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Abstract

We investigated the efficacy of graph-theoretic metrics of task-related functional brain con-

nectivity in predicting reading difficulty and explored the hypothesis that task conditions

emphasizing audiovisual integration would be especially diagnostic of reading difficulty. An

fMRI study was conducted in which 24 children (8 to 14 years old) who were previously diag-

nosed with dyslexia completed a rhyming judgment task under three presentation modality

conditions. Regression analyses found that characteristic connectivity metrics of the reading

network showed a presentation modality dependent relationship with reading difficulty: Chil-

dren with more segregated reading networks and those that used fewer of the available con-

nections were those with the least severe reading difficulty. These results are consistent

with the hypothesis that a lack of coordinated processing between the neural regions

involved in phonological and orthographic processing contributes towards reading difficulty.

Introduction

Reading is a multisensory task in which orthographic representations (letters or graphemes)

are decoded into their associated speech sounds (phonemes). Learning to read entails learning

to map between graphemes and phonemes. Some languages differ in the degree to which let-

ters or other graphemic structures directly relate to a single phoneme [1–3]; referred to as the

transparency of the language. The English language is categorized as an opaque language as

multiple sounds can be represented with a single graphemic structure [1,4]. Thus, the opaque-

ness of the English language presents us with a prime opportunity to study reading difficulty

due to the inconsistent orthography-to-phonology mapping.

One way to learn how the human brain decodes written language is through studying indi-

viduals who struggle with reading. One of the most common learning disabilities is dyslexia

affecting over 80% of those diagnosed with a learning disability [5]. Several studies have shown

that children with dyslexia have difficulties with the audiovisual integration of information

required in reading [6–10]. For example, McNorgan, Randazzo-Wagner [11] showed that dys-

lexic children have an audiovisual disconnect compared to their matched typically-developing
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counterparts, suggesting that task conditions with higher audiovisual integration demands

may be sensitive to reading difficulty.

The reading network

Much of the research done with dyslexic readers has attempted to identify a neurobiological

phenotype for dyslexia through the use of neuroimaging techniques. These neuroimaging

methods have helped inform researchers about how the brain processes written language.

Reading-related audiovisual processing is broadly supported by four cortical regions, which

will be referred to as the reading network in this paper: The fusiform gyrus (FG), which is

involved in processing orthographic information [12–14], the posterior superior temporal

gyrus (pSTG), which is involved in processing phonology [8, 10, 15–18], the posterior superior

temporal sulcus (pSTS), which is involved in cross-modal integration of visual and auditory

information [12, 19–21], and the inferior frontal gyrus (IFG), which has been associated

with later high-level phonological recoding while reading [10, 22–24]. Because the reading net-

work is dominantly left-lateralized, our study focuses on the reading network within the left

hemisphere.

The left hemisphere reading network includes a number of functionally-specialized regions

that jointly contribute to normal reading. Within the fusiform gyrus can be found the putative

visual word form area (VWFA), so-named because some argue that it is specialized for pro-

cessing written language [8, 13, 14]. The FG becomes more responsive to word like stimuli

over the course of reading development; however, individuals with dyslexia show under-acti-

vation in this region during word reading tasks [12, 13, 25]. The posterior superior temporal

gyrus is linked to basic phonological decoding [8, 15–18]. In typically developing readers, acti-

vation in the pSTG increases during rhyming judgment tasks [18], whereas dyslexics have

been shown to have an under-activation in this region [26–28]. The posterior superior tempo-

ral sulcus has been implicated in specialized cross-modal integration necessary for reading [18,

20, 21]. Activation in the pSTS increases in cross-modal conditions [19, 29, 30]. Less activity in

the pSTS has been associated with lower success in linking letters to their appropriate sounds

[12]. The inferior frontal gyrus is associated with speech-articulatory phonological recoding,

even in silent reading [10, 15], and contains the language-critical region, Broca’s Area. Further,

greater activation in the IFG is associated with less familiar and irregular words [22, 24, 31],

suggesting that the IFG is sensitive to spelling-sound irregularities. In summary, the four criti-

cal nodes in the reading network on which we focus—the fusiform gyrus, posterior superior

temporal and inferior frontal cortices—contribute holistically towards the process of mapping

visual to phonological representations in normal reading.

Brain connectivity within the reading network

These anatomically distributed brain regions each support different reading-critical pro-

cesses, and the overall reading process must coordinate and integrate each of these otherwise

independent processes. Studies of the neuronal mechanisms underlying reading have pro-

gressed over time from the earlier studies cited above that identified the neural subpopula-

tions (and by assumption the cognitive processes) that critically support reading, to more

recent studies that explore how these regions connect and interact with one another. These

studies suggest a model of reading difficulty as a consequence of disordered communication

among regions involved in relaying and integrating audiovisual information [11]. Quantita-

tive analyses of brain connectivity are enabled by graph-theoretic metrics that numerically

summarize network connectivity patterns [32]. Brain connectivity can be described in

terms of structural and functional connections: Structural connectivity describes physical
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anatomical connections in a network (e.g., white matter projections linking cortical and sub-

cortical regions), whereas functional connectivity refers to the statistical patterns among

regions within the network generally derived from measurements of brain activity over time.

Functional connectivity between two regions is often inferred from statistical correlations

between time series of regional activity. The present study examines how reading difficulty

relates to the dynamic functional connections that emerge throughout the reading network

under different audiovisual loads.

Mathematical graphs are collections of nodes connected by edges. In our context, nodes

refer to discrete cortical regions, and edges refer to the connections, or the probable mutual

influence between any two nodes. The numerical value assigned to an edge or connection is an

indicator of the existence of (1 or 0 if binary) or strength of the connection (-1.0 to 1.0 if non-

binarized correlations) between any pair of nodes. A complete description of connectivity

strength between all possible pairs of network nodes can be represented in an adjacency matrix

for that network. Though connectivity strength metrics are useful for investigating whether

specific functional connections play important roles in reading, graph-theoretic approaches

additionally provide a means of quantifying the manner in which a network is connected. This

allows us to ask whether patterns of connectivity—in addition to the strength of connectivity

—is an important determinant of reading ability.

Patterns of network connectivity can be summarized in terms of segregation and integra-

tion. Segregation measures examine the degree to which nodes cohere into clusters, which

may signal functionally specialized information processing. Important measures of segregation

include modularity and transitivity. Modularity quantifies this characteristic as the degree to

which a network may be divided into clearly separate groups (Fig 1), with larger positive values

of modularity signifying stronger clustering patterns within a network [33]. Because reading

entails multiple processes operating over different types of information (e.g., acoustic and

visual representations), each of which likely requiring somewhat specialized neural circuitry,

measures of segregation allow the quantification of the number and extent of any such circuits.

