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Introduction
Human immune responses arise as the result of complex mo-
lecular and cellular interactions upon exposure to environ-
mental and internal triggers. Comprehensive examination of 
these networks in health and disease has been facilitated by 
systems biology, a discipline that employs high-throughput 
assays to evaluate thousands of parameters simultaneously 
(Chuang et al., 2010; Kidd et al., 2014). Systems-level analysis 
of blood and/or affected tissues unraveled pathogenic mech-
anisms in complex diseases such as cancer, autoimmunity, and 
sterile inflammation (Chuang et al., 2010; Pascual et al., 2010; 
Werner et al., 2014). Immune cells are commonly profiled 
ex vivo, which represents a snapshot of their in vivo pheno-
type. Although well suited to characterize effector responses 
during active disease, ex vivo profiling often fails to reveal 
the underlying molecular phenotypes and events predispos-

ing to disease development. For many multifactorial diseases, 
understanding their etiology and immunopathogenesis calls 
for complementary approaches that can identify triggers of 
inflammation and underlying immune alterations.

The functional capacity of immune cells can be probed 
in vitro by activating leukocytes with ligands that target spe-
cific inducible pathways. Whole-blood stimulation has the 
advantage of preserving complex interactions between leuko-
cytes and plasma components present in vivo (Chaussabel et 
al., 2010), while avoiding the manipulation bias, cost, and time 
required to extract individual cell populations. In vitro blood 
stimulation was used to unveil defects in TLR and cytokine 
signaling in primary immunodeficiencies (Alsina et al., 2014), 
characterize responses to pathogenic stimuli and cytokines in 
healthy adults (Blankley et al., 2014; Duffy et al., 2014; Urrutia 
et al., 2016), or identify a lupus-specific chemokine signature 
(O’Gorman et al., 2015). However, these studies measured 
or analyzed transcription (Alsina et al., 2014; Blankley et al., 
2014; Urrutia et al., 2016), secreted cytokines (Duffy et al., 
2014), or cell-bound protein (O’Gorman et al., 2015) in iso-
lation. Used independently, each method has limitations. The 
blood transcriptome is affected by differential cellular com-
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position and does not accurately reflect protein abundance 
(Vogel and Marcotte, 2012); transcriptome and secretome 
profiling do not reveal the cellular origin of perturbations, 
whereas leukocyte phenotyping by flow or mass cytometry is 
constrained by the number of measurable parameters.

To overcome these limitations, we devised a blood stim-
ulation assay that simultaneously captures inducible gene ex-
pression profiles, secreted proteins, and cell subset–specific 
activation markers. We integrated the resulting data layers with 
weighted gene coexpression network analysis (WGC​NA), 
a method designed to extract and explore biological net-
works from high-dimensional data (Langfelder and Horvath, 
2008). The assay was first validated using healthy adult blood 
challenged with a broad array of immune stimuli and sub-
sequently applied to analyze inducible blood responses in 
children with systemic juvenile idiopathic arthritis (sJIA), a 
rare and severe IL-1–driven autoinflammatory disease of un-
known etiology (Gurion et al., 2012). Integrative analysis of 
these multidimensional data exposed unique transcriptional 
modules linked to leukocyte subset–specific activation and 
skewing of cytokines milieus. In sJIA, leukocytes from pa-
tients in complete remission displayed dysregulated responses 
to TLR4, TLR8, and TLR7 stimulation, whereas monocytes 
were highlighted as potential drivers of inflammation. When 
differentiated in vitro, sJIA monocytes displayed a bias toward 
macrophage differentiation, which might contribute to the 
increased risk for macrophage activation syndrome (MAS) in 
this disease. Altogether, our experimental and analytical strat-
egy could open the door to the development of preclinical 
screening assays and potentially early intervention in complex 
human inflammatory diseases.

Results
Blood transcriptional responses to innate 
stimuli in healthy adults
We first characterized the spectrum of transcriptional re-
sponses in healthy adult blood stimulated for 6  h with 15 
ligands (Fig. 1 A). These included agonists for surface TLRs 
(TLR2, TLR4, and TLR5), intracellular TLRs (TLR7, TLR8, 
and TLR9) and NOD receptors, recombinant cytokines 
(IFN-α, IFN-γ, TNF-α, IL-1β, IL-17, and IL-18), and the 
protein kinase C activator PMA with the calcium ionophore 
ionomycin (Table S1). The 11,894 differentially expressed 
transcripts (DETs) were clustered (Fig.  1  B) and analyzed 
by principal-component analysis. The Gram-positive bac-
teria-derived ligands PGN and LTA clustered with PMA/
ionomycin. IFN-α and IFN-γ clustered with IFN-inducing 
ligands, including LPS, R837, and R848 (Fig. 1 C). Cluster-
ing of R848 and LPS was not caused by LPS contamination 
(Fig. S1 A). Although oligonucleotides that stimulate TLR8 
(ORN-8L) and TLR9 (CpG-C) induced an IFN response in 
PBMCs (Guiducci et al., 2013), this was not demonstrated in 
whole blood, where the response was predominantly proin-
flammatory (IL-1 and NF-κB pathways; Fig. S1 B). This may 
be caused by conformational or interaction alterations of 

oligonucleotides in plasma, because low-molecular-weight 
compounds that activate TLR7 (R837) and TLR8 (R848) 
induce IFN signatures in blood (Coch et al., 2013).

To facilitate the interpretation of these signatures, we 
constructed a modular framework of coexpressed transcripts 
(Chaussabel et al., 2008). The 43 modules obtained (hereafter 
“reference modules”) were annotated using a combination of 
knowledge-based and data-driven approaches, including Inge-
nuity Pathway Analysis (IPA), gene ontology, INT​ERF​ERO​ME 
(Rusinova et al., 2013; Fig. S1, C and D), and PAS​TAA (Roider 
et al., 2009) upstream transcription factor binding site enrich-
ment analyses (Table S2). Modular fingerprints were derived 
for each stimulus and hierarchically clustered (Fig. 1 D). Five 
modules were associated with NF-κB–mediated inflamma-
tion and the inflammasome and six with IFN signaling. Sev-
eral modules were specific for IFN-γ, TNF-α, or IL-17. These 
modules highlight the spectrum of blood transcriptional re-
sponses to innate stimuli and can act as reference gene sets 
for downstream analyses.

This dataset can also be used to identify novel components 
in specific immune pathways. For example, transcripts 
differentially induced by IFN-α and IFN-γ (Fig. 1 F; http​://
tollgene​.org) overlapped with the INT​ERF​ERO​ME database,  
a manually curated repository of IFN-regulated genes (Rusinova 
et al., 2013). Transcripts not associated with either type I or II 
IFN in the INT​ERF​ERO​ME were further analyzed with IPA. 
This yielded 166 IFN-α– and 286 IFN-γ–induced transcripts 
not previously cataloged in these reference databases (Table 
S3). Overall, the signatures obtained after in vitro perturbation 
with a broad array of ligands delineate common and specific 
components of the human blood transcriptional responses to 
stimuli and represent an extensive resource to characterize 
inducible immune networks.

