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Abstract: Melanin has been reported to have potential applications in industries such as cosmetics
and food due to its anti-UV and antioxidative qualities. However, the corresponding data on its safety
evaluation or biological consequences are fairly limited; such data are critical given its widespread
use. The effect of different concentrations (1, 2, 3, and 4%) of melanin on growth status (larvae length
and weight, cocoon weight, and morphology), the microstructure of the various tissues (fat body,
silk gland, and midgut), and silk properties was studied by using the silkworm (bombyx mori) as the
model organism. The weight and length of silkworm larvae fed with melanin were lower than the
control, indicating that melanin appears to have a negative effect on the growth status of silkworms;
however, the histophysiology analysis indicates that the cell morphologies are not changed, the
XRD and FTIR spectra indicate that the secondary and crystalline structures of silks are also well
preserved, and the thermogravimetric analysis and tensile test indicate that the thermal stability and
mechanical properties are well maintained and even improved to some extent. Generally, it indicates
that melanin has a certain inhibitory effect on the growth of silkworm larva but causes no harm to the
cell microstructures or silk properties; this demonstrates that the safety of melanin as a food addictive
should be considered seriously. The increase of thermal stability and mechanical properties shows
that melanin may be a good chemical modifier in textile industries.

Keywords: melanin; biological effects; silkworm; silk properties

Key Contribution: Melanin caused silkworms to lose weight. While silkworms provide an excellent
platform for studying melanin toxicity, melanin substantially improved the mechanical characteristics
of silkworm silk.

1. Introduction

Melanin is a natural macromolecule pigment which is commonly distributed in an-
imals, plants, and microbial organisms [1–4], providing a variety of functions such as
thermal regulation, mechanical protection, pigmentation, photosensitivity, radiation protec-
tion, antioxidant activity, and so on [5–7]. It has been reported to have potential applications
in industries such as cosmetics, food additives, pharmacology, paints, and so on [8,9], thus
gaining much interest. Melanogenesis, or the production of melanin, occurs in melanocytes,
which are specialized pigment-producing cells that produce melanin as pigments gran-
ules. The primary goal of this process is thought to be to protect keratinocyte DNA from
damage caused by UV radiation and certain toxins such as free oxygen radicals [10]. These
pigments play critical roles in UV protection and other stress factors. Although melanin
is commonly thought to be a very stable organic compound, studies have shown that it
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has significant chemical activity and can undergo physical and chemical changes even
in vivo [11]. Moreso, as more melanin is introduced into people’s lives, their contact with it
becomes more intimate, emphasizing the importance of conducting an objective evaluation
of its biological impacts and toxicity. However, there is a scarcity of evidence on its safety
evaluation and biological consequences, and such evidence is crucial given its extensive
use. Understanding the structure and biological mechanisms that result in the several
melanins present in nature inspires new synthetic approaches and materials.

Natural melanin can be separated from a variety of plants, animals, and microbes,
while artificial melanin-like derivatives can be made by simple polymerization [12,13]. Vari-
ous biomedical applications and food packaging have been made either alone or by mixing
melanin or melanin nanoparticles [14]. For example, Ye et al. [15] showed that melanin
from Lachnum YM404 had predominant resistance activity to UV radiation, indicating that
it could be utilized as a new type of natural anti-UV additive applied in cosmetics and
sunscreen. Hung et al. [16] also reported that melanin derived from tea had antioxidant
activities and can protect the liver against hydrazine-induced oxidative toxicity. In addition,
a group of researchers recently demonstrated that a melanin nanocomposite loaded with
epigallocatechin-3-gallate retained high antibacterial and antioxidant properties, implying
that it could be used as food-active packaging fillers [17]. Although melanin exists naturally
in many animals and plants, it cannot be concluded directly that it will have no negative
impacts when used as additives. Detailed data about the evaluation of the biological effects
of melanin by using a suitable animal model are very important; however, the relative
reports are very scarce.