Mathematically, transitivity is computed as the ratio of triangles to triplets [34]. When two

nodes are connected to the same node, they form a triplet; however, when all three nodes are

connected, this triplet forms a triangle. In a collection of nodes with high-transitivity, most of

the triplets are triangles, indicating that the collection is densely interconnected, and that they

Fig 1. Modularity quantifies a network’s tendency to partition into segregated cliques. Nodes within this network

fall into clearly separate groups with few edges between them. This network is high in modularity.

https://doi.org/10.1371/journal.pone.0208923.g001
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form a cluster (Fig 2). One potentially interesting property of a triangular configuration, from

an information processing perspective is that they form a cycle, or a recurrent loop, in which

the output of previous processing can feed back and influence subsequent processing, and pro-

vides the foundational architecture for a memory circuit in neural network architectures [35].

A network may contain several clusters (i.e., collections of nodes with dense interconnections

among themselves), but, the nodes within these clusters may have very few connections to

nodes that are not part of the cluster.

Measures of network integration index a networks capacity to exchange information

among its nodes. A key measure of network integration is global efficiency, computed as the

average inverse shortest path length [32]. A path is any unique pattern of links from one node

to another, and its length is equal to the number of steps (in a binary network) or the sum of

the links lengths (in a weighted network). In a network with low global efficiency, passing

information between two regions requires the signal to pass over a long and circuitous route

(Fig 3A). Higher global efficiency is a sign that most network clusters have short (i.e., direct or

strong) connections to many other clusters (Fig 3B). Importantly, there may be contexts in

which the direct relay of information between two nodes may be suboptimal, as when the

nodes participating in a longer circuit perform useful or specialized computations on or trans-

formations of a signal.

Segregation and integration can exhibit a dependent relationship. In a highly modular net-

work, efficiency decreases as signals must propagate over more steps to traverse the network

(Fig 4A). In contrast, a network with high global efficiency may have high transitivity, but no

longer have distinct modules (Fig 4C). The tension between segregation and integration is

Fig 2. Transitivity quantifies a network’s mutual interconnectedness. Transitivity is computed as the ratio of

triangles to triplets. Nodes 1–3 form a triangle while nodes 1,3,5; 2,3,4; & 3,4,5 form triplets.

https://doi.org/10.1371/journal.pone.0208923.g002

Fig 3. Global efficiency indexes average ease of transmission between nodes. A network with few connections

between nodes is low in global efficiency as it takes many jumps to transfer information from one node to another (A).

A network with many connections between nodes is high in global efficiency as it takes fewer connections to transfer

information from one node to another (B).

https://doi.org/10.1371/journal.pone.0208923.g003
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resolved in the ubiquitous small-world organization [32], which reach a compromise between

segregation and integration values (Fig 4B).

Network analytic approaches to studying reading difficulty

Much research has been directed at identifying and ascribing functionality to the neural struc-

tures supporting reading-related processes, but work has more recently shifted focus to the

functional connectivity within and between these regions, as these studies critically inform us

how these regions dynamically interact during normal and impaired reading. Wise Younger,

Tucker-Drob [36] suggest that not only is dyslexia defined by under-activation of the brain

regions associated with reading, but also reduced functional connectivity between these

regions. Others have supported this finding, showing that the integrity of connections within

the brain predict reading skills [20, 37–49]. Collectively, these studies suggest that reading skill

is dependent on the strength of inter-regional connectivity within the reading network.

Strength, however, is only one aspect of connectivity, and as studies of small-world net-

works have shown, network configuration plays an important role in how information is com-

municated among connected nodes [32]. Consistent with this perspective are studies showing

that reading development is predicted by changes in how brain regions interact [50–54].

For instance, one study showed that better adult reading performance was related to stronger

functional connectivity between the visual word form area and regions associated with phono-

logical processing, whereas poorer reading skills in children were predicted by negative associ-

ations in these connections [54]. Moreover, connectivity between the IFG and posterior task-

selective regions was weaker in children compared to adults when completing rhyming and

spelling judgment tasks [53]. Converging evidence suggests that as reading becomes more

automated reliance shifts from phonological specific regions to visuo-orthographic regions;

however, stronger connectivity between phonological processing units and higher-level cogni-

tive control regions is associated with better rhyming judgment in both groups [55]. This shift

from a reliance on phonology to a reliance of orthography appears to be slower in dyslexic

readers [36, 37]. However, Horowitz-Kraus and colleagues [56] showed that after participating

in a successful reading intervention program, Reading Acceleration Program, children who

experience reading difficulty had similar functional connectivity to their non-impaired reading

counterparts.

Fig 4. There is often a tension between network segregation and integration. The nodes in many networks naturally fall into clusters, or

modules (A). Identifying clusters increases in difficulty as transitivity and global efficiency increase; however, the tension between network

segregation and integration is resolved through small world organization (B). As network integration increases discrete clusters decrease (C).

https://doi.org/10.1371/journal.pone.0208923.g004
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Much of the connectivity work investigating differences between non-impaired and dys-

lexic readers has been conducted on resting state data. Though graph-theoretic studies of

intrinsic network connectivity often make use of very large resting state data sets, such as the

functional connectomes project [57], important insights into specific cognitive processes can

be gained when processing dynamics are constrained by tasks that are representative of the

processes in question. Further, Gonzalez-Castillo and Bandettini [58] claim that functional

connectivity analyses on task-based data are essential to gaining a better understanding of the

relationship between functional connectivity for resting-state and task-based data. For exam-

ple, Vogel and colleagues [59] found that reading related brain regions perform other general

tasks and are not necessarily co-activated with one another outside of reading. We thus explore

how reading skill depends on connectivity characteristics among these regions using data col-

lected during a reading task. The multisensory nature of reading and its dependency on audio-

visual integration implies that the task used in our study should be sensitive to atypically

developing connectivity among the brain regions supporting auditory, visual, and integrative

processing. McNorgan, Randazzo-Wagner [11] identified differences between typically devel-

oping readers and those with reading difficulty with respect to orthographic/phonological

congruency processing under unimodal auditory and cross-modal audiovisual presentation

conditions. Children with reading difficulty showed no relationship between brain activity and

phonemic awareness under any modality condition, whereas typically developing children

showed a relationship under the cross-modal condition. Horowitz-Kraus, Buck [60] showed

that children with reading difficulties also significantly differ in their auditory comprehension

compared to non-impaired readers and this relationship is associated with global efficiency,

such that higher global efficiency predicted poorer narrative comprehension. Both of these

findings support the position that reading difficulty was attributable to a disconnect between

orthographic and phonological processing, and suggests that the connectivity dynamics under

the audiovisual condition might be most sensitive to reading difficulty. Thus, we hypothesize

that the severity of reading difficulty may be explained by differences in functional brain con-

nectivity. The ability to examine the connectivity dynamics of the reading network under

different presentation modality conditions further afforded the opportunity to investigate

whether changes to information flow induced by different audiovisual integration demands

may be differentially sensitive to reading difficulty.