Assay expansion to cellular and secreted protein responses
Although transcriptional profiling of fresh blood prevents 
confounding factors introduced by cell subset isolation and/
or cryopreservation, the signatures of dominant cell popula-
tions may mask those of less abundant subsets. We therefore 
expanded the assay in three healthy adults to examine cell sub-
set–specific activation and inflammasome triggering by FACS 
(Fig. 2 A and Fig. S2 A). After 6-h stimulation, monocytes, 
neutrophils, NK cells, B cells, and T cells were stained for sur-
face expression of CD62L, CD69, CD86, and HLA-DR and 
intracellular expression of IL-1β. To maximize the range of 
stimuli per sample, we limited the blood aliquot for FACS to 
50 µl and excluded low-frequency populations from the anal-
ysis. The gating strategy is summarized in Fig. S2 (B and C).

Of the examined subsets, TLR9 stimulation only ac-
tivated B cells. Neutrophil activation, measured by CD62L 
shedding, paralleled CD86 and HLA-DR up-regulation on 
monocytes. CD69 expression on T cells and NK cells in-
creased predominantly in conditions that also induced inflam-
masome activation. IFN-α had unique effects on monocytes, 
strongly up-regulating surface CD69 and CD62L, whereas 

http://tollgene.org
http://tollgene.org
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Figure 1. T ranscriptional landscape of healthy adult blood stimulated with 15 stimuli. (A) Experimental workflow. (B) Hierarchical cluster of the 
11,894 DETs in healthy adult blood cultured in vitro for 6 h in 16 conditions. Data are normalized to the medium control for each donor and averaged per 
stimulus. The median number of replicates per stimulus was eight, with an interquartile range of three. Samples from 13 donors were processed in five 
independent experiments. (C) Principal-component analysis based on the 11,894 DETs identified in B. Samples are colored by stimulus. (D) Hierarchical 
clustering of the reference module fingerprints. Module score is expressed as a percentage (transparency scale) of transcripts twofold over- (red) or un-
derexpressed (blue). Data are normalized to the medium control for each donor. Fingerprints are averaged by stimulus. (E) Hierarchical clustering of the 
DETs in IFN-α versus IFN-γ stimulations. Induction was defined by significance analysis (ANO​VA, P < 0.05) and normalized expression >1.25. When induced 
by both IFN-α and IFN-γ, transcripts were further separated based on the differential magnitude of expression using a twofold threshold (IFN-α = IFN-γ, 
IFN-α > IFN-γ, IFN-γ > IFN-α). (F) Identification of uncataloged type I and type II IFN-inducible transcripts. Venn diagrams represent the overlap between 
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all other stimuli induced CD62L shedding. Both CD69 and 
CD62L are involved in leukocyte trafficking. CD69 inhibits 
the sphingosine 1 phosphate receptor, preventing leukocyte 
egress from lymph nodes during immune responses (Shiow et 
al., 2006; Cyster and Schwab, 2012). CD62L regulates leuko-
cyte migration to lymph nodes and inflammation sites (Ivetic, 
2013). These results suggest a differential regulation of mono-
cyte and lymphocyte trafficking by IFN and TLR ligands 
(Fig. 2 B and Fig. S3).

In parallel, we measured the concentration of 41 
secreted proteins by Luminex, 30 of which were detectable in 
at least one condition (Fig. 2 C; http​://tollgene​.org). Protein 
secretion patterns overlapped between many TLR ligands, 
but certain stimuli elicited distinct profiles, which illustrated 
the functional outcomes linked to inducible gene networks. 
For example, R848, despite clustering tightly with LPS at 
the transcript level (Fig.  1, C and D), induced high levels 
of IFN-α and IL-12p70 secretion that were not elicited by 
LPS. IFN-α induced the expression of 1,339 transcripts (http​
://tollgene​.org), but IP-10 was the only abundantly secreted 
protein out of the 41 measured. In addition, levels of secreted 
IL-1β highly correlated with intracellular IL-1β expression 
as well as with IL1B transcript levels. Intracellular IL-1β 
detection by FACS was further validated by Western blot in 
isolated monocytes (Fig. S4).

To identify transcriptional pathways associated with 
cellular activation and secreted cytokine profiles, we con-
ducted WGC​NA (Langfelder and Horvath, 2008). Briefly, 
this method (1) extracts coexpression modules, (2) correlates 
the mean expression profile of each module (eigengene) with 
continuous variables such as surface marker geometric mean 
fluorescence intensity (gMFI) ratios or secreted protein con-
centrations, and (3) identifies major transcriptional hubs as-
sociated with continuous variables through gene significance 
(GS) and module membership (MM) analysis.

WGC​NA identified 13 uniquely color-coded modules 
with distinct expression profiles across stimuli (Fig. 2 D; http​
://tollgene​.org). To functionally interpret these, we quantified 
their transcript overlap with the annotated reference modules 
(Fig. 2 E). Thus, the reference modules serve as a template to 
rapidly infer the biological function of WGC​NA modules. 
A correlation matrix between module eigengenes, FACS, 
and Luminex measurements was then built to associate 
transcript- and protein-level changes (Fig. 3 A). This enabled, 
for example, the identification of transcriptional networks 
linked to CD69 induction in distinct leukocyte subsets. On 
monocytes, CD69 correlated with the module predominantly 
induced by IFN-α (black), and clustered with soluble IFN-α2. 
On B cells, CD69 correlated with the leukocyte activation and 
migration module (greenyellow, strongly induced by R848), 

and clustered with soluble IL-12p70. On T cells and NK 
cells, CD69 correlated with the IFN response (brown) and 
inflammation–NF-κB (turquoise) modules, both induced by 
LPS, R848, and heat-killed Salmonella enterica and clustered 
with soluble IFN-γ, IL-2, and IL-10 (Fig. 3 B).

To identify specific transcripts associated with leukocyte 
activation markers, we conducted GS and MM analysis. GS 
quantifies the correlation between a gene and a protein trait 
of interest (the higher the absolute GS value, the higher the 
biological significance of the gene), whereas MM quantifies 
the fit of a gene within its module and indicates its connectiv-
ity level with other genes within the module. We focused on 
transcripts that highly correlated (R > 0.80) both with pro-
tein expression and module eigengene (Fig. 3 C). Monocyte 
CD69 expression closely correlated with transcripts involved 
in intracellular nucleic acid response such as TLR7, AIM2, 
APO​BEC3G, UNC93B1, and IRF2, all of which are IFN 
inducible. The B cell activation genes CD40, CD70, CXCR5, 
IL10, and IL12B paralleled CD69 up-regulation on B cells. 
T cell and NK cell CD69 expression correlated with the 
IFN-inducible transcripts IRF1, STAT3, LAMP3, SOCS1, 
and IDO1 (brown module) and the proinflammatory tran-
scripts IL6, RELA, CASP4, and HIF1A (turquoise module), 
respectively. GS and MM analysis confirmed the previous 
results, identifying distinct hub genes that correlated with 
CD69 expression on different leukocyte subsets.

Overall, analytical integration of multidimensional stim-
ulation data can delineate transcriptional and cytokine pro-
files associated with the activation of individual cell subsets in 
blood, thus providing a platform to expand the characteriza-
tion of inducible immune networks.

Increased inflammatory responses to TLR4 and TLR8 
ligands in sJIA patients
We then applied our assay to identify altered inducible im-
mune networks in sJIA. Blood was obtained from five in-
active untreated patients (sIU), five inactive patients treated 
with recombinant IL-1R antagonist anakinra (sIA), two active 
untreated (sAU) patients, and six demographically matched 
healthy children (Fig. 4 A). Because the frequency and ac-
tivation state of leukocytes influence stimulation outcomes, 
we first analyzed the ex vivo gene expression and complete 
blood counts (CBCs). Although signatures and cell composi-
tion from sIU and sIA patients were comparable to those of 
healthy controls, sAU patients displayed a proinflammatory 
signature enriched for IL-1β–inducible transcripts (IL1B and 
CASP1) and demonstrated leukocytosis, neutrophilia, and 
monocytosis (Fig. 4, B and C). We subsequently focused our 
analysis on sIU patients to reveal inducible molecular alter-
ations not confounded by activation state or treatment.