The silkworm (Bombyx mori), a lepidopteran insect, is a typical invertebrate animal
model [18–20], which, in recent years, has gained the favor of researchers in several fields
such as medicine, toxicity evaluation of nanomaterials, environmental monitoring, and so
on [21–24], owing to its peculiar advantages [25,26]. Similar to other lower invertebrate
animal models such as Salamandra Laurenti, Caenorhabditis elegans, or Drosophila, silkworms
will not be trapped in the ethical disputes that usually accompany mammal models [27,28].
In addition, the silkworm has its own advantages; for example, it will not cause biosafety
problems since it cannot survive outside the laboratory, and the size of the silkworm is also
more suitable for dissection and handling [29,30]. Due to the excellent characteristics of
the silkworm model, many researchers chose the silkworm model to study the biological
effects of their targets such as nanomaterials, drugs, cosmic rays, etc. [31,32]. For instance,
Shi et al. [33] used the silkworm model to investigate the biological effects of cosmic rays.
Moreover, Matsumoto and Sekimizu demonstrated that silkworm infection models could
be ideal for uncovering the mechanism of fungi infection [34]. In previous reports, our
group studied the biological effects of BSA-capped gold nanoclusters, graphene quantum
dots, and boron nitride nanosheets by using silkworm as a model [35–37].

In this work, the biological effects of melanin were assessed by a silkworm model,
via illustrating the growth status, cell morphology, and silk properties. We demonstrated
that melanin could inhibit the growth of silkworm larvae, while the cell morphologies of
some tissues (silk gland, fat body, and midgut) show no abnormal changes. The XRD and
FTIR results show that the crystalline and secondary structures of silks are not damaged.
The TGA analysis and tensile test demonstrate that the thermal stability and mechanical
properties of silks are also preserved well, thus giving more data on the safe use of melanin.

2. Results and Discussions
2.1. The Effect of Melanin on the Growth, Cocoon, and Silk Morphology of Silkworms

The silkworms (Bombyx mori) used in this study were divided into control and ex-
perimental groups. The control group contained 20 silkworm larvae and was fed with
mulberry leaves sprayed with distilled water from the 1st day of fifth instar until cocooning.
In the same way, the experimental groups, composed of four groups (with 20 silkworm
larvae in each), were fed with mulberry leaves sprayed with melanin at different mass
concentrations (G1, 1%; G2, 2%; G3, 3%; and G4, 4% (G means group)).
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In order to determine the effects of melanin on the silkworms, the appearance, length, and
weight of silkworm larvae were observed every 24 h (Figure 1 and Supplementary Table S1).
Figure 1a depicts the appearance of silkworm larvae. It was observed that silkworm larvae from
various groups were similar in appearance and color, indicating that the majority of melanin
(black-colored) taken was excreted. The effect of melanin on the length and weight of silkworm
larvae was also studied. As shown in Figure 1d,e, the average length and weight from all the
melanin groups were lower than the control group, indicating that melanin had some negative
impacts on the growth of silkworms.
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Figure 1. The impact of melanin on the growth, cocoons, and degummed silks of silkworms. (a) The
influence of melanin on the exterior of silkworms after the feeding of melanin for 96 h. (b,c) The
influence of melanin on the appearance of cocoons (b) and degummed silks (c). (d,e) The influence
of melanin on the average length (d) and weight (e) of silkworms after the feeding of melanin at
different times. The error bars are presented in mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.

The influence of melanin on cocoons was also studied. From Figure 1b, it is ob-
served that the cocoons do not show any appreciable physical change when comparing
the melanin groups with the control group. The average cocoon weight from each group
was also observed, and the results (Supplementary Figure S1a and Table S2) show that the
average cocoon-weight data of all the groups are similar; however, an irregular change is
found. When the melanin groups were compared to control groups, the cocoons showed no
discernible physical change, as shown in Figure 1b. The average cocoon weight from each
group was also measured; the results showed that, despite an irregular change, the average
cocoon-weight data from all groups were similar (Supplementary Figure S1a and Table S2).
The morphology and diameter of the degummed silk fibers from either the control or
melanin groups were studied by using scanning electron microscopy (SEM). Silks from all
five groups (Figure 1c) exhibited identical morphology and average diameter
(Supplementary Figure S1b and Table S2), indicating that melanin had no effect on the
usual microstructure of silkworm silk. This may be attributable to the fact that the melanin
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consumed by the silkworm was transferred to the silk gland and interacted with the silk
fibroin to impact the spinning process [35], resulting in the minor decrease in the average
diameter of the silk.

