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Abstract: Background: Total hip arthroplasty (THA) follow-up is conventionally conducted with
serial X-ray imaging in order to ensure the early identification of implant failure. The purpose of this
study is to develop an automated radiographic failure detection system. Methods: 630 patients with
THA were included in the study, two thirds of which needed total or partial revision for prosthetic
loosening. The analysis is based on one antero-posterior and one lateral radiographic view obtained
from each patient during routine post-surgery follow-up. After pre-processing for proper standard-
ization, images were analyzed through a convolutional neural network (the DenseNet169 network),
aiming to predict prosthesis failure. The entire dataset was divided in three subsets: training, valida-
tion, and test. These contained transfer learning and fine-tuning algorithms, based on the training
dataset, and were implemented to adapt the DenseNet169 network to the specific data and clinical
problem. Results: After the training procedures, in the test set, the classification accuracy was 0.97,
the sensitivity 0.97, the specificity 0.97, and the ROC AUC was 0.99. Only five images were in-
correctly classified. Seventy-four images were classified as failed, and eighty as non-failed with a
probability >0.999. Conclusion: The proposed deep learning procedure can detect the loosening of
the hip prosthesis with a very high degree of precision.

Keywords: hip prothesis; machine learning; orthopedics; bioengineering

1. Introduction

This work is an attempt to use an artificial intelligence approach to solve an identi-
fied clinical need in the orthopedic field: the necessity for early recognition of total hip
arthroplasty (THA) failure. THA is extremely widespread worldwide, as a highly effective
treatment for several hip diseases in both young and elderly people. In Italy, the number of
primary hip replacements increased from 66,560 in 2001 to 97,263 in 2016 with an average in-
crease of 3.1% per year [1]. Despite being more common in elderly patients, approximately
25% of patients undergoing joint replacement are under 65 years old. A further increase
in primary prosthetic implants placement is foreseen within 2030, due to progressive pop-
ulation aging and the growing number of procedures in younger patients. For the same
reasons, a significant increase of implant revisions is to be expected [2,3]. Aseptic loosening,
bearing surface wear, and osteolysis have been found to be the most common causes of
THA failure; thus, a properly conducted radiographic follow-up aims to ensure earlier
identification of complications and failures, which are likely to be manageable with more
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conservative revisions, leading to favorable functional outcomes. However, the detection of
loosening still remains a challenge, and the final diagnosis is often confirmed at the time of
revision surgery. The use of artificial intelligence (AI), particularly the deep learning (DL)
approach, to perform the automatic evaluation of X-ray imaging for monitoring patients
with hip arthroplasties could enhance the diagnostic accuracy for THA failure. Automatic
classification algorithms are tools thought to deploy the informative content within a large
amount of data. DL is a research field in automatic learning based on hierarchical levels
and different concept representations. The resulting complex processing structures are
grouped under the general name of convolutional neural networks (CNN) employed for
object detection and image classification [4]. DL methods have already been applied to
plain film radiographs with a high degree of success in different orthopedic applications,
such as the identification of wrist, elbow, ankle, and hip fractures [5], and as a classification
of knee osteoarthritis [6]. The aim of this study was to develop the DL algorithm and
the related preprocessing pipeline to automatically detect hip prosthetic loosening from a
conventional plain radiograph and to employ the algorithm on a cohort of radiographs to
analyze its performance in terms of sensitivity, specificity, and accuracy.

2. Materials and Methods
2.1. Sample

The current work has been carried according to the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) checklist [7]. Patients included in this
study were retrospectively collected from the digital medical records at a tertiary academic
medical center between 2009 and 2019. Patients with hip prothesis, cemented or unce-
mented, who underwent total or partial revision due to implant failure in the considered
period were included (failed group). Implant failure was defined by the presence of either
stem loosening, acetabular cup loosening, malpositioning of the implant, polyethylene
wearing, or periprosthetic infection. At the radiographic assessment, stem loosening was
defined as a progressive axial radiolucency greater than 3 mm, or a varus/valgus deviation
from the femoral shaft axis greater than 3◦ [8]. Instead, the loosening of the acetabular cup
was defined by a change greater than 2 mm in the horizontal and/or vertical position with
an adjacent radiolucent zone, or a radiolucent zone greater than 3 mm [5]. The malposition
of the implant was defined by prosthetic, bony, or soft tissue impingement of the implant [9].
In patients with fixed metal on metal implants, revision surgery was performed for a large
thick-walled pseudotumor at MRI, or for extremely high metal ion levels (>10–20 ppb)
in the serum or whole blood [10]. Polyethylene wear is defined by the eccentric position
of the femoral head with respect to the acetabular cup in the AP and/or lateral view. A
control group (non-failed group) was also included by randomly collecting patients who
underwent cemented or uncemented primary total hip replacement in the same period
with a rate of 1:2. To be finally included in the study, a minimum of one antero-posterior
(AP) and one lateral (LAT) radiographic view of the implant needed to be available before
revision surgery for the failed group and during follow-up time for the non-failed group.
When patients of the non-failed group had THA in both hips, all the implants were used
for the analysis. The radiographs were collected in their original resolution. The study
was approved by the Institutional Ethical Committee, and all patients gave their written
informed consent.