IFN-inducible transcripts in our dataset and in the INT​ERF​ERO​ME database, including both H. sapiens and Mus musculus organisms (normalized fold change 
>1.25). Transcripts uncataloged in the INT​ERF​ERO​ME were further subjected to IPA where transcripts connected directly or indirectly to IFNs were filtered 
out. IFN-α– and IFN-γ–induced transcripts were analyzed separately. PMA/I, PMA/ionomycin.

http://tollgene.org
http://tollgene.org
http://tollgene.org
http://tollgene.org
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Although 14,575 DETs were identified after 6-h chal-
lenge with seven stimuli (Fig. 4 D), no significant DETs were 
detected by ANO​VA between inactive patients and healthy 
controls after post hoc test and false discovery rate correc-
tion. However, the molecular distance to medium (MDTM), 
a composite score reflecting the global intensity of the signa-
ture in each sample, revealed increased transcriptional activity 
in sIU patients in response to LPS, R848, and heat-killed bac-

teria (Staphylococcus aureus and Salmonella enterica; Table 
S1), suggesting transcriptional hyperresponsiveness to TLR4 
and TLR8 ligands (Fig. 4 E).

Of the 19 modules identified by WGC​NA (Fig. 5 A), 
we focused on the ones that strongly correlated with pro-
tein markers and that displayed transcriptional differences 
between sIU patients and healthy controls in response to 
any stimulus (Fig. 5 B). Modules were annotated by overlap-

Figure 2.  Multidimensional assessment of healthy adult blood responses to stimulation by microarray, FACS, and multiplex cytokine analysis. 
(A) Experimental workflow. (B) Hierarchical cluster of surface and intracellular proteins measured by FACS after 6-h stimulation. gMFI ratios were scaled 
per marker and cell subset by setting the medium reference control to 0 and the condition with maximum change to 1 or −1 (up or down). (C) Hierarchical 
clustering of 30 secreted proteins measured by Luminex. (D) Eigengene profiles of four WGC​NA modules. The data represent log2-transformed ratios of 
stimulated samples normalized to medium control. (E) Heatmap representing the transcript overlap between WGC​NA modules and the reference modules 
from Fig. 1 D. HKSA, heat-killed Staphylococcus aureus; HKSE, heat-killed Salmonella enterica.
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ping their transcriptional content with that of the reference 
modules (Fig. 5 C). Three modules induced by LPS, R848, 
and heat-killed bacteria correlated with monocyte activation 
markers and were overexpressed in sJIA patients compared 
with healthy donors. The inflammation–IL-1–NF-κB mod-
ule (turquoise) was overexpressed in sIU patients only and 
best correlated with the expression of intracellular IL-1β (P 
= 0.89) and IL-6 (P = 0.89) in monocytes. The inflamma-
tion–cell migration module (grey60) was overexpressed in 
sIU and sIA patients and correlated best with surface CD86 
(R = 0.83) and HLA-DR (0.80) on monocytes. The inflam-
mation/APC activation module (tan) was overexpressed in 
sIU and sAU patients and correlated inversely with mono-
cyte CD62L expression (R = −0.84). Conversely, the IFN re-
sponse–lymphocyte activation module (blue) correlated with 
CD69 expression in T cells and NK cells (R = 0.79) and was 
underexpressed in inactive sJIA patients in response to TLR7 
stimulation. As observed in vivo (Quartier et al., 2011), anak-
inra treatment reduced IL-1–mediated inflammation in vitro 
(turquoise module) and partially restored TLR7-induced IFN 
response (blue) but had no effect on monocyte maturation 
and migration (grey60).

To identify transcripts highly correlated with the ac-
tivation of leukocyte subsets in sJIA, we again conducted 
GS versus MM analysis (Fig.  5  D). Transcripts encoding 
major proinflammatory cytokines (IL1B, IL6, TNF, and 
EBI3), TLR signaling components (NFKB1, TIC​AM1, and 
MAP3K8) and inflammation regulators (MIR155HG and 
IL1RN) closely aligned with monocyte IL-1β production. 
Monocyte CD86 and HLA-DR expression correlated with 
transcripts encoding IL-6–inducing cytokines (IL32 and 
NAM​PT), antimicrobial proteins (PI3 and FTH1), and im-
mune regulators (TNIP2 and IVNS1ABP). CD62L shedding 
from monocytes was accompanied by up-regulation of genes 
involved in co-stimulation (CD82, ADA, and HLA​DRA), au-
tophagy (ATG7, TP53INP2, and MAP1LC3A) and NF-κB 
signaling (BIRC and BCL3). Finally, NK and T cell activation 
was paralleled by induction of IFN response (TMEM173, 
IRF1, USP18, TRIM25, STAT3, and GBP2), perforin 
(PRF1), immunoproteasome (PSMB8 and PSMB9), and an-
tigen-presentation pathways (TAP1, TAP2, and TAP​BP).

Altogether, our assay detected transcriptional and cel-
lular hyperresponsiveness to inflammasome-inducing TLR4 
and TLR8 ligands and hyporesponsiveness to IFN-inducing 
TLR7 ligands in sJIA patients in remission. These results 

support an underlying disequilibrium between proinflam-
matory and IFN pathways in sJIA that may contribute to 
disease onset and flares.

A web interface to enable data 
dissemination and exploration
To facilitate data access and support further discovery, we 
developed an interactive web interface (available at http​://
tollgene​.org). Users can (1) see an overview of the assay, with 
relevant reagents and a detailed protocol; (2) filter DETs 
for each stimulus in healthy controls using customizable 
parameters; (3) compare transcriptional signatures using Venn 
diagrams; (4) analyze module fingerprints and transcript 
content; (5) visualize FACS and Luminex data in healthy 
controls and sJIA patients; and (6) analyze WGC​NA output 
in healthy controls and sJIA patients.

Reduced expression of inflammation regulators and 
increased IL-1β production in isolated sJIA monocytes
Most of the dysregulated pathways that were identified in 
our assay involved monocytes. In addition, these cells are the 
only blood mononuclear cells expressing the three TLRs that 
triggered differential transcriptional responses in patients. To 
further understand monocyte alterations in sJIA, we sorted 
CD14+CD16− monocytes from cryopreserved PBMCs from 
seven sIU patients and five healthy pediatric controls. We pro-
filed their transcriptome by RNA sequencing (RNA-seq) ex 
vivo and after 6-h culture with LPS. Monocyte activation and 
cytokine production were measured at 6 and 24 h by FACS 
and Luminex, respectively (Fig. 6 A and Fig. S5 A). As in cul-
tured blood, sJIA monocytes displayed increased HLA-DR 
levels after 6-h culture with LPS (Fig. S5 B). Intracellular 
IL-1β expression in response to LPS was comparable in iso-
lated patient and healthy monocytes at 6 h. At 24 h, however, 
sJIA monocytes accumulated significantly more intracellular 
IL-1β (Fig. 6 B). Increased intracellular production of IL-1β 
did not result in increased secretion of the mature protein 
compared with controls at both time points (Fig.  6 C). To 
confirm this result, we repeated the experiment using mono-
cytes from an independent cohort of patients and controls (n 
= 4 for each group), including additional 48-h and 72-h time 
points (not depicted) and observed similar levels of secreted 
IL-1β in patients and controls.