The death rate of each group was also recorded, and there was no record of death
throughout the entire period of the experiment, indicating that the melanin in the concen-
tration range employed had no lethal effect on silkworms. This demonstrated that the
modified diet employed in our work was safe for silkworms. It is well established that
melanin is not required for growth and development, but it does play a significant function
in survival and defense [38]. Using AMD-like cellular and mouse models, Kwon et al. [39]
demonstrated that melanin or melanin nanoparticles are biocompatible, nontoxic, and
preferentially target reactive oxygen species with powerful antioxidant properties.

In summary, although it was believed that melanin was primarily excreted from the
silkworm body, it caused certain damage to the growth of silkworm larvae, despite the fact
that the morphologies of the silkworm larvae, cocoons, and silks were all normal.

2.2. Histophysiological Study

A histophysiological study was carried out to analyze the influence of melanin on the
cell morphology of several tissues (silk gland, fat body, and midgut); histopathological
sections were examined 96 h after feeding melanin to the silkworm, and the results are
displayed in Figure 2. When compared to the control group’s images, it was clear that
melanin had no significant negative impact on the pathological microstructures of silkworm
tissues (silk gland, fat body, and midgut); that is, the morphologies of cells from the
various tissues were similar across all groups. Comparing the control and melanin groups,
we observed that the silk glands exhibited a standard architecture, with a full lumen
entirely filled with proteins, which are thought to promote silk production, and thin walls
(Figure 2a); the cells of the fat body (Figure 2b) were well ordered, and the distance between
them was uniform; and the midgut (Figure 2c) from both the control and melanin groups
showed no uncharacteristic pathological changes with clearly visible basal laminae, proving
that no damages was caused to them by melanin.
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2.3. The Effect of Melanin on the Structures of Silk
2.3.1. XRD Analysis

To investigate the effect of melanin on the crystalline structure of silks, the X-ray
diffraction (XRD) spectra of silks from both the melanin and control groups were examined
(Figure 3). All silk samples were scanned by using a two range of 5–40◦. As shown, the
strongest peaks in silk samples from all five groups were at (100), (120), and (300), which
correlate to β-sheet in silk and also contribute to Young’s modulus and the strength of silk
fibers [35–37,40]. Despite the presence of melanin in each group, there was no significant
difference in the resulting patterns, demonstrating that melanin feeding had no effect on
the core crystalline structures of silks.
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2.3.2. FTIR Analysis

A silk protein conformation is essential to determine the mechanical performance
of materials. Here, FTIR was used to identify silk proteins and evaluate their relative
content by revealing the effects of melanin on their secondary structures. The peaks at
1630, 1665, and 1700 cm−1 were attributed to random coil, β-sheet, and β-turn [41–44]. The
FTIR spectra shown in Figure 4a showed that all the spectra corresponding to control and
melanin silks have the same peaks. Three significant peaks located at 1227 cm−1 (amide III,
random coil/helix, or both), 1512 cm−1 (amide II and β-sheet), and 1645 cm−1 (amide I,
random coil/helix, or both) were found, showing the coexistence of β-sheet, helix, and
random coil conformations in silks. No obvious difference was found among the spectra
from the five silk samples, proving that the presence of melanin in the silk fibers did not
cause any damage or changes to the secondary structures of silks. However, the fact that
melanin had a greater impact on silk behavior than protein structure was reinforced.