Methods

Participants

Twenty-four children with dyslexia (M = 10 years; 9 months old, range: 7 years; 10 months to

13 years; 8 months old; 15 males, 9 females) were recruited from the Chicago metropolitan

area. All children had been previously assigned a dyslexia diagnosis by a qualified professional,

which we further corroborated with the battery of standardized tests that were administered to

all prospective participants (Table 1). Parents were interviewed to confirm that all participants

Table 1. Mean scaled scores and standard deviations (in parentheses) for standardized tests of achievement.

Standardized Measure M (SD) Range

Full Scale IQ (WASI) 103.1 (15.9) 79–136

Word Identification (WJ III) 88.6 (6.2) 76–101

Word Attack (WJ III) 93.3 (6.4) 78–104

Reading Fluency (WJ III) 88.1 (8.0) 67–110

Sight Word Efficiency (TOWRE) 91.8 (9.2) 67–113

Pseudo-word Decoding Efficiency (TOWRE) 90.5 (9.3) 65–104

https://doi.org/10.1371/journal.pone.0208923.t001
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also met the following criteria: (1) native English speaker, (2) right-handedness, (3) free of neu-

rological disease or psychiatric disorders, and (4) no attention deficit hyperactivity disorder

(ADHD). The informed consent and all data collection and archival procedures for this study

were approved by the Institutional Review Board at Northwestern University.

After parents gave written informed consent, the children were assessed with a series of

standardized tests as an initial participant prescreening measure. Two verbal subtests (vocabu-

lary and similarities) and two performance subtests (block design and matrix reasoning) from

the Wechsler Abbreviated Scale of Intelligence (WASI) [61] were used to measure intelligence.

All participants’ full scale IQ scores were above 75. The Word Identification, Word Attack,

and Reading Fluency subsets of the Woodcock Johnson III Tests of Achievement (WJ-III) [62]

assessed word and non-word reading accuracy. Reading speed for words and non-words was

measured with the Test of Word Reading Sight Word Efficiency (TOWRE-SWE) and the

Pseudo-word Decoding Efficiency (TOWRE-PDE) subtests, respectively [63]. The TOWRE

subtests measure the number of consecutively presented written items that individuals can

pronounce. The TOWRE subtests quantify reading efficiency by counting the number of writ-

ten items an individual can pronounce aloud within 45 seconds. The difficulty level of the

TOWRE items increases as one progresses through the list. The scores from the TOWRE-PDE

were used as our dependent measure of single-word decoding skill for two reasons. First, this

task requires access to letter-sound mapping rules in order to pronounce the stimuli, and pre-

vents using basic visual memory of known words as an aid to word identification. Second, past

and ongoing studies of typically developing children [9, 64] have found that developmental

changes in PDE scores are predicted by changes in connectivity over the same period. Because

the classification of reading and other learning difficulties may be the subject of disagreement,

the remaining standardized measures provide quantifiable support for our participants as a

sample of children with reading difficulty.

Participants completed a practice session of the experimental task with a set of stimuli not

used in the actual experiment in a scanner simulator. Within a week of the simulated scanner

session, participants visited the MRI scanner to complete the experimental session. Following

a structural (T1-weighted) MRI scan, functional data were acquired. The list order was opti-

mized for an event-related design using OptSeq (http://surfer.nmr.mgh.harvard.edu/optseq),

and was fixed for all subjects.

Experimental procedure

Rhyming task. Word pairs were presented in a fixed order to the participants and they

were asked to indicate if each pair rhymed by pressing one button with their right index finger

for ‘yes’ responses, and pressing a different button with their right middle finger for ‘no’

responses. The presentation modality for each word was crossed, creating three presentation

modality conditions: both words presented visually (VV); both words presented audibly (AA);

and the first word audibly and the second word visually (AV). Visually-presented words

appeared on the screen for 800 ms followed by a 200 ms blank interval. Audibly-presented

words followed the same timing, though pronunciation times varied slightly. A red fixation

appeared on the screen after the second word to indicate that the participant needed to make a

response. Responses made prior to the onset of the red fixation cross were ignored, and thus

the response window for all presentation modality conditions was the same. A participant

response triggered the disappearance of the red fixation cross until the end of the trial, after

which time participants viewed a blank screen for the remainder of the jittered inter-trial inter-

val lasting between 2200 and 2800 ms to allow for deconvolution of the signal associated with

each condition. Participants completed two runs for each presentation modality condition,
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each lasting approximately 6:45 minutes. All words and symbols (see Fig 5 below) were pre-

sented in lower case, at the center of the screen, with a .5 letter offset of position between the

first and second stimulus.

Two levels each of orthographic and phonologic similarity were crossed, creating four dif-

ferent trial conditions: congruent orthography and phonology (O+ P+; e.g., gate, hate), con-

gruent orthography and incongruent phonology (O+ P-; e.g., pint, mint), incongruent

orthography and congruent phonology (O- P+; e.g., has, jazz), and incongruent orthography

and phonology (O- P-; e.g., press, list). There were 24 trials of each lexical condition, totaling

96 separate word pairs. The same 96 word pairs were used in all three modality conditions.

The four trial types were matched for their written word frequency based on child norms [65].

All words were monosyllabic and did not have homophones or homographs.

MRI data acquisition

Imaging data were obtained using a standard head coil at a 3.0 Tesla Siemens scanner. In order

to minimize movements foam pads were used to secure the children’s heads in place. Through

a mirror attached to the inside of the head coil, participants were able to view the stimuli pro-

jected on a screen. An optical response box was used to record participants’ responses. The

echo planar imaging (EPI) method was used during the task to acquire blood oxygenation

level dependent (BOLD) images. The following parameters were used for scanning: TE = 20

ms, flip angle = 80˚, matrix size = 128 x 120, field of view = 220 x 206.25 mm, slice thickness = 3

mm (0.48 mm gap), number of slices = 32, TR = 2000 ms, voxel size = 1.72 mm. In addition,

structural T1 weighted 3D images were acquired (MPRAGE, TR = 1570 ms, TE = 3.36 ms, flip

angle = 20˚, matrix size = 256 × 256, field of view = 240 mm, slice thickness = 1 mm, number

of slices = 160, voxel size = 1 mm x 1 mm).