2.2. Model Development
2.2.1. Preprocessing

All images (in DICOM format) were processed in order to have the same size and
the same pixel range (values between 0 and 1). Frontal images were first split vertically
into two parts, so that each one included only one limb (Figure 1a). Subsequently, the
mist-like effect was reduced through increased brightness, implemented through gamma
power transformation (Figure 1b) [1]. A sigmoidal function was adopted to improve the
contrast (Figure 1c). Finally, the contrast-limited adaptive histogram equalization method
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allowed for enhancing the contrast [11]. Unlike conventional histogram equalization, it
operates on small data regions (tile) rather than on the entire image. The neighboring tiles
were then combined using bilinear interpolation (Figure 1d) [11]. Finally, the image was
resized to a standard input dimension (224 × 224) and was standardized by z-score. A
data augmentation technique was applied to increase the number of images in the training
set by making a number of non-exact copies, or transformations, of each image. This step
provided the network with more training examples by incorporating the salient features
in multiple orientations. Transformations included horizontal flip through 180◦ rotation,
rotation (range 0–30◦), and zoom (range −20–20%). This resulted in an overall increase in
the training set approximately by a factor of 3. Performing data augmentation allowed for
making the resulting model more robust to non-relevant sources of variability, including
suboptimal positioning of patients within the radiograph and suboptimal exposure settings.
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2.2.2. CNN Training

Models were developed using Tensorflow 1.15, an opensource software library for
machine intelligence. A CNN is a DL algorithm that can take an image as the input, assign
importance (learnable weights and biases) to different features (parameters/objects) in the
image, and then differentiate one from the other. A CNN is able to successfully capture the
spatial dependencies in an image, through the application of relevant filters in parallel, and
to classify them based on this. A CNN is composed of various types of layers (or building
blocks): each layer is used to collect, summarize, and/or transform data before passing
them to the following layer. The DenseNet169 network [12], trained for the IMageNet
Large Visual Recognition Challenge [13] and based on the analysis of non-radiological
images, was used in this study. DenseNet architecture shows layers that are all directly
connected with each other. This main advantage grants features reuse from different
levels, thus improving computational, memory efficiency, and focus on the problem of
interest. DenseNet was computationally adapted to produce models for prosthesis failure
recognition by using transfer learning and fine tuning algorithms [14]. Transfer learning
consists of reusing a model developed for a task as the starting point for a model on a
second task, i.e., some layers are frozen from the original task, while others are trained for
the new one. It is a common and effective strategy to use transfer learning from a network
pretrained on an extremely large dataset and to then reuse it for a different task of interest,
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usually containing less images. The underlying assumption of transfer learning is that
generic features learned on a large enough dataset can be shared among similar or even
different datasets, thus improving generalization.

Regarding output, the network provides the probability for the image to belong to
the failed or to non-failed group. A stratified data split procedure was employed: 10% of
samples were used for the testing phase, and the remaining samples were furtherly split
in 70% and 30% for training and validation, respectively. The stratified split was random,
though maintaining the proportion of failed and non-failed images in all of the three
groups. Finally, for the test set, the Gradient weighted Class Activation Mapping (Grad-
CAM) tool [15] was used to highlight which parts of the image mostly contributed in
the classification, thus putting into evidence the image regions in which the algorithm
bases its classification choice. To assess the network performance, the area under the
receiver operator characteristic (ROC) curve (AUC) was calculated, as well as the accuracy,
sensitivity, and specificity.