The amide I spectral region was deconvoluted to determine the contents of the sec-
ondary structures. This is due to the fact that the amide I area of the spectrum is the most
informative for determining protein secondary structure [45]. The FTIR spectra of amide I
are presented in detail as deconvoluted FTIR spectra (Supplementary Figure S2), and the
contents of the secondary structures are shown in Figure 4b, revealing that the melanin-
modified silks contained more helix and random coil structures and a fewer β-sheets than
the control silk, similar to previously reported results [46]. This may be attributed to the
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formation of hydrogen bonds between melanin and silk fibroins. It can also be noticed that
there was an increase in helix and random coil content when the control was compared
with the melanin groups; and this may lead to the increase in their toughness modulus. A
random coil structure can be transformed into a β-sheet structure, making the silk fiber
become rough and rigid; this is consistent with previous conclusions [47]. An increasing
trend of the β-sheets content can be seen in the melanin silks (G1–G3), confirming a tougher
breaking strength. This was also confirmed in the dose–response relationship between
β-sheets content and melanin dose. Details on the relationship between melanin dose and
the relative β-sheets content are provided in Supplementary Figure S3.
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band spectra.

2.4. The Effect of Melanin on the Properties of Silks
2.4.1. Thermal Stability

Figure 5a,b shows the thermal stability of different silk fibers characterized by thermogravi-
metric (TGA) and derivative thermogravimetric (DTG) analysis, respectively. Figure 5a shows
that, as the temperature increased, the weight of all the silk samples gradually decreased, with
the onset decomposition temperature commencing at 250 ◦C and the decreasing rate rapidly
increasing. Weight loss is probably caused by the elimination of adsorbed water, as previously
reported [48]. The residue masses of the treated silk fibers were also higher than those of the
control, and this can be attributed to the presence of melanin in the silk fibers. From Figure 5b,
it was observed that the endothermic transition of all samples was around 330 ◦C, which was
caused by the thermal decomposition of the silks. Although the changing trend of each silk
sample was similar, it was found that the decreasing rate of melanin-modified silks was lower
than the one of the control silks, demonstrating that the stability of silks was improved by the
intake of melanin, which demonstrated higher efficiency for enhancing the thermal stability of
silk fibers. The reason may be the strong hydrogen bonding interaction between the melanin
and the silk fibroin. This suggests that melanin by its scavenging action can stabilize silk fibers
such that it retains its molecular weight during thermal processing at elevated temperatures.
It is also known that both natural and synthetic melanin can be used as thermal stabilizers
for polymers [49]. The relationship between melanin dose and the derivative weights was
also analyzed. Details on the dose–response of DTG and melanin doses are provided in the
Supplementary Figure S4.
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2.4.2. Mechanical Properties

Tensile testing was performed to study the effect of melanin on the mechanical prop-
erties of silks; the strain–stress plots and elongation at break-breaking strength behavior
are shown in Figures 6 and 7 and Supplementary Tables S3–S5. The elongation at break
and breaking strength of the silks were found to be closely associated with their secondary
structures [50]. Figure 6 depicts the typical stress–strain curves for each treatment, demon-
strating the increase in tensile behavior and maximum strain caused by the addition of
melanin. It was realized that the addition of melanin had an undeniable influence on the
mechanical properties of silk. From Figure 7 and Table 1, when compared to the control, the
elongation at break of silks from G1 and G2 was slightly higher, while that of G3 and G4 was
comparable. The breaking strength and toughness modulus of the silks produced by G1–G3
were increased to some extent, while they were reduced slightly when from G4, a result
that was consistent with the increase in helix and random coil content when compared
to the melanin groups. In general, melanin had no significant effect on the mechanical
properties of silks, which could be improved to some extent when the concentration of
melanin was around 1–3%, as is consistent with the FTIR results. The ability of melanin to
improve or degrade the mechanical properties of silk was clearly concentration-dependent.
Supplementary Figure S5 depicts the changing behavior of the various groups’ average
mechanical properties. However, the precise mechanism is unknown; even so, it is possible
that melanin could indeed change the structural composition of silk fibroins from the helix
and random coil to β-sheets.

Table 1. Mechanical properties of the various silk samples, with average values.

Sample Elongation at Break (%) Breaking Strength (MPa) Toughness Modulus (MPa)

Control 18.61 303.92 42.73
G1 21.59 361.60 56.98
G2 19.90 348.76 51.56
G3 17.87 406.99 55.28
G4 18.01 294.12 40.73
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Figure 7. The behavior of the various silks in terms of elongation at break–breaking strength.
The error bars represent the standard deviation of breaking strength (ordinate) and elongation at
break (abscissa).