Transcriptionally, 57 genes were differentially expressed 
between LPS-stimulated sIU and healthy monocytes at 6 h, 

Figure 3.  Integration of microarray, FACS and multiplex cytokine measurements by weighted gene coexpression network analysis. (A) Hierar-
chical cluster of the correlation matrix between WGC​NA module eigengenes (x axis) and FACS (orange) or Luminex (green) measurements (y axis). (B) Area 
charts representing the module eigengene for four modules linked to leukocyte subset activation as quantified by CD69 expression. Charts were overlaid 
with boxplots representing the eigengene’s best FACS or Luminex correlate. Pearson correlations between eigengenes and protein measurements are rep-
resented as x–y charts on the right. (C) x–y plots representing the MM (x axis, R value) versus GS (y axis, R value) analysis for the four modules from B and 
their best protein correlate. MM and GS represent the correlation of each gene to the module eigengene and the protein expression, respectively. Genes 
highly representative of the module functional annotation were highlighted in bold font. Genes are duplicated when several probes were detected within 
the selected range of MM and GS. HKSA, heat-killed Staphylococcus aureus; HKSE, heat-killed Salmonella enterica.

http://tollgene.org
http://tollgene.org
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and 119 genes were differentially expressed between sIU and 
healthy monocytes ex vivo (Table S4 and Fig. 6, D and E; 
unadjusted P < 0.05). At 6  h, LPS-stimulated sJIA mono-
cytes displayed impaired down-regulation of ACVR2A, 
which encodes activin receptor type 2A. Increased expression 
of ACVR2A in conjunction with normal levels of its ligand 
(Fig. 6 F) may result in a net increase of activin receptor sig-
naling, which was shown to inhibit IL-1β secretion without 
affecting its intracellular levels (Ohguchi et al., 1998).

LPS-stimulated sJIA monocytes underexpressed the 
IVNS1ABP gene (Fig. S5 C), which encodes the aryl hy-

drocarbon receptor (AHR) signaling enhancer (Dunham 
et al., 2006). In line with this, sJIA monocytes ex vivo 
expressed decreased levels of the AHR gene (Fig. 6 G) and 
its chaperone (Fig. S5 D). Besides its well-known func-
tion in xenobiotic metabolism (Stockinger et al., 2014), 
AHR was recently shown to be an important regulator of 
IL-1β–mediated inflammation (Bessede et al., 2014; Huai 
et al., 2014). In addition, AHR-deficient mouse macro-
phages are hyperresponsive to LPS (Kimura et al., 2009), 
and loss of AHR alters macrophage polarization (Climaco- 
Arvizu et al., 2016).

Figure 4.  Hyperresponsiveness to TLR4 and TLR8 ligands in inactive untreated sJIA patients. (A) Experimental workflow. (B) Hierarchical cluster of 
the 4,480 DETs between healthy controls and sJIA patient groups ex vivo (baseline; top). Hierarchical cluster of the 323 transcripts overexpressed ≥1.5-fold 
in healthy blood stimulated with IL-1β for 6 h (ref. Fig. 1; center). Data are normalized to medium controls for each donor. Hierarchical cluster of the same 
323 transcripts in ex vivo signatures (bottom). Ex vivo blood samples were processed in two independent experiments (C) Dot plots representing the raw 
expression of IL1B and CASP1 transcripts, white blood cells (WBC), neutrophil, monocyte, and lymphocyte absolute counts, displayed by patient group. 
Horizontal lines indicate the median, whiskers the interquartile range. (D) Hierarchical cluster of the 14,575 DETs in stimulated blood from sJIA patients 
and pediatric healthy controls. Samples from 18 donors were processed in 16 independent experiments. (E) Box plot representing the molecular distance to 
medium (MDTM) derived from the 14,575 DETs identified in D, displayed per stimulus and patient group. The MDTM is calculated for each sample as the sum 
of absolute normalized fold changes ≥2 in the list of transcripts considered. Horizontal lines indicate the median. Boxes represent the interquartile range, 
and whiskers nonoutlier range (H, healthy). HKSA, heat-killed Staphylococcus aureus; HKSE, heat-killed Salmonella enterica.
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As sJIA patients are predisposed to macrophage activa-
tion syndrome (Ravelli et al., 2012), we next explored the 
phenotype of isolated sJIA monocytes after in vitro differen-
tiation using a system that allows for monocytes to develop 
into macrophages and DCs in the same culture (Goudot et al., 
2017). We first measured the expression of the AHR gene in 
an independent cohort of sJIA patients and healthy controls 
(n = 5), and we confirmed lower baseline AHR expression 
in sJIA monocytes (Fig. 6 H). After 5 d in culture, healthy 
monocytes differentiated comparably into DCs and macro-
phages, whereas sJIA monocytes acquired predominantly a 
macrophage phenotype (Fig. 6 I and Fig. S5 F).

Overall, sJIA monocytes isolated from asymptomatic 
untreated patients express lower levels of inflammatory reg-
ulators at baseline and develop an exacerbated proinflamma-
tory phenotype after activation. Decreased AHR expression 
in sJIA monocytes might skew the differentiation of these 
cells toward macrophages and contribute in vivo to MAS, a 
potentially fatal complication.

Discussion
We developed a multidimensional blood stimulation assay to 
identify altered inducible immune networks and to provide 
new insights into pathogenic mechanisms underlying complex 
inflammatory diseases. Our analytical strategy is the first to 
integrate data from gene expression, FACS, and multiplex 
cytokine readouts concurrently after challenge of blood cells 
with a broad array of stimuli. This integrated approach has several 
advantages. Comparing sets of coexpressed genes (modules) 
can identify subtle but relevant transcriptional differences 
undetectable by traditional gene-level statistical approaches 
(Haining and Wherry, 2010). Linking module expression 
to secreted proteins can uncover functional outcomes of 
transcriptional network activation. Finally, associating modules 
to blood leukocyte subset profiles can reveal specific cell 
populations involved in response to stimulation. In healthy 
adults, we show how dissecting inducible pathways leads to 
discovery of novel immune response components. These data 
represent a valuable resource that can be further explored 
through a user-friendly interface at http​://tollgene​.org. In 
sJIA, we detected underlying alterations in TLR signaling and 
skewing of the monocyte phenotype in patients otherwise 
clinically and transcriptionally comparable to healthy.

sJIA presents in childhood with fever, rash, elevated lev-
els of acute phase proteins, leukocytosis, and serositis, which 
are accompanied or followed by debilitating arthritis (Gurion 
et al., 2012). The systemic presentation of sJIA and the excel-

lent response to pharmaceutical IL-1 inhibition (Pascual et 
al., 2005; Quartier et al., 2011; Ruperto et al., 2012; Ilowite et 
al., 2014) are shared with several monogenic autoinflamma-
tory diseases (Jesus and Goldbach-Mansky, 2014). However, 
these diseases are caused by genetic mutations within the in-
flammasome–IL-1 pathways, none of which have been found 
so far in sJIA. Furthermore, ex vivo profiling of circulating 
leukocytes in sJIA did not point toward a specific driver of 
inflammation, and a similar signature is present in other in-
flammatory diseases (Allantaz et al., 2007).

