1% w/v)
was added, and the mixture was continuously boiled and stirred for 20 min to obtain AuNPs
with diameter of 25, 40, 60, and 80 nm, respectively.

4.4. Preparation of SERS Nanotags

The antibody conjugated SERS nanotags (Ab-SERS nanotags) were prepared by func-
tionalizing AuNPs with Raman reporter molecules and antibodies as previously reported [76].
Briefly, 10 µL of 1-mM Raman reporter molecules (DTNB, MMC, TFMBA) were added into
1 mL AuNPs (60 nm) suspension concentrated from 1.5 mL as-prepared AuNPs colloidal,
the mixture was then incubated at room temperature (RT) for 5 h to form a complete self-
assembled monolayer (SAM). Subsequently, the mixture was centrifuged at 5500 rpm for
8 min to remove the residual reactants, then re-dispersed in 300 µL of 0.1 mM PBS and
incubated with DTSSP-linked antibody solution, which was prepared by adding 5 µL of
1 mg/mL DTSSP solution (dissolved in 5 mM sodium citrate buffer, pH 5.3) and 10 µL of
0.5 mg/mL antibody solution (anti-EpCAM, anti-MCAM or anti-HER3, dissolved in PBS).
The mixture was incubated at RT for 30 min under shaking (300 rpm) and kept at 4 ◦C
overnight. After overnight incubation, the products were centrifuged at 4 ◦C, 1000× g for
10 min to remove free antibodies. Then the SERS nanotags were re-dispersed in 300 µL of
BSA (0.05% w/v in 0.1 mM PBS) and incubated at RT for 30 min under shaking (350 rpm) to
block the non-specific binding sites.

The cetuximab-AuNPs used for treating cells were prepared with the above-mentioned
protocol but without Raman molecules coating. The amount of conjugated cetuximab was
determined by bicinchoninic acid (BCA) assay before BSA coating. The BSA assay was
performed according to the manufacturer’s instruction.

4.5. Cell Viability Study by CCK-8 Assay

The amount of cetuximab in cetuximab-AuNPs (25, 40, and 60 nm) was determined
by BCA assay. The cetuximab-AuNPs was centrifugated at 4 ◦C, 1200× g for 10 min, and
re-dispersed in 20 µL of PBS (containing 1% v/v of FBS) to ensure the final amount of
cetuximab added into each well (100 µL) of HT-29 cells was 0.5 µg (or doubled amount
1.0 µg) for the cell viability assay. The corresponding amount of bare AuNPs concentrated
in 20 µL of PBS (containing 1% v/v of FBS) were used as control.

HT-29 cells were cultured in McCoy’s 5A medium (ATCC 30-2007) supplemented
with 10% (v/v) of fetal bovine serum (FBS, Life Technologies, Grand Island, NY, USA) and
1% (v/v) of Penicillin-Streptomycin solution (P4333, Sigma-Aldrich, St. Louis, MO, USA)
under standard cell culture conditions (37◦C, 5% CO2). HT-29 cells were collected and
suspended in cell culture media for seeding into 96-well plate with a density of 2000 cells
in 100 µL/well. After incubating overnight, the cetuximab (0.5 µg/well, or 1 µg/well),
AuNPs (25, 40, and 60 nm) and cetuximab-AuNPs (25, 40, and 60 nm) were added to the
wells and then incubated (37 ◦C, 5% CO2) for 48 h. The cells treated with 20 µL of PBS were
used as control with 100% cell viability. Then, 10 µL of CCK-8 solution was added to each
well and incubated (37 ◦C, 5% CO2) for 2 h. Subsequently, the absorbance at 450 nm was
recorded using microplate reader (SPECTROstar Nano, BMG Labtech). The cell viability
was calculated by dividing the absorbance of the experimental wells with the absorbance
of the control well. The cell viability study was performed in 5 replicates (5 wells for each
type of treatment).
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4.6. Cell Apoptosis Study with Annexin-FITC/PI Analysis

HT-29 cells were seeded with a concentration of 2 × 105 cells per 2 mL of McCoy’s
5A/10% FBS media to each well of a 6-well plate. Then, AuNPs, cetuximab (10 µg/mL) and
cetuximab-AuNPs (containing 10 µg/mL of cetuximab) were added to incubate with cells
for 48 h, where cells treated with PBS were used as control. Cells were then harvested from
the 6-well plate following trypsinization, washed gently with PBS 2 times, and collected
by centrifugation. Cell apoptosis was analyzed with annexin V-FITC apoptosis detection
kit (Cat No. APOAF, Sigma-Aldrich) according to the manufacturer’s instruction. Briefly,
after re-dispersing the collected cells for each well in 200 µL of 1× binding buffer, 5 µL of
annexin V FITC conjugate and 5 µL of propidium iodide (PI) solution were added to stain
the cells for exactly 10 min at room temperature and protected from light. After incubation,
the cells were analyzed immediately with the BD LSRFortessa X-20 flow cytometer.