3. Conclusions

Melanin, also known as melanin pigment, is a photoprotective natural polymer that
has been used in a variety of fields, including nanotechnology, biomedicine, and food
processing. Knowing the potential risks of using it as an additive is therefore critical. In
this research, the silkworm was used as a model animal to evaluate the biological effects
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of melanin by feeding silkworm larvae with mulberry leaves sprayed with melanin at
different mass concentrations. It is found that melanin is easily cleared from the body
by silkworms but still has some negative effects on the growth of silkworm larvae. The
histophysiological study showed that the cell morphologies of the silk gland, fat body,
and midgut of silkworm were well preserved. The XRD and FTIR results showed that the
crystalline and secondary structures of degummed silks were not damaged by melanin.
The TGA and tensile test results showed that melanin did not destroy the thermal stability
or mechanical properties (breaking strength, elongation at break, and toughness modulus)
of the degummed silks; rather, the melanin greatly improved them, thus demonstrating that
intrinsically reinforced silks can be simply produced by feeding silkworms with melanin.
Overall, this study offers safety evaluation data for melanin, and these data will have
guiding importance for the practical use of melanin and an effective way of improving the
mechanical performance of silk.

4. Materials and Methods
4.1. Reagents and Materials

Melanin was purchased from Aladdin reagent company (Shanghai, China). Doubly
deionized water was attained from a water purification system (Elix5+Milli-Q, Millipore,
Burlington, MA, USA). Shandong Guangtong silkworm egg Group Co., Ltd. (Weifang,
China), provided Bombyx mori silkworm eggs (strain: Jingsong × Haoyue).

4.2. Characterizations

The histopathological delineation of the silkworm tissues was performed by using
a LEICA EZ4HD microscope (Leica, Zürich, Switzerland). Here, after being exposed to
melanin, also known as Acid Black 2 (CAS No. 8005-03-6), for 96 h, different tissues (fat
body, midgut, and silk gland) of the larvae were taken and stored in formalin before being
made into histological sections by Jiangsu University’s affiliated hospital. Approximately
4 silkworms were collected and dissected from each group. During the dissection, the
larvae were fixed on foam boards by pins.

An electrothermal thermostat blast drying oven (DHG-9246A, Shanghai Rongfeng
Scientific Instrument Co., Ltd., Shanghai, China) was used to dry silkworm cocoons. The
diameter and morphology of the degummed silks were obtained by using scanning electron
microscopy, SEM (MIRA3, Tescen, Brno, Czech Republic).

X-ray diffractometer (XRD) (D8 ADNANCE, Bruker, Berlin, Germany) was used to
determine the crystalline structure of the degummed silks.

A Fourier-transform infrared spectroscopy (FTIR) instrument (Nicolet 6700, Thermo
Fisher Scientific, Waltham, MA, USA) equipped with a diamond attenuated total reflectance
(ATR) accessory was used to investigate the secondary structure of degummed silks. The
thermogravimetric analysis (TGA) of degummed silks was characterized by a thermogravi-
metric analyzer (Mettler Toledo, Greifensee, Switzerland) from 25 to 800 ◦C (a speed of
10.0 ◦C min−1) in N2, at a flow rate of 20.0 mL min−1, by Yangzhou University.

The mechanical properties (breaking strength and elongation at break) of silk fibers
were measured by using 20 specimens for each group through a universal tensile-strength
tester (Instron 3365, Instron, Norwood, MA, USA), under the condition of a gauge length
of 500 mm and an extension of 500 mm min−1, in a constant humidity and temperature lab-
oratory (65% RH, 20 ◦C), by Soochow University’s textile and clothing engineering college.