Stimulation of sJIA blood revealed a shift toward in-
creased proinflammatory responses elicited by IL-1–induc-
ing TLR4 and TLR8 ligands and a concurrent decrease in 
TLR7 and IFN responses. The antagonism between IFN-α 
and IL-1β signaling is well described (Guarda et al., 2011) and 
further substantiated in vivo by the induction of an IFN sig-
nature in the blood of sJIA patients after anakinra treatment 
(Quartier et al., 2011). Notably, differences between sJIA and 
healthy control responses were best revealed using blood from 
patients in remission and off treatment, as blood from active 
untreated patients displayed elevated baseline inflammatory 
signatures and was transcriptionally hyporesponsive to stimula-
tion. Even though inactive untreated patients from our cohort 
did not show any signs of active disease detected by clinical 
examination, laboratory tests or ex vivo whole-transcriptome 
analysis, we cannot exclude the possibility that the observed 
dysregulated responses are caused by underlying low-grade 
inflammation as opposed to cell-intrinsic alterations.

Serum from active sJIA patients induces inflammation 
in healthy cells after in vitro incubation. This proinflamma-
tory capacity correlates with disease activity (Pascual et al., 
2005). Accordingly, the effect of serum from inactive un-
treated patients on healthy monocytes is comparable to that 
of healthy control serum (unpublished data). However, the 
blood environment seems to enhance specific monocyte re-
sponses. Intracellular levels of IL-1β were increased in sJIA 
monocytes after 6-h stimulation of whole blood. At the same 
time point, isolated sJIA monocytes cultured in FBS-enriched 
medium produced levels of IL-1β comparable with those of 
healthy cells. An increase in IL-1β production in isolated sJIA 
monocytes was not detected until 24  h. Delayed accumu-
lation of intracellular IL-1β in isolated cells complemented 
independent observations in 24-h PBMC culture (Macaubas 
et al., 2012). Interestingly, secretion of IL-1β was comparable 
between asymptomatic patients and healthy controls in both 
blood and isolated monocytes. Proper regulation of IL-1β se-
cretion in these inactive untreated patients may explain their 

Figure 5.  Loss of balance between proinflammatory and IFN responses in sJIA patients. (A) Hierarchical cluster of the module–trait correlation 
matrix obtained by WGC​NA in stimulated sJIA and control blood dataset. (B) Bar charts representing the eigengene profiles of four WGC​NA modules that 
display distinct transcriptional differences between healthy controls and sJIA patient groups. Bar charts are overlaid with box plots of the eigengenes’ best 
FACS correlate (right; y axis). Pearson correlations between eigengenes and protein measurements are represented as x–y charts on the right (H, healthy). 
(C) Hierarchical cluster of the overlap between WGC​NA modules and the reference modules. (D) x–y plots representing the MM (x axis) versus GS (y axis) 
analysis for the four modules from B and their best protein correlate. HKSA, heat-killed Staphylococcus aureus; HKSE, heat-killed Salmonella enterica.

http://tollgene.org
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quiescent clinical phenotype, despite exacerbated monocyte 
responses after stimulation.

Comparison of sJIA and healthy monocyte transcrip-
tomes ex vivo and after stimulation with LPS did not provide 
a definite explanation for the divergence of IL-1β produc-
tion and secretion in patients, partly because the exact mech-
anism of IL-1β secretion is still under debate (Piccioli and 
Rubartelli, 2013). However, transcriptome analysis identi-
fied genes that play a major role in regulating immune re-
sponses. LPS-stimulated sJIA monocytes displayed altered 
down-regulation of ACVR2A, which encodes a receptor 
for the immunomodulatory TGF-β family member activin A 
(Phillips et al., 2009). In stimulated human monocytes, activin 
A did not affect intracellular pro–IL-1β but inhibited the se-
cretion of the mature protein, possibly by blocking caspase-1–
mediated cleavage of the pro form (Ohguchi et al., 1998). 
Enhanced activin A receptor signaling in sJIA monocytes 
could explain the observed discrepancy between increased 
accumulation of intracellular IL-1β and secreted protein lev-
els comparable to those of healthy monocytes.

Ex vivo, sJIA monocytes underexpressed AHR and its 
chaperone, HSP90AB1. AHR, a transcription factor known 
for promoting immune tolerance (Stockinger et al., 2014), 
inhibits NLRP3 transcription and subsequent IL-1β se-
cretion (Huai et al., 2014) and protects against endotoxin 
shock (Bessede et al., 2014), and AHR-deficient macro-
phages secrete more proinflammatory cytokines (Kimura et 
al., 2009). When differentiated in vitro, AHR-deficient sJIA 
monocytes predominately developed into macrophages, 
away from a DC phenotype. This skewing may contribute to 
the predisposition of sJIA patients to develop MAS, which 
is characterized by accumulation of activated hemophago-
cytic macrophages and overproduction of proinflammatory 
cytokines and often triggered by infections (Grom et al., 
2016). The cause of altered AHR expression in sJIA remains 
unknown. Down-regulation of its enhancer, IVNS1ABP, in 
response to in vitro activation points toward epigenetic reg-
ulation, which could result from environmental stimuli such 

as pollutants or dietary compounds or microbiome-derived 
endogenous ligands (Cella and Colonna, 2015). As MAS is 
the main cause of mortality in sJIA, occurring overtly in 
10% and subclinically in 30–40% of sJIA patients (Minoia 
et al., 2014), exploring the link to AHR may lead to novel 
diagnostic and therapeutic options.

Our approach can be tailored to study other immune 
diseases and conditions by adjusting the ligand panel, pheno-
typic markers, secreted analytes, technological platforms, and 
incubation times. Of note, incubation periods in blood should 
be carefully selected, as longer cultures are confounded by 
neutrophil apoptosis (Majewska et al., 2000), platelet activa-
tion, and secondary signals, whereas early time points display 
limited changes in protein expression. The blood volume can 
be scaled down to make it amenable for pediatric studies, 
where large blood samples are difficult to obtain. The assay 
could be further exploited to characterize the heterogene-
ity of innate immune responses in healthy individuals, pre-
dict responses to vaccines and/or adjuvants, and uncover 
novel molecular pathways that could facilitate disease mon-
itoring and diagnosis. Overall, this combination of experi-
mental, methodological, and computational resources could 
enable the dissection of underlying pathogenic mechanisms 
in a large spectrum of disorders, from inflammatory diseases 
to immune deficiencies.

Materials and methods
Ethical statement and patient inclusion criteria
All protocols were reviewed and approved by the 
institutional review boards at Baylor University Medical 
Center (011-200, 007-221, 012-200), the University of 
Texas Southwestern Medical Center (092010–167), and the 
Texas Scottish Rite Hospital (09-11-060). Written informed 
consent was obtained from adults and the parents or 
guardians of those younger than 18 yr of age. Children and 
adolescents with sJIA were enrolled from the Rheumatology 
Clinic at Texas Scottish Rite Hospital for Children. Clinical 
laboratory measurements obtained in the clinic at sampling 