Image analysis. Functional MRI data preprocessing and General Linear Model analyses

were performed using the FreeSurfer 5.3.0 Functional Analysis Stream (FSFast) (https://surfer.

nmr.mgh.harvard.edu/). This surface-based analysis maps cortical gray matter voxels to a

3-dimensional mesh tessellation of each participant’s structural MRI. Surface meshes for all

participants share a common coordinate system that permit co-registration of spatial locations

between brains of different shapes and sizes. After each participant’s T1 volume was mapped

to a tessellated surface mesh, the EPI volumes were co-registered to the T1 volume, and a

6-parameter rigid body motion correction was applied, and the movement parameters saved

Fig 5. Experimental paradigm. The diagram shows the within-trial event onsets and response window for the VV

unimodal task condition, AA unimodal task condition, and AV cross-modal task condition.

https://doi.org/10.1371/journal.pone.0208923.g005
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as nuisance regressors for the subsequent analysis. The motion corrected EPI volumes were

processed in the FreeSurfer template average surface space using a 6 mm full width half maxi-

mum smoothing kernel and slice time correction.

Region of interest definitions. We defined our cortical regions of interest both anatomi-

cally and functionally in two steps. First, automated anatomical labeling of the cortical surface

was constructed based on the Desikan-Killiany atlas [66], as is routine in FreeSurfer’s surface

mapping procedure. Each atlas label was subdivided into roughly-equal-sized sub-regions,

under the assumption that the neural populations contained within smaller subdivisions are

likely more homogeneous than are the populations of larger-scale anatomical features, such as

the STG. This parcellated the cortical surface in to 1,000 sub-regions, each of which covered an

average of 149 mm2, and corresponded to a node in our graph-theoretic analysis. As a conse-

quence, larger anatomical regions (e.g., STG) were subdivided into more nodes than were

smaller regions (e.g., FG), however individual nodes were comparable in size. Through Free-

Surfer’s surface tesselation and labeling procedure, each voxel within the 3-dimensional MRI

volume is assigned an anatomical label based on its co-registration with the template surface

mesh. In the second step, significant activation clusters in group-level functional contrast map

was intersected with the labeled anatomical map to identify regions on the cortical surface that

were associated with the experimental task. The functional contrast map used a first-level one-

sample t-test contrasting all lexical trials vs. fixation to identify voxels that were significantly

more active during reading than baseline. A second-level (group) random effects analysis

selected clusters with a FWE of p< .05 containing voxels reaching an uncorrected significance

threshold of p< .001 to functionally define the left hemisphere reading network, illustrated in

Fig 6. From among the nodes generated by the first step that intersected with the significant

clusters revealed in the functionally defined reading network, we restricted our analyses to the

43 nodes contained in the four anatomical regions described earlier as comprising the core

reading network (i.e. FG, STG, STS and IFG). These 43 nodes were used in the subsequent

complex network analysis. Though some related studies in this population have additionally

implicated Inferior Parietal Lobule in letter-sound mapping [25, 67], this region did not inter-

sect with the functionally-defined clusters revealed in the random-effects analysis, and thus

were not included in our reading network definition but was included in analyses of regions

outside the core reading network. A second group level analysis, contrasting left-hemisphere

activation for each presentation modality condition against the others was performed to pro-

vide a context to facilitate the interpretation of the network analysis.

Planned connectivity analyses

For each participant, normalized fMRI time series were extracted from each of the nodes com-

prising the left hemisphere reading network. This was done for each of the six fMRI runs (two

runs for each of three presentation modality conditions). For each of these modality condi-

tions, zero-lag cross-correlations were computed between all pairs of time series vectors to

produce two 43×43 adjacency matrices (one for each run) for each presentation modality.

Because the experiment used a jittered fast event-related design, we limited our analysis to

zero-lag correlations. Though this prevented the detection and analysis of lag-dependent pro-

cessing dynamics across the network, we made this decision to reduce the complexity of the

analysis and the uncertainty surrounding inferences about lag-dependent differences that may

be influenced by varied event onset schedules for different trial types.

Within adjacency matrices constructed in this manner, all nodes are connected to one

another to some degree, necessitating a thresholding step to differentiate the binarized net-

works from one another. Multiple approaches have been proposed for thresholding to
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Fig 6. The reading network as defined by a group-level lexical vs. baseline contrast. Significant FWE-corrected (p<

.05) clusters in the random-effects lexical vs. fixation baseline contrast, collapsed across all presentation modality

conditions functionally define the reading network for the functional connectivity analysis. This definition ensures the

network analyses focused on brain regions that were generally engaged in reading-related processing in all

presentation modality conditions and across all participants.

https://doi.org/10.1371/journal.pone.0208923.g006
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connectivity matrices [68], and the arbitrarily selected threshold is likely to impact the results

of comparisons between networks. Homogeneously densely connected networks are likely to

result from extremely lax thresholds; homogenously disconnected networks are likely to result

from extremely stringent thresholds, and condition differences are unlikely to be detected in

either case. Using intermediate thresholds, systematic relationships between experimental con-

dition and connection strength could plausibly allow threshold selection to dictate the direc-

tionality of contrasts between connectivity metrics associated with these conditions. One

advantage of our regression-based analysis, however, is that we do not directly compare the

metrics that quantify network topography. Rather, our regression-based analyses instead ask

whether these metrics are predictive of reading skill across individuals, and are dependent on

participant variability among connectivity metrics, which cannot be prescribed by threshold

selection. We wished to make as few assumptions as possible when thresholding our networks,

and so we used two very different but straightforward approaches. One thresholding approach

applied a simple significance threshold to include only significant correlations (p< .05, not

corrected for multiple tests), with all other values set to zero to producing a binary connectivity

matrix, M, for each participant, where each entry Mi,j = (0,1) indicates the presence or absence

of a connection between nodes i and j during a particular presentation modality condition.

The second thresholding technique used the minimum connected component (MCC) of each

adjacency matrix. The MCC of a network is graph-theoretic construct in which a subgraph is

built by iteratively connecting nodes with the strongest weights in descending order until all

the original nodes have been connected. This approach has several advantages: First, it elimi-

nates the need for the experimenter to select and justify an arbitrary threshold. Second, the

algorithm guarantees exclusion of connections that would reasonably be described as superflu-

ous, but third, it simultaneously guarantees that no nodes or node clusters are disconnected

from the larger network. Finally, analyses of functional connectivity defined by MCC have

been shown to be more sensitive to cognitive load [69].