3. Results

Six hundred thirty patients (average age 72 years—range 26 to 88—40% males) were
retrospectively analyzed. Of these patients, 420 had prosthesis subsequently requiring a
revision (failed group) and 210 had prosthesis not requiring further surgery (non-failed
group). In the failed group, 224 patients underwent acetabular revision, 138 underwent
acetabular and stem revision, 51 underwent stem revision, 2 underwent Girldestone op-
eration, 2 underwent removal of the prothesis due to periprothesic infection, 1 under-
went femoral head revision, 1 underwent change the polyethylene liner, and 1 required a
trochanteric screw. Forty six patients (10.9%) of the failed group had a cemented implant.
Ninety-six patients had a non-failed bilateral implant (thus images from both hips were
included in the analysis) and some patients had more than two X-ray examination, thus the
final dataset included 1853 images grouped in 922 failed and 931 non-failed prostheses. The
progression of the performance of our model in the analyzed data sets demonstrated that
the accuracy decreased slightly from the training to the validation and test sets, in all cases
being higher than 0.96 (Figures 2 and 3). In the test set, the AUC was 0.99 and the ROC
curve was almost equal to the ideal curve (Figure 4). The classification was correct in 97% of
cases, with only five images incorrectly classified. Seventy-four images were classified as
failed, and 80 images were classified as non-failed with a probability > 0.999 (Figure 5). For
the remaining images of the test set, the probability is shown in the Figure 3. Among the
five images incorrectly classified, two were classified as non-failed with a probability of
0.82 and 0.85, respectively; in particular, in these two cases there was an acetabular cup
failure that was rated as normal. On the other hand, the three images that were incorrectly
classified as failed had a probability of 0.77, 0.98, and >0.999 (Table 1); in particular, the
system reported in hip prothesis cerclage but there was no pathological finding. Therefore,
the algorithm showed a sensitivity of 96.7% and a specificity of 96.7%. Figure 6 shows an
example of the Grad-CAM for failed and non-failed prosthesis. It can be observed that
for the non-failed image, no regions close to the prosthesis were lit up; on the contrary,
in the failed images, pathological traits (i.e., the possible cause of failure) are highlighted.
These results were confirmed on the whole test set, with the results of the Grad-CAM being
reviewed by an expert orthopedic surgeon. The images of the failed prosthesis in the test set
were 94: the algorithm identified a wrong area in 5 images, in 12 it identified only partially
the pathological areas, and in 77 images it correctly identified the pathological traits.
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Table 1. Performance in training, validation, and test sets.

Set Metrics
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Specificity 0.9677
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Figure 6. Grad-CAM for (a) healthy prosthesis heatmap: no regions in the image are lighted up
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(c) pathological stem heatmap: pathological traits are highlighted in the stem region. R: right side.