Figure 6.  Monocytes from sIU patients accumulate IL-1β after LPS stimulation, underexpress AHR gene at baseline, and differentiate into 
macrophages in vitro. (A) Experimental workflow. Monocytes from each donor were isolated and cultured independently. (B) gMFI ratios of intracellular 
IL-1β in monocytes for indicated conditions (left). Data are normalized to each donor’s baseline gMFI. **, P < 0.01, Mann–Whitney test. Histogram overlay 
of intracellular IL-1β in representative healthy and sJIA monocytes (right). (C) Concentration of secreted IL-1β in the supernatants of cultured monocytes. 
(D) x–y chart of DEGs between stimulated sJIA and healthy monocytes. Values represent FPKM ratios of healthy LPS to healthy medium (x axis) versus sJIA 
LPS to sJIA medium (y axis). Genes with P < 0.05 were filtered for an absolute log2(ratio) difference ≥1.5. (E) x–y chart of DEGs between sJIA and healthy 
monocytes ex vivo. Genes with P < 0.05 were filtered for an absolute log2 difference sJIA-healthy ≥1.5. Genes with absolute log2(ratio) (D) or log2 (E) FPKM 
values <1 were removed. (F) Expression of ACVR2A gene measured by RNA-seq and quantitative RT-PCR. The levels of activin A protein in supernatants 
of monocytes stimulated for 24 h with LPS are shown on the right. Activin A was not detectable in unstimulated conditions or at 6 h LPS. (G) Expression 
of AHR gene measured by RNA-seq and quantitative RT-PCR. (H) Expression of AHR gene measured by quantitative RT-PCR in an independent cohort of 
sJIA patients and controls (n = 5). (I) Monocytes from the second cohort were differentiated in vitro for 5 d; the phenotype of monocyte-derived cells was 
determined by flow cytometry as macrophage (moMac; CD16+CD1a−) or DC (moDC; CD16−CD1a+; left). Representative plots from one healthy control and 
one patient are shown in the middle. The ratio of the percentage of moMac cells to the percentage of moDC cells is shown on the right. Cultures were 
performed in three independent experiments. H, healthy. In dot plots, horizontal lines indicate the median and whiskers the interquartile range. In box plots, 
horizontal lines indicate the median, boxes the interquartile range, and whiskers the nonoutlier range. P-values for flow cytometry and quantitative RT-PCR 
data were calculated using Mann–Whitney U test.
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included a CBC, erythrocyte sedimentation rate (ESR), 
and liver enzymes. Patients with sJIA who were considered 
“untreated” did not receive any therapy other than 
nonsteroidal antiinflammatory drugs (NSA​IDs). Anakinra-
treated patients received the drug within 18 h before blood 
sampling and were taking no additional medication apart 
from NSA​IDs. The presence of anakinra was confirmed by 
Luminex analysis of IL1RA (http​://tollgene​.org). Patients 
were considered to be inactive based on the physician’s 
clinical examination and a null MD Global score (a 
physician’s assessment of overall disease activity with a range 
0–10). Inactive untreated patients fulfilled the remission off 
medication criteria for juvenile idiopathic arthritis including 
systemic JIA (Wallace et al., 2004). Active patients displayed 
an MD Global score ≥ 3, arthritis, fever, increased ESR and 
abnormalities in the CBC. Healthy controls were enrolled at 
Baylor University Medical Center, did not report any acute 
or chronic illness, were not receiving immunomodulatory 
therapies (including over-the-counter allergy medication) 
apart from NSA​IDs, had not received a vaccine at least 1 
mo before sampling, and had normal CBC values (measured 
in-house on a COU​LTER Ac·T 5diff CP hematology 
analyzer; Beckman Coulter), and a normal ESR (measured 
with Winpette Wintrobe ESR Pipets; Arkray). None of the 
patients whose monocytes were differentiated in vitro had a 
history of MAS. Patient and healthy control characteristics 
and inclusion criteria are outlined in Table S5.

The assay
Ligands were diluted in medium (RPMI 1640 with Glu-
taMax; Thermo Fisher Scientific) and aliquoted into 2-ml 
polypropylene 96-well plates (Greiner Bio-One). Blood was 
drawn in the morning into BD Vacutainers containing ACD 
anticoagulant (BD). Time between blood draw and culture 
setup was less than 2 h. Blood was mixed in a 1:1 ratio with 
medium, added to the diluted ligands in a final volume of 
1 ml per well, and incubated for 6 h at 37°C in a 5% CO2 
atmosphere. After the culture, blood was mixed and a 100-
µl aliquot set aside for activation marker phenotyping and 
intracellular cytokine staining for IL-1β. The plate was then 
centrifuged at 12,000 g for 15 min, and 400 µl plasma was 
aliquoted and stored at −80°C for Luminex analysis. The 
pellet was lysed with Tempus solution (Tempus blood RNA 
tubes; Thermo Fisher Scientific) in a 2:1 ratio and stored at 
−20°C until the RNA extraction. In case of simultaneous 
measurement of IL-6, TNF, IL-10, IL-8, and IFN-γ by in-
tracellular cytokine staining, blood was cultured as above 
in a separate plate containing 1 µg/ml brefeldin A (BFA 
ready-made solution; Sigma Aldrich) for a total volume of 
100 µl. The culture setup was performed in aseptic condi-
tions in BSL-2 cabinet to avoid endotoxin contamination, 
and all the reagents and labware were designated as pyro-
gen-free or pyrogen low. The ligands, antibodies, and work-
ing concentrations for blood stimulation and phenotyping 
are listed in Table S1.

Flow cytometry
Whole blood staining.� Antibody master mix for surface stain-
ing was added to 100 µl blood in Greiner Bio-One plates and 
incubated for 15 min in the dark at room temperature. Eryth-
rocytes were lysed with 1 ml FACS Lysing Solution (BD Bio-
sciences) for 10 min in the dark at room temperature and 
then spun down at 600 g for 5 min at room temperature. The 
pellet was washed twice with 1 ml staining buffer (1% fetal 
calf serum and 0.02% NaN3 in PBS, pH 7.4). The cells were 
fixed with 150 µl 4% formaldehyde overnight at 4°C. Cells 
were then washed with 1 ml saponin-based Perm/Wash Buf-
fer (BD Biosciences) and incubated with antibodies for intra-
cellular cytokine staining for 30 min at 4°C. The cells were 
washed again with Perm/Wash buffer, resuspended in staining 
buffer, and acquired on LSR Fortessa flow cytometer using 
FACS Diva software (BD Biosciences). The data were ana-
lyzed in FlowJo v.9.7.6, and expression values reported as 
gMFI. gMFI values for each donor were normalized to 
the unstimulated control.

Monocyte staining.� Monocytes were stained ex vivo in Fal-
con 5-ml polystyrene tubes (BD Biosciences) or after culture 
and supernatant collection in Falcon 96-well flat bottom cul-
ture plates (Corning Inc.). First, the cells were labeled with 
LIVE/DEAD Fixable Yellow Dead Cell dye (50 µl of dye in 
1:500 dilution per well; Thermo Fisher Scientific) for 15 min 
at room temperature in the dark. Cells were then washed 
twice with staining buffer and processed further as in the 
whole-blood staining protocol, omitting the erythrocyte lysis 
step and adjusting volumes for microplate staining.