The Brain Connectivity Toolbox (BCT) [32] was applied to each of the binary connectivity

matrices to produce quantifiable metrics of segregation and integration for each participant’s

reading network during each of the three modality conditions. We used two measures of segre-

gation (modularity and transitivity) and one measure of integration (global efficiency); the for-

mulas used for these computations can be found in Rubinov and Sporns [32]. We used the

default resolution parameter of 1 when calculating modularity. All functions were optimized

for binary undirected networks. The segregation and integration measures for each adjacency

matrix were averaged for the two runs within each presentation modalities to compute a single

average modularity, transitivity, and global efficiency score for each presentation modality and

for each participant. Fig 7 depicts the functional connectivity within the 43-node reading net-

works of two participants: one with low modularity and high transitivity (7A), and the other

with high modularity and low transitivity (7B), and highlights the variability among these net-

works that is critical to our correlation-based analysis.

BCT threshold values equal to 2 standard deviations above or below the mean for each mea-

sure were computed, and outlier values beyond these thresholds were replaced with threshold

values. A hierarchical linear regression predicted reading skill, as measured by the pseudo-

word decoding (PDE) scores obtained during standardized testing, as a function of the BCT

measures. Participant age (in months), task accuracy, and task response latency were treated as

nuisance regressors and entered in the first step. Segregation and integration measures from

each of the three presentation modality conditions were our predictors of interest. Because, as

the GLM presentation condition contrasts will show, the three presentation modality condi-

tions were expected to place different demands on auditory and visual processing and integra-

tion, and consequently induce different functional connectivity patterns, the BCT measures
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for the different presentation modalities were entered into the model separately. This strategy

allowed us to explore differences in the predictive ability of neural processing dynamics

among the task conditions. The question of whether reading difficulty can be explained by

functional connectivity patterns within the reading network was addressed by testing whether

the BCT measures were significant predictors of PDE scores, once variance attributable to the

nuisance regressors has been accounted for. We repeated this hierarchical regression analysis

on the significant clusters outside of the core reading network to explore whether our results

describe a special property of the reading network. To assess the relative importance of each

predictor variable we calculated bootstrap confidence intervals for the differences in contribu-

tion to the variance in PDE scores.

Results

Behavioral analysis

A one-way analysis of variance (ANOVA) was conducted on accuracy between presentation

modalities. Accuracy did not differ depending on presentation modality, F (2,46) = 2.43, p =

.12. The overall participant accuracy was .62 (range = .51-.85). Response latency comparisons

between presentation modalities using a one-way ANOVA found response times differed

across presentation conditions, F (2, 46) = 6.35, p = .005. Responses in the AA (M = 1615 ms)

condition were slower than those in the AV (M = 1455 ms; t (23) = -3.88, p = .001) condition

and the VV condition (M = 1406 ms; t (23) = -2.75, p = .011). Response latencies in the AV

and VV conditions did not significantly differ t (23) = -0.651, p = .52. The overall mean

response latency was 1493 ms (range = 900–1863 ms).

Surface-based functional analysis

The sole purpose of the group-level functional analysis was to identify the core left-hemisphere

reading network using an unbiased data-driven approach. Because we wished to investigate

presentation modality-related differences, we avoided introducing biases in our node selection

by collapsing across all runs, thereby restricting the analysis to those regions that were signifi-

cantly associated with task performance across modality conditions. Table 2 indicates the peak

activations within the cluster-size-corrected significant clusters in the left hemisphere (FWE

p< .05; uncorrected p< .001). The significant clusters appearing in the left hemisphere are

Fig 7. Network connectivity in two individuals with extreme connectivity metric scores.

https://doi.org/10.1371/journal.pone.0208923.g007
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illustrated in Fig 6. Across all modality presentation conditions, a core left hemisphere network

including Fusiform Gyrus, Superior Temporal Gyrus (extending to Posterior Superior Tempo-

ral Sulcus) and Inferior Frontal Gyrus showed significantly greater activation during rhyming

judgment trials than the baseline fixation response baseline, corresponding to the expected

anatomical extents of the core left-hemisphere reading network.

Group-level presentation modality contrasts were carried out using a cluster-size cor-

rected significance threshold of p< .05, but an uncorrected p< .01 threshold to allow for

the reduced statistical power arising from partitioning the data into thirds. At these thresh-

olds, only the AA vs other modality contrast generated cluster-size corrected significant

activation differences, which we summarize in Table 3. Fig 8, however, shows all clusters

meeting the voxel-wise significance threshold, as these patterns conform to the expected

contrast pattern: Activation trends in primary and secondary sensory auditory and visual

processing regions were commensurate with the reliance of that condition on either vision

or audition. STG activation was greater in the AA condition than for the AV and VV condi-

tions. Conversely, though cluster-size significance thresholds were not met, occipital activa-

tion was numerically greater for the VV condition than for the AA and VV conditions. As a

blending of the two unimodal conditions, though cluster size significance thresholds were

not met, the AV condition showed a trend of greater activation than the AA and AV condi-

tions only in a small cluster in the posterior STS. Thus, the interpretation of the network

dynamics that follows is done in light of this modality-dependent pattern of sensory process-

ing. As these tasks require different processes (sound matching for AA vs letter to sound

mapping then sound matching for VV) it is expected that connectivity would also differ

between these conditions.

Table 2. Significant left hemisphere clusters for the Lexical—Fixation contrast across presentation modalities.

Region Size (mm2) X Y Z Max t P

Superior Temporal Gyrus 2632 -61 -13 1 11.58 0.0001

Lingual Gyrus 3946 -6 -68 1 8.81 0.0001

Inferior Frontal Gyrus 6459 -32 32 4 7.87 0.0001

Precentral Gyrus 91 -52 -8 44 7.16 0.0128

Superior Frontal Gyrus 489 -10 15 52 7.12 0.0001

Lateral Occipital Gyrus 281 -23 -87 -12 5.84 0.0001

Fusiform Gyrus 118 -42 -36 -22 5.23 0.0038

Fusiform Gyrus 120 -39 -25 -23 5.21 0.0035

Precentral Gyrus 104 -57 -1 19 4.71 0.0067

Superior Parietal Gyrus 297 -23 -79 18 4.62 0.0001

Lateral Occipital Gyrus 303 -26 -86 3 4.05 0.0001

https://doi.org/10.1371/journal.pone.0208923.t002

Table 3. Significant left hemisphere clusters for presentation modality contrasts.