4. Discussion

The main finding of the present study was that a DL algorithm applied to plain ra-
diographs is able to detect the loosening of the hip prosthesis with a very high degree
of precision (>0.97%). Therefore, the DL algorithms could be applied in the follow-up of
patients with hip replacement as a tool for the detection of implant failure. The follow-
up assessment of hip and knee replacement is currently done with conventional X-rays,
and it mainly aims to detect component malalignment, subsidence, prosthesis loosen-
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ing and polyethylene wear. The early detection of these complications on the basis of
two-dimensional (2D) images (X-rays) can be highly challenging for clinicians. In order
to overcome this limitation, an attempt has been made to develop computer-based image
analysis methods. The roentgen stereophotogrammetric analysis (RSA) is a method allow-
ing for a reliable measurement of the micromotion, both for the prosthesis components
and for the prosthesis itself compared with the bone [16]. Besides micromotion, it can also
provide a reliable estimation of polyethylene wear. In the marker-based RSA, the analysis
is performed through prearranged tantalum markers embedded into bones or attached to
prostheses [17]. The major drawbacks of this technique include the need for a specific setup,
for a surgical preparation, costs, and ethical issues related with the insertion of tantalum
markers. In addition, the prosthetic components can potentially shade the markers. In the
model-based RSA, the analysis is performed through the acquisition of prosthetic mod-
els and two X-ray images (anteroposterior (AP) and lateral views) of the prosthesis [18].
Although this technique avoids the use of tantalum markers, it demonstrated a worse
accuracy compared with the marker-based RSA. The Einzel-Bild-Roentgen-Analyse (EBRA)
method was developed to assess the migration of the acetabular cup and femoral head
by using standard AP views of the pelvis [19]. EBRA requires X-rays to be grouped in
different comparable sets, to be used to evaluate micro-movements. Images are defined
as comparable if there is an overlap of different landmark pelvic references. Although it
allows for good spatial reconstruction, EBRA use is often limited by the lack of comparable
X-rays. Because the final diagnosis of prosthetic loosening is still a challenge, particularly in
the early stages, interest in the use of AI-based algorithms as a diagnostic tool is increasing
overtime. In a recent study, Shah et al. [20] developed a machine-learning algorithm to
diagnose hip and knee prosthetic loosening by using preoperative radiographs and patient
features. They demonstrated that the model developed with the combination of both types
of data reported an accuracy, sensitivity, and specificity of 88.3%, 70.2%, and 95.6%, respec-
tively, whereas the performance of the model based on radiographs alone was worse with
an accuracy of 70%. The algorithm developed in this study showed a sensitivity of 96.7%, a
specificity of 96.7%, and an accuracy of 96.7%. The best performance of the present algo-
rithm could be explained by the use of images of patients with both failed and non-failed
implants. We hypothesize that the use of both images allowed for better detection of the
radiological signs of loosening. On the other hand, Shah et al. included only patients
who underwent primary hip or knee revision arthroplasty, and used the gold-standard
diagnosis of fixation for the intraoperative findings of fixed or loose implants. Moreover, in
the present study twice the number of failed patients compared with the previous study
were included, resulting in a greater number of images used for the development of the
algorithm. Despite the good performance of the present algorithm, five images were mis-
classified. In one case (Figure 7a), the algorithm did not detect a stem osteolysis; a possible
explanation for this mistake could be that actually the stem remained in place despite the
osteolysis, while usually, together with the osteolysis, a stem loosening is noted. In another
case (Figure 7b), the cerclage wiring around the prothesis was classified as pathological by
the algorithm, instead the implant had not failed. In another case (Figure 7c), the algorithm
did not detect the polyethylene insert wearing, indirectly represented in the X-ray film by
an eccentric head in relation to the cup. A possible explanation for this is that polyethylene
insert wearing as the main reason for revision was an infrequent cause for failure in our
data set (0.01%); therefore, the algorithm may have not been trained enough to recognize
this type of failure and, moreover, in this specific case, the degree of wearing was not as
severe as the other cases present in the dataset. In another case (Figure 7d), stem loosening
was not detected, and, finally, in the last case (Figure 7e), a severe cup loosening with
luxation was not highlighted by the algorithm.
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Figure 7. The five misclassified images. In (a) the algorithm did not detect a stem osteolysis. In (b) the
cerclage wiring around the prothesis was wrongly classified as pathological by the algorithm. In
(c) the algorithm did not detect the polyethylene insert wearing. In (d) the stem loosening was not
detected. In (e) a severe cup loosening with luxation was not detected.

Some limitations affect the present study.
First of all, the radiographs used for algorithm development were retrospectively

collected from patients undergoing partial or total hip replacement revision and patients
who underwent primary THA without any clinical or radiographic signs to suspect the
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failure of the implant. Therefore, the algorithm has not been tested in patients who had
a clinical or radiographic suspicion of loosening, but did not have surgery. Thus, the
current value of the accuracy, sensitivity, and specificity could not be confirmed in that
population. Further studies are needed to investigate the role of AI algorithms in patients
with an uncertain preoperative diagnosis of implant loosening. Finally, no standardized
criteria for the preoperative radiographic diagnosis of loosening were applied. The gold-
standard of loosening was represented by revision surgery; therefore, it could be biased
by the assessment of loosening performed by different surgeons. Future prospective
studies should include improvement of the algorithm for the diagnosis of prosthetic failure
with the association of radiological and clinical data. The increase in the burden of joint
replacements, the need for centralization, and the amount of clinical and radiological
assessments required make regular follow-up of prostheses difficult to be sustained in the
long run. Some authors investigated the role of a “virtual clinic”, characterized by a remote
review of questionnaires and radiographs from the orthopedic surgeon in order to reduce
the burden of follow-up consultations [21,22]. In the future, AI algorithms could be used
in the virtual clinic in order to distinguish patients who can continue a virtual follow-up
from patients requiring a face-to-face visit because of pathological clinical or radiological
signs. In conclusion, the proposed DL procedure based on plain radiographs can detect the
loosening of the hip prosthesis with a very high degree of precision. Thus, the proposed
algorithms could find application in the follow-up of patients with hip replacement as a
tool for the identification of implant failure.
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