4.7. Profiling of Cell Surface Markers

To profile the cell surface markers EpCAM, MCAM, and HER3 after cetuximab and
cetuximab-AuNPs treatment, HT-29 cells were seeded in a 6-well plate with a density
of 2 × 105 cells/well in 2 mL cell culture media, the cells were treated with cetuximab
(10 µg/mL) or cetuximab-AuNPs (containing 10 µg/mL of cetuximab) for 48 h. Then the
cells were harvested, washed with PBS and dispersed in 200 µL buffer (PBS supplemented
with 1% v/v FBS) to obtain 5 × 105 cells/mL cells suspension for profiling cell surface
markers by SERS nanotags and flow cytometry.

For cell labelling with Ab-SERS nanotags, the protocol was described as reported [18],
200 µL of 105 cells (5 × 105 cells/mL) were incubated with the mixture of three Ab-SERS
labels (30 µL each) at 37 ◦C for 30 min under shaking (300 rpm), followed by gentle centrifuge
at 400× g for 1 min and washing with 200 µL buffer. The washing step was repeated for
4 times. The samples were then re-suspended in 60 µL buffer and placed into a cuvette for
SERS measurements. SERS spectra were recorded with a portable IM-52 Raman Microscope
(Snowy Range Instruments). The 785-nm laser wavelength was used for excitation of Raman
scattering. SERS spectra were obtained at 1 s integration time with an incident laser power
of 70 mW. 150 of SERS spectra were acquired for each sample.

Flow cytometry for characterizing the cell surface markers were performed on BD
LSRFortessa X-20 flow cytometer. Cells (2 × 105 cells) re-suspended in 100 µL of FACS
buffer (PBS containing 3% v/v FBS, 0.5% w/v BSA and 1 mM EDTA) were incubated
with 0.25 µg of anti-EpCAM, anti-MCAM, or anti-HER3 mouse monoclonal antibody, or
isotype-matched control at RT for 30 min under shaking (300 rpm). Then the cells were
washed with 200 µL of FACS buffer for 2 times. The cells were then dispersed in 200 µL
of 1 µg/mL secondary antibody (Alexa Fluor 488 goat anti-mouse IgG antibody, A-11001,
Life Technologies) and incubated at RT for 30 min under shaking (300 rpm). After washing
the cells to remove excessive secondary antibody, the cells were re-dispersed in 200 µL of
FACS buffer for flow cytometry.

Supplementary Materials: The supporting information are available online, Figure S1: UV-Vis ab-
sorption spectra of AuNPs (80 nm), AuNPs (80 nm) with DTNB and AuNPs (80 nm) conjugated with
cetuximab, Figure S2: Hydrodynamic size distribution of AuNPs at the size of 25, 40 and 60 nm (A)
and AuNPs (60 nm) before and after conjugation with cetuximab (B) measured by dynamic light
scattering (DLS), Figure S3: (A) UV-Vis spectra of cetuximab-AuNPs over 72 h; (B) Size distribution of
cetuximab-AuNPs measured by DLS over 72 h, Figure S4: Apoptosis analysis of HT-29 cells treated
with PBS (A), AuNPs at the size of 60 nm (B), cetuximab (C) and cetuximab-AuNPs (60 nm) (D)
for 48 h, Figure S5: Phenotyping of the cell surface biomarkers (EpCAM, MCAM and HER3 by
flow cytometry before treatment (A), and after treatment with cetuximab (B) and cetuximab-AuNPs
(60 nm) (C), Table S1: Hydrodynamic size of AuNPs measured by DLS and zeta potential measured
by electrophoretic light scattering (ELS), Table S2: The apoptosis rate for HT-29 cells treated with PBS,
AuNPs (60 nm), cetuximab and cetuximab-AuNPs (60 nm) for 48 h.
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