Contrast Region Size (mm2) X Y Z Max t P

AA vs Other

Superior Temporal 2118 -61 -13 0 7.15 0.0001

Lingual Gyrus 1017 -31 -47 -6 5.92 0.0001

VV vs Other

No significant clusters

AV vs Other

No significant clusters

https://doi.org/10.1371/journal.pone.0208923.t003
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Fig 8. Group-level contrasts between presentation modality conditions: [VV vs. AA + AV] (top), [AA vs. AV +

VV] (middle), [AV vs. AA + VV] (bottom) using a voxel-wise significance threshold of p = .01 (uncorrected).

https://doi.org/10.1371/journal.pone.0208923.g008
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Connectivity analysis

The first-level hierarchical linear regression model including only the nuisance variables did

not significantly predict the variance in PDE scores (F(3,20) = 1.00, p = .41, adjR2 = .001). The

second-level model that additionally included the BCT measures significantly predicted PDE

scores (F(12,11) = 2.89, p = .04), with an adjusted R2 of .50, and predicted significantly more

variance in PDE scores compared to the model containing only nuisance variables, F(9,11) =

3.19, p = .04 (Table 4). Connectivity metrics of the unimodal visual (VV) networks were not

predictive of reading ability, however modularity of the crossmodal AV condition and transi-

tivity and global efficiency of the unimodal auditory (AA) condition did predict PDE scores.

These results indicate that the network connectivity metrics of network segregation and inte-

gration characteristics while engaged in a task that places demands on the orthographic and

phonological systems is predictive of reading skill, and suggest that these relationships are

dependent on task modality.

As discussed earlier, tension may exist between connectivity patterns that may work at

cross-purposes within a network. In several instances, the regression analysis shows opposite-

signed partial correlations involving different connectivity measures. We may ask, for exam-

ple, whether AA transitivity is more predictive of PDE than is AV transitivity, ignoring the

fact that the relationship is negative in one case, and positive in the other. A statistical test of

whether opposite-signed correlations differ from each other is not particularly informative,

first, because this difference will necessarily be significant when at least one of the correlations

are significant, but second because such a test does not answer whether either measure is a

more important predictor of reading skill, ignoring the direction of the correlation. The rela-

tive importance of the BCT measures within- and across modalities was tested using the

relaimpo package in R [70], which assesses relative importance of regressors in the linear

model. Contrary to our hypothesis, the predictive relevance of the presentation modality con-

ditions did not partition into unimodal versus cross-modal networks. Rather, as Table 5 indi-

cates, the partial correlations involving each presentation modality within each connectivity

Table 4. Hierarchical linear regression analysis for the reading network defined using a significance-based thresh-

old (p< .05).

B SE β η2

(Constant) -790.65 232.01

Age 0.21 0.13 0.46 .43

Response Latency 0.02 0.01 0.48 .58�

Accuracy -14.91 27.31 -0.15 -.16

VV Modularity 115.39 119.65 0.80 .28

AV Modularity 580.64 183.28 4.29 .69 ��

AA Modularity 49.55 276.91 0.25 .05

VV Transitivity -148.70 104.87 -2.54 -.39

AV Transitivity 115.63 118.94 2.09 .28

AA Transitivity -642.37 184.48 -7.64 -.72 ��

VV Global Efficiency 338.06 154.98 3.96 .55

AV Global Efficiency 78.65 175.53 0.92 .13

AA Global Efficiency 1036.82 287.28 8.63 .74 ��

Note:

� p< .05;

�� p< .01.

https://doi.org/10.1371/journal.pone.0208923.t004
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metric were equally important predictors of reading difficulty between conditions, even for

those measures for which one predictor is significant and the other is not. Additionally,

the orthogonal analysis found connectivity metrics are equally important predictors of PDE

scores within each modality (Table 6). Thus, though connectivity metrics significantly differed

between presentation modalities in many instances, it did not appear to be the case that these

measures were more or less important for one presentation modality than the others.

The above analyses indicate that metrics quantifying the topographical organization of

the core reading network predicts reading skill. To assess whether this property is unique to

the core reading network, we repeated this analysis for the 154-node network constructed

using the same methodology from significant clusters outside of the core reading network.

The first-level hierarchical linear regression model including only the nuisance variables did

not significantly predict the variance in PDE scores (F(3,20) = 1.00, p = .41, adjR2 = .001).

The second-level model that additionally included the BCT measures also did not signifi-

cantly predict PDE scores (F(12,11) = 0.78, p = .66), with an adjusted R2 of -.13, and did not

predict significantly more variance in PDE scores compared to the model containing only

nuisance variables, F(9,11) = 0.75, p = .66. This suggests that the relationship between net-

work organization and reading skill in children with reading difficulty is unique to the core

reading network.

Table 5. Differences in relative importance of predictors of pseudo-word decoding scores between presentation

modalities within connectivity measures.

BCT Contrast Difference

Modularity VV—AV -0.01

AV—AA -0.06

VV—AA -0.07

Transitivity VV—AV -0.03

AV—AA 0.05

VV—AA 0.02

Global Efficiency VV—AV -0.03

AV—AA -0.05

VV—AA -0.08

Note: No contrasts were significant at p < .05.

https://doi.org/10.1371/journal.pone.0208923.t005

Table 6. Differences in relative importance of predictors of pseudo-word decoding scores between connectivity

measures within presentation modalities.

Modality Contrast Difference

VV Modularity—Transitivity 0.01

Transitivity—Global Efficiency - 0.01

Modularity—Global Efficiency 0.01

AV Modularity—Transitivity -0.02

Transitivity—Global Efficiency 0.00

Modularity—Global Efficiency -0.01

AA Modularity—Transitivity 0.00

Transitivity—Global Efficiency -0.00

Modularity—Global Efficiency 0.00

Note: No contrasts were significant at p < .05.

https://doi.org/10.1371/journal.pone.0208923.t006
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We repeated the above hierarchical regression analysis on the minimum connected compo-

nents within the reading network. The results of these analyses, summarized in Table 7, were

consistent with those carried out on the networks constructed with a simple significance

threshold, and further support the hypothesis that functional connectivity within the core

reading network is predictive of reading ability, and that these relationships are sensitive to

presentation modality. Within the MCC networks, the first hierarchical linear regression

model including only the nuisance variables did not predict reading ability (F(3,20) = 1.00, p =

.41, adjR2 = .001). The second level of the model that additionally included the BCT measures

did significantly predict PDE scores (F(12,11) = 3.54, p = .02) with an adjusted R2 of .57, and

predicted significantly more variance in PDE scores than did the first level model, F(9,11) =

3.95, p = .02.

Consistent with the previous analysis, the relationship between functional connectivity and

reading abilities appears to be unique to the MCC of the core reading network, and does not

extend to the MCC spanning activated regions outside the core reading network. The first

level of the hierarchical linear regression only containing nuisance regressors did not predict

PDE scores (F(3,20) = 1.00, p = .41, adjR2 = .001). The second level of the model additionally

including the BCT measures of the MCC of the regions outside the core reading network did

not significantly predict PDE scores (F(12,11) = .51, p = .87) with an adjusted R2 of -.34, and

did not predict significantly more variability in PDE scores than did the first level of the

model, F(9,11) = 0.43, p = .89.