Monocyte isolation and stimulation
Monocytes were sorted from frozen PBMCs on a BD Influx 
cell sorter (BD Biosciences) using the panel described in 
Table S1. The median purity was 97.1%, and the interquar-
tile range was 4.3. After sorting, cells were lysed ex vivo or 
resuspended in complete RPMI with 10% FCS at 106 cells/
ml and stimulated in 96-well flat-bottom plates for 6 or 
24 h ± LPS. Monocyte viability, assessed by FACS, decreased 
slightly with culture time and stimulation; median viability 
(interquartile range) ex vivo, at 6 h medium, 6 h LPS, 24 h 
medium, and 24 h LPS was 98.3% (1.7), 97% (2.2), 93.9% 
(5.2), 91.7% (4.5), and 90.7% (12.3), respectively. There 
were no differences in viability between healthy and sJIA 
monocytes. After incubation, supernatants were collected 
for Luminex analysis, and cells were either stained for FACS 
analysis with the monocyte activation panel (Table S1) or 
lysed with RLT buffer supplemented with 1% β-mercap-
toethanol (QIA​GEN) for RNA-seq analysis. To confirm 
that LPS did not adversely affect monocyte viability, lac-
tate dehydrogenase release was measured in the superna-
tants of LPS-treated monocytes from three healthy controls 
(Pierce LDH Cytotoxicity Assay Kit; Thermo Fisher Sci-
entific). There was no significant difference in lactate de-
hydrogenase release between 6-h medium, 6-h LPS, 24  h 

http://tollgene.org
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medium, and 24-h LPS conditions (Kruskal–Wallis ANO​VA 
with Dunn’s post hoc test).

Monocyte in vitro differentiation
Monocytes were isolated from cryopreserved PBMCs as de-
scribed above and cultured for 5 d in complete RPMI with 
10% FBS at 106 cells/ml in the presence of 100 ng/ml M-CSF, 
40 ng/ml of IL-4 (Miltenyi Biotec), and 5 ng/ml TNF (R&D 
Systems). After culture, cells exhibiting the macrophage or 
DC phenotype were quantified using flow cytometry staining 
for CD16 (clone 3G8; BioLegend) or CD1a (clone HI149; 
BioLegend) markers, respectively. CD163 (clone GHI/61;  
BioLegend) and viability dye (DAPI) were also included in the 
staining panel, and the staining buffer was composed of PBS 
with 0.5% human serum and 2 mM EDTA. For morphologi-
cal analysis, cells were cytospun, stained with May–Grünwald 
and Giemsa solutions (Sigma-Aldrich), and imaged using a 
CFW-1308C color digital camera (Scion Corporation) on a 
Leica DM 4000 B microscope (Leica Microsystems).

Multiplex cytokine analysis
For the whole-blood supernatants, samples were diluted 12× 
using commercial plasma matrix from the kits and then an-
alyzed with the bead-based multiplex 41-human cytokine 
and chemokine panel (HCY​TMAG_60K-PX41) or 29-
plex human cytokine and chemokine panel (HCY​TMAG-
60K-PX29; Luminex Technology; Milliplex; EMD Millipore) 
according to the manufacturer’s instructions and run on a 
Bio-Plex 200 reader (Bio-Rad Laboratories). Monocyte su-
pernatants were diluted 10× and assayed for human IL-1β, 
human IL-6, human IL-10, human TNF-α, and human IP-10 
using monoclonal antibody reagent pairs developed and val-
idated in-house. These pairs were conjugated to Luminex 
beads/biotin and multiplexed together with Millipore MAP-
mate sets for human IL-1α and human IL-8. This multiplex 
was assessed using a commercial 68-Plex cytokine standard 
cocktail produced expressly for the Baylor Institute for Im-
munology Research by BioLegend with protocols compa-
rable to that for Millipore multiplex processing. The Baylor 
Institute for Immunology Research Luminex Core facility 
maintains compliance with the External Quality Assur-
ance Program Oversight Laboratory, a National Institutes of 
Health and National Institute of Allergy and Infectious Dis-
eases Division of AIDS program for quality assessment review 
and ratings of laboratories involved in HIV/AIDS research 
and vaccine trials around the world.

RNA extraction
RNA was purified from whole-blood cultures using Mag-
Max for Stabilized Blood Tubes RNA Isolation Kit (Thermo 
Fisher Scientific). Manufacturer’s instructions were followed, 
but the initial homogenization volumes were proportionally 
adjusted to the sample input volume. RNA from cell suspen-
sions was purified using the RNAqueous-Micro Total RNA 
Isolation Kit (Thermo Fisher Scientific). RNA integrity was 

assessed using RNA 6000 Pico or RNA 6000 Nano assay 
on Agilent 2100 Bioanalyzer (Agilent Technologies). RNA 
concentration and purity were assessed using the NanoDrop 
8000 (Thermo Fisher Scientific). All procedures were per-
formed according to the manufacturer’s instructions.

cDNA microarray processing and data analysis
Biotin-labeled cDNA was generated using the Illumina 
TotalPrep-96 RNA Amplification Kit (Thermo Fisher Sci-
entific) with 250 ng total RNA input for all samples. La-
beled cDNA (1.5 µg) was then hybridized onto Illumina 
Human HT-12 v4 Expression BeadChips (47,231 probes) 
and scanned on an Illumina Beadstation 500. GenomeStudio 
software v. 2011.1 with the Gene Expression Module v. 1.9.0 
(Illumina) was used to generate signal-intensity values from 
the scans, subtract background, and rescale the difference in 
overall intensity to the median intensity across multiple arrays 
and chips. GeneSpring GX version 7.3.1 (Agilent Technol-
ogies) was used to perform further normalization. All signal 
intensity values less than 10 were set to equal 10. Raw data 
for all the samples from each donor were normalized to the 
medium control for that donor, thereby accounting for base-
line donor variability and eliminating batch effect (all samples 
from a donor were run in the same batch). For all datasets, 
transcripts were filtered out where the detection p-value was 
greater than 0.01 in all samples, and there was no difference 
between any groups considered (ANO​VA, P < 0.05, Ben-
jamini–Hochberg false discovery rate correction). Data have 
been deposited in the NCBI Gene Expression Omnibus 
under accession no. GSE80325.

Reference module extraction algorithm
Modules were extracted as previously described (Chauss-
abel et al., 2008). Briefly, coexpression clusters were first 
identified for each of 15 stimulus groups independently. All 
pairs of transcripts considered were then assigned a score be-
tween 0 and 15 based on the number of stimulus groups in 
which they coclustered and a weighted cocluster matrix was 
built. Finally, a graph theory approach organized groups of 
probes connected by the largest score into cliques, through 
multiple rounds of selection that go from the most con-
served to the most specific clustering pattern across stimulus 
groups. Each clique defined a module. A transcript could 
only appear in one module.

Reference module annotations and predicted regulators
To assess enrichment for interferon-inducible transcripts, we 
compared the modules with the INT​ERF​ERO​ME database 
(Rusinova et al., 2013). For each module, we counted the 
genes induced by type I and type II interferons in the Homo 
sapiens hematopoietic/immune system with twofold up-reg-
ulation or 100-fold down-regulation (thereby focusing on 
transcripts up-regulated by interferons). To identify the pu-
tative transcription factors associated with each module, the 
unique list of gene symbols from each module was selected 

GSE80325
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and subjected to PAS​TAA analysis (Roider et al., 2009). All 
transcription factors with P < 0.01 were retained.

MDTM
The MDTM represents a quantification of the global abso-
lute transcriptional changes in a sample. The MDTM is calcu-
lated for each sample as the sum of absolute normalized fold 
changes ≥2 in the list of transcripts considered.

WGC​NA
The analysis was conducted using the WGC​NA R package 
(Langfelder and Horvath, 2008). For healthy adult blood stim-
ulation, the transcriptional and protein measurements of bio-
logical replicates were averaged by stimulus. For sJIA patients, 
the transcriptional and protein measurements were averaged 
by the interaction of patient group (healthy, sIU, sIA, and sAU) 
and stimulus. FACS (gMFI ratio to medium control) and Lu-
minex (fluorescence − background ratio to medium control) 
data were treated as continuous traits and correlated to the ei-
gengene of each WGC​NA module. Transcripts overexpressed 
at least twofold in response to any stimulus compared with 
medium control were selected before module extraction. The 
minimum module size was set to 30, with a merge cut height 
of 0.1 and a minimum eigengene conectivity to stay of 0.7. 
WGC​NA modules were annotated based on percent overlap 
with reference modules. When overlaps were low, WGC​NA 
module annotations were conducted by IPA.