4.3. Silkworm Rearing and the Intake of Melanin

Silkworms’ (Jingsong × Haoyue) eggs provided by Shandong Guangtong silkworm
egg Group Co., Ltd., were incubated in a controlled climatic laboratory until ant silkworms
came out (first instar). The temperature was 25 ◦C, and the relative humidity was 75–80%.
At this stage, silkworms were transferred onto bamboo trays and fed with fresh mulberry
leaves until maturity. From the 1st day of the 5th instar, a total of 100 silkworms were
selected and grouped into 5 experimental sections (20 silkworms in each), among which
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1 group was denoted as the control and 4 were denoted as melanin groups. The control
group was fed with mulberry leaves sprayed with deionized water; melanin groups were
fed with mulberry leaves sprayed with melanin solution at different concentrations (mass
concentration: 1%, 2%, 3%, and 4%) until cocooning. Before feeding the larvae, the treated
mulberry leaves were allowed to dry at room temperature. According to the concentration
of melanin, the melanin groups were named G1, G2, G3, and G4, respectively: G1 = 1%,
G2 = 2%, G3 = 3%, and G4 = 4%. Silkworm larvae were fed twice daily, in the morning and
at dusk. According to rough estimates, each silkworm larva consumed approximately 2 g
of mulberry leaves each time; the mass ratio of mulberry leave to melanin is about 10,000:27
(G1, 1%), 10,000:54 (G2, 2%), 10,000:81(G3, 3%), and 10,000:108 (G4, 4%). The survival rate
is the percentage of silkworms that are still alive after 96 h of melanin exposure. Melanin
of various weights (1, 2, 3, and 4 g) was mixed with 100 mL distilled water and then
ultrasound-treated for 30 min to ensure the even dispersion of the solution.

4.4. Silk Reeling

The silkworm cocoons obtained were reaped on the 6th day after spinning. They were
then dried in an oven for 4 h at a temperature of 80 ◦C. They were thereafter kept for a few
minutes in boiling water and then transferred into hot water with a temperature of 70 ◦C.
These cocoons were then reeled by using an XJ401 model automatic cocoon-reeling machine
(Hangzhou Feiyu technological engineering Co., Ltd., Hangzhou, China). It should be
noted that, in the reeling process, 5 cocoons were used together at a time; thereby, the
obtained degummed silk fiber comprised 5 single silk fibers. Silks used in this work were
reeled in order to get rid of the sericin coated on the surface of the silk fibroin.

4.5. Statistical Analysis

The statistical investigation was carried out by using a one-way analysis of variance,
followed by an unpaired two-tailed Student’s t-test program. A statistical significance
p-value of less than 0.05 (p < 0.05) was considered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14070421/s1, Figure S1: The comparison of (a) average
cocoon weight (ACW) and (b) average silk diameter (AD) from different groups. The data for ACW
from each group was calculated by the measurement of fifteen cocoons, the one for the AD was
calculated by the measurement of ten single silk fibers, the error bars represent the standard deviation
of cocoon weight (a) and silk diameter (b), respectively; Figure S2: The deconvolution of FTIR spectra
in amide I band of different silk samples. (a) Control, (b) G1, (c) G2, (d) G3 and (e) G4, respectively. The
plots exhibit the original spectra (black line), the fitting line (red dotted line), and the deconvoluted
traces (three Gaussian curves); Figure S3: Dose-response curve reflecting the relationship between
the relative content of β-sheet and the dose of melanin; Figure S4: The dose-response curve between
the derivative weights and the melanin dose; Figure S5: The changing behavior of the various groups’
average mechanical properties. (a) elongation at break (%), (b) toughness modulus (MPa), and
(c) breaking strength (MPa). The error bars are presented in mean ± SD. ** p < 0.001, *** p < 0.0005,
**** p < 0.0001; Table S1: The average length and weight of silkworm, the data for each group was
calculated by measuring twenty silkworm larvae; Table S2: The average cocoon weight (ACW) and
silk diameter (AD) from different groups. The data for the ACW from each group was calculated
by measuring fifteen cocoons, the one for the AD was calculated by measuring ten single silk fibers;
Table S3: Elongation at break of different silk samples (%); Table S4: Breaking strength of different
silk samples (MPa). Table S5: Toughness modulus of different silk samples (MPa).
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