Discussion

We investigated whether task-dependent graph-theoretic measures that quantify the topogra-

phy of the global reading network predict reading skill in children with reading difficulty.

Differences in pseudo-word decoding efficiency scores were predicted by the connectivity

measures of the functionally-defined reading network in our sample, but were not predicted

by connectivity among regions outside the core reading network. Moreover, this finding was

replicated using two very different approaches for network construction. This indicates that

Table 7. Hierarchical linear regression analysis for the reading network defined using the minimum connected

component.

B SE β η2

(Constant) 50.15 39.22

Age -0.05 0.12 -0.12 -.13

Response Latency 0.01 0.01 0.20 .31

Accuracy 35.11 23.25 0.36 .41

VV Modularity -13.08 23.71 -0.28 -.16

AV Modularity -41.93 41.46 -0.55 -.29

AA Modularity 19.82 43.34 0.29 .14

VV Transitivity -61.87 18.77 -1.10 -.71��

AV Transitivity 75.78 23.62 1.04 .70��

AA Transitivity -36.84 24.20 -0.48 -.42

VV Global Efficiency 28.77 29.94 0.58 .28

AV Global Efficiency -101.72 32.23 -1.29 -.70��

AA Global Efficiency 30.48 33.43 0.50 .27

Note:

�� p< .01.

https://doi.org/10.1371/journal.pone.0208923.t007
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reading difficulty can be explained, at least in part, by the characteristic segregation and inte-

gration patterns of the reading network under different presentation modality conditions. Net-

work segregation and integration measures showed a modality-dependent relationship with

reading difficulty, presented in Table 4 and summarized in Table 8 below. Measures of segre-

gation and integration appeared to be equally important predictors of variance in pseudo-

word decoding (PDE) scores, which may be a consequence of the tension between these two

measures which are balanced in so-called small-world networks that are commonly associated

with optimal network processing dynamics [71]. Interestingly, the regression analyses showed

that the crossmodal AV condition generally patterned differently than the unimodal AA and

VV conditions: In four of the five cases where at least one metric was a significant predictor of

PDE, the AV condition either was the only significant predictor, or else was in the opposite

direction (and therefore significantly different from) the unimodal condition. This pattern is

consistent with the hypothesis that task conditions that emphasize audiovisual processing are

particularly sensitive to reading skill in children with reading difficulty.

Measures of network segregation

When examining the statistically thresholded networks, we found that PDE scores were higher

for those whose reading network was more modular across all conditions, but the relationship

was significant only in the cross-modal condition (AV). Broadly speaking, a network with

high modularity has multiple processing clusters (or modules) that function with relative inde-

pendence from one another [33]. Although these modules are necessarily situated among

brain regions that have been traditionally associated with specific functions supporting read-

ing, it is not necessarily the case that these modules conform to the anatomical bounds of these

regions. Lower modularity of a network may indicate that the phonological processing sup-

porting these rhyming judgments occurred with relatively little coordination with ortho-

graphic processing regions for those with more severe reading difficulty, and that this effect is

most pronounced in the audiovisual condition. This is consistent with previous research show-

ing an audiovisual disconnect in dyslexic children [11]. The unimodal AA and VV conditions

may have been less likely to promote interactions among phonological and orthographic pro-

cesses because these presentation conditions did not guarantee them: Phonological judgments

on auditory-only input can be accurately made without orthographic input, and these judg-

ments on visual-only input may have relied on orthographic cues, such as orthographic

overlap. Overall, this suggests that children with comparatively mild reading impairment

demonstrate greater segregation (i.e., less communication between local network circuits)

to accommodate the audiovisual integration processes that support more fluent reading

through more effective mapping between orthography and phonology, and lends further

Table 8. Summary of valences of modality dependent correlations between connectivity metrics and reading skill.

Network Segregation Network Integration
Modularity Transitivity Global Efficiency

Sig MCC Sig MCC Sig MCC

VV + - - -� + +

AV +� - + +� + -�

AA + + -� - +� +

Note:

� denotes statistically significant relationships. Sig.: Significance-based connectivity threshold; MCC: Minimum

Connected Component connectivity threshold

https://doi.org/10.1371/journal.pone.0208923.t008
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support to the argument that an impairment of audiovisual integration processes contributes

critically towards reading difficulty [11, 72].

Modularity among MCC-thresholded networks did not appear to be significantly predictive

of PDE, and presentation modality conditions did not pattern in the same way as the statisti-

cally-thresholded networks. Modularity scores were higher (M = .29) and much more variable

(SD = .13) for the MCC networks than for statistically thresholded networks (M = .04, SD =

.03), and so the predictive strength of the modularity of statistically-thresholded networks may

have been driven by extreme scores.

Transitivity within the network under different modality conditions—that is, the propen-

sity for the network to form recurrent connectivity loops—was higher for poorer readers when

both words were presented in the same modality (AA and VV), but higher for better readers in

the crossmodal presentation condition (AV). This pattern was consistent for both thresholding

techniques, but significant only for AA among significance threshold networks, and for VV

and AV among MCC networks, which may indicate that this relationship is driven by recur-

rent loops formed by the strongest functional connections. Though transitivity among func-

tional connectivity networks has not been previously examined as a factor in reading ability,

from a network processing perspective, recurrent connections permit previous neural compu-

tations to influence subsequent processing. Such an architecture potentially supports a mem-

ory circuit, and relatedly, error checking using informative prior knowledge [73]. If we

interpret transitivity as a marker of processing uncertainty, this pattern may indicate that

higher transitivity in poorer readers in the unimodal conditions reflect an inability to quickly

settle on a stable orthographic or phonological pattern in these participants under unimodal

presentation conditions—i.e., difficulty maintaining clear phonological and orthographic rep-

resentations is a marker of especially poor reading ability. Conversely, children who are better

at mapping between orthography and phonology do so with less recurrent processing under

crossmodal presentation conditions, and efficient crossmodal mapping may be a sign that a

child is overcoming reading difficulty. It is important to note that although network transitiv-

ity relates to reading skills, we do not know where these recurrent connections exist within the

network because these measures characterize connectivity among all nodes throughout the

network. It is possible that these recurrent loops exist within discrete modules or between

modules, for example, reflecting mutual isolation of the orthographic and phonological net-

works. Unfortunately, the global network transitivity measure does not permit conclusions at

this level of specificity, and so further research, perhaps using a seed-based approach, is needed

to examine the role of local transitivity in reading difficulty.