RNA-seq library construction and Illumina sequencing
Total RNA was converted to cDNA using 20 ng RNA as 
input for the Ovation RNA-Seq System V2, and barcoded 
Illumina library constructs were produced using Ovation Ul-
tralow Library System V2 (NuGEN Technologies) following 
the manufacturer’s instructions. Library fragment size and 
molar concentration were determined using Agilent High 
Sensitivity DNA Chip on 2100 Bioanalyzer, and quantita-
tive PCR data were obtained by the KAPA BioSystems Li-
brary Quantification qPCR Kit for Illumina Platform on a 
Viia7 Real-Time PCR System (Thermo Fisher Scientific). 
RNA-seq libraries were sequenced on the Illumina HiSeq 
2500 sequencing system using SBS v3 chemistry and two 
high-output flow cells targeting 70–80 million 2 × 75 
paired-end reads per library.

RNA-seq data processing and analysis
Sequences were aligned with HIS​AT2 (Kim et al., 2015), du-
plicates removed with Samtools (Li et al., 2009), and counts 
generated with HTSeq (Anders et al., 2015) using the an-
notations from Gencode V20 (Harrow et al., 2012). Genes 
identified as globins, ribosomal RNAs, and pseudogenes were 
removed. Differential expression analysis was performed using 
DESeq2 (Love et al., 2014). For ex vivo analysis, the design 
matrix was defined by design = ~disease. For 6-h stimulation 
analysis, the design matrix was defined by design = ~stimulus 
+ disease + stimulus/disease.

Real-time quantitative PCR
Total RNA was converted to cDNA using SMA​RTer PCR 
cDNA synthesis kit and amplified with the Advantage 2 PCR 
kit (Clontech) and then purified with a QIAquick PCR Pu-
rification Kit (QIA​GEN). cDNA quantity was determined 
with a Nanodrop 8000 (Thermo Scientific) and size distri-
bution with the Agilent High Sensitivity DNA kit (Agilent 
Technologies). Gene expression was measured using the Gene 
Expression Master Mix (Applied Biosystems) and predesigned 
TaqMan real-time PCR assays for the following targets: 
AHR (Hs00169233_m1), HSP90AB1 (Hs00607336_gH), 
ACVR2A (Hs01012007_m1), IVNS1ABP (Hs01573482_
m1), and HPRT1 (Hs02800695_m1) on ABI PRI​SM 
7900HT Sequence Detection System (Thermo Scientific). 
Reactions were set up in duplicate in a 384-well plate with 
40 ng cDNA per well in 20 µl volume, and the data were 
analyzed using RQ Manager 1.2.1 (Thermo Scientific). All 
experimental procedures were conducted according to the 
manufacturer’s instructions.

Activin A ELI​SA
Supernatants from 6-h and 24-h cultured monocytes were di-
luted and activin A protein was measured using the Human/
Mouse/Rat Activin A Quantikine ELI​SA Kit (R&D Sys-
tems) according to the manufacturer’s instructions.

Western blot
Monocytes were isolated from cryopreserved healthy adult 
PBMCs as described above and incubated for 6 and 24  h 
±1 ng/ml LPS or 500 IU/ml IFN-α. After culture, super-
natants were collected, an aliquot of monocytes was set aside 
for FACS analysis, and the leftover cells were lysed with Cell 
Extraction Buffer (Life Technologies) in the presence of Halt 
Protease & Phosphatase Inhibitor Cocktail (Thermo Fisher 
Scientific). Protein concentration was determined using the 
Pierce-BCA Protein Assay kit (Thermo Fisher Scientific). 
Proteins were denatured in reducing conditions at 95°C for 
5 min with 4× Laemmli Sample Buffer supplemented with 
β-mercaptoethanol (Bio-Rad). Lysates were subjected to 
SDS-PAGE using 4–15% polyacrylamide stain-free gel (Bio-
Rad) and subsequently transferred to 0.2 µm PVDF mem-
brane from the Trans-Blot Turbo Mini PVDF Transfer Pack 
using the Trans-blot Turbo Transfer System (Bio-Rad). The 
membrane was blocked for 1 h at room temperature in TBST 
with 3% BSA, followed by overnight incubation at +4°C with 
mouse anti–human IL-1β monoclonal antibody (catalog no. 
MAB201; R&D Systems). The membrane was then washed 
and incubated with HRP-conjugated anti–mouse IgG sec-
ondary antibody for 1 h at room temperature (Cell Signaling 
Technologies) and developed with chemiluminescence using 
the ECL Prime detection kit (GE Healthcare). Stain-free and 
chemiluminescent images were obtained on a ChemiDoc MP 
imager using Image Lab software (Bio-Rad). All procedures 
were performed according to manufacturers’ instructions, and 
protocols were adapted from Bio-Rad’s V3 Western Workflow.
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Statistical methods and data visualization
Using the microarray power calculation tool available at http​
://bioinformatics​.mdanderson​.org​/MicroarraySampleSize​/, 
we determined that, assuming a 5% false positive rate, a desired 
fold difference of 2, a desired power of 0.8, and a standard 
deviation of 0.7, eight replicates per condition would be 
needed. The median number of replicates per condition in 
healthy adult blood stimulation is eight. For identification of 
DETs in microarray experiments, a one-way Welch ANO​VA 
was conducted using a p-value cutoff of 0.05 and Benjamini–
Hochberg false discovery rate multiple testing correction. 
The differences between pairs were analyzed using Tukey’s 
post hoc test. GeneSpring v.7.3.1. software was used for 
statistical analysis of microarrays, principal-component 
analysis, and heatmap plotting. Intracellular and secreted 
protein levels were compared using the Mann–Whitney 
U test in GraphPad Prism 6.0a (GraphPad Software). Data 
were plotted with GraphPad Prism and the ggplot2 v2.1.0 
graphical package R v. 3.2.1.

Online data access
The datasets described in this manuscript have been de-
posited in the NCBI Gene Expression Omnibus under 
accession no. GSE80325.

Online supplemental material
Fig. S1 displays in vitro stimulation quality control and module 
enrichment for genes from the INT​ERF​ERO​ME database. 
Fig. S2 describes the experimental setup, FACS gating strat-
egy, and protein expression examples. Fig. S3 shows leuko-
cyte activation profiles in whole blood from three healthy 
adults challenged with 11 stimuli for 6 h. Fig. S4 shows the 
correlation of transcript, intracellular, and secreted IL-1β in 
whole blood and isolated monocytes. Fig. S5 displays the 
FACS gating strategy, activation marker expression, RNA-
seq and quantitative RT-PCR of selected genes on isolated 
healthy and sJIA monocytes, and morphology and CD163 
expression on in vitro differentiated monocytes. Tables S1–S5 
are included as Excel files. Table S1 lists reagents used for the 
assay. Table S2 lists the reference modules annotations. Table 
S3 lists uncataloged IFN-α– and IFN-γ–induced genes. Table 
S4 lists genes differentially expressed between sJIA and healthy 
monocytes ex vivo and after 6-h LPS stimulation. Table S5 
lists donor characteristics.
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