Measures of network integration

Increases in global efficiency—fewer links—were associated with better PDE scores when both

words were presented audibly (AA). We note that the other conditions (AV,VV) showed a sim-

ilar, but non-significant, trend, and thus this relationship suggests overall reading network effi-

ciency is related to higher PDE scores. We interpret this pattern in light of the phonological

nature of the rhyming judgment task, which requires encoding visually-presented words into a

phonological form. Again, the global network analysis cannot determine the frequency and

conditions under which individual connections were used, however this presentation-depen-

dent relationship indicates that the children with the least reading difficulty were most likely to

recruit less of the network’s circuitry. Given the phonological nature of the task, this network

likely includes regions involved in resolving letter-sound correspondences during audiovisual

integration. If reading difficulty is monotonically related to disordered audiovisual integration

processing, involvement of these audiovisual integration sites may be more helpful for better
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readers. If audiovisual processing is disordered in these individuals, input from integration

sites would be expected to hinder performance, and children with less severe reading difficulty

may be those who better gate orthographic input into the phonological system. When words

were presented audibly, participants had direct access to accurate and robust phonological rep-

resentations, and accurate performance is less reliant on audiovisual integration processes. This

interpretation is supported by the GLM presentation modality contrasts showing an extensive

region of STG in which activation in the AA condition was significantly greater than that for

the other two conditions, and possibly reflecting a more efficient recruitment of the local pho-

nological network. The manner in which information is gated into the visual system has been

proposed as a contributing factor of reading difficulty [74, 75]. It seems equally plausible that

reading might also depend on appropriate gating of information into the phonological system.

Analyses of global efficiency within MCC networks found the unimodal conditions main-

tained the same directionality, but found that global efficiency was the only significant and

negatively related predictor of PDE. Mean global efficiency was lower overall in the MCC net-

works (M = .55) than the significance-thresholded networks (M = .92), indicating an increased

sparsity of these networks. This suggests that it is the strongest connections among networks

in the AV presentation condition that drive this relationship, again highlighting the sensitivity

of tasks emphasizing audiovisual processing to reading difficulty.

Considerations and limitations

Our analyses were constrained or influenced by features of our data set that provide important

context for the interpretation of our results. First, the fast event-related design used in the

study was optimized for a more conventional voxel-based exploration of task-dependent

regional processing in this population under different conditions using the General Linear

Model. As we suggest earlier, the onsets of trials of different types would plausibly influence

the computation of lag-dependent cross-correlations, thus motivating the decision to focus on

zero-lag correlations. Though a block design would appear to overcome this obstacle by per-

mitting computation of connectivity within-blocks, such a design would make the task trivially

easy and was thus precluded.

Second, we applied two of the many thresholding techniques available. Both techniques

lead to the same general conclusion that reading difficulty is predicted by task-related func-

tional connectivity specific to the reading network, and that these relationships are dependent

on audiovisual processing modality, however subtle differences were found between them. We

note that graph theoretic measures depend on the manner in which network topologies are

defined [68], and thus that a different thresholding technique can generate different measures

of network integration and segregation. Thus, that differences between approaches were

observed was not surprising, but moving beyond our speculative discussion of these differ-

ences to uncover the theoretical implications and mechanisms underlying these differences

requires further investigation that we would encourage.

Conclusions

A large body of literature supports the intuitive argument that reading is dependent on strong

connections between functionally specialized regions within a larger reading network support-

ing orthographic and phonological processing [20, 36–42, 44–49, 53, 54]. Much of the research

that has been conducted has focused primarily on the strength of connectivity between specific

brain regions [50–54]. Our findings complement this literature, showing that connectivity

strength is only one consideration, and that the manner of connectivity—whether to facilitate

communication between or within regions, or to promote recurrent information processing—
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also plays an important role in reading skill. We show that the manner of functional connectiv-

ity throughout the entire reading network is predictive of reading skill in children with reading

difficulty. This finding is consistent with the assumption that the manner in which these puta-

tively functionally-specialized regions are connected impacts how they interact during reading

and thus influences reading ability in children with reading difficulty.

Though no presentation modality was clearly more sensitive to network structure, we do

find that children with reading difficulty engage the left hemisphere reading network differ-

ently depending on presentation modality and reading skill, as shown by the linear regression

coefficient valence differences across presentation modality conditions. Thus, we found pre-

sentation-modality dependent processing dynamics differentiate better from poorer readers

with reading difficulty. Our results suggest that children better able at overcoming reading dif-

ficulty do so by balancing increased network modularity with processing efficiency, and that

this advantage is more pronounced under conditions that emphasize audiovisual processing.

Our findings indicate that characteristic patterns of segregation and integration within the

reading network predicts severity of reading difficulty in children diagnosed with developmen-

tal reading disorders, and thus establishes a relationship between reading difficulty and the

manner in which information is transferred through the network of brain areas involved in

reading. Moreover, these relationships varied by presentation modality, suggesting that a

child’s ability to modulate network processing dynamics in response to different task-modality

demands may be an important factor in reading skill. Complementing conventional contrast-

based analyses, these functional connectivity analyses of reading provide important additional

insight into the processing dynamics that may underlie reading difficulty.
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38. Fraga González G, ŽarićG, Tijms J, Bonte M, van der Molen MW. Contributions of letter-speech sound

learning and visual print tuning to reading improvement: evidence from brain potential and dyslexia

training studies. Brain sciences. 2017; 7(1):10.

39. Frye RE, Liederman J, McGraw Fisher J, Wu M-H. Laterality of temporoparietal causal connectivity dur-

ing the prestimulus period correlates with phonological decoding task performance in dyslexic and typi-

cal readers. Cerebral Cortex. 2011; 22(8):1923–34. https://doi.org/10.1093/cercor/bhr265 PMID:

21980019

40. Gold BT, Powell DK, Xuan L, Jiang Y, Hardy PA. Speed of lexical decision correlates with diffusion

anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging. Neuropsy-

chologia. 2007; 45(11):2439–46. https://doi.org/10.1016/j.neuropsychologia.2007.04.011 PMID:

17509627

41. Gullick MM, Booth JR. The direct segment of the arcuate fasciculus is predictive of longitudinal reading

change. Dev Cogn Neurosci. 2015; 13:68–74. https://doi.org/10.1016/j.dcn.2015.05.002 PMID:

26011750

42. Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, et al. Neural systems predicting

long-term outcome in dyslexia. Proceedings of the National Academy of Sciences. 2011; 108(1):361–6.

43. Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the angular gyrus in normal reading

and dyslexia. Proceedings of the National Academy of Sciences. 1998; 95(15):8939–44.

Network analysis of dyslexia

PLOS ONE | https://doi.org/10.1371/journal.pone.0208923 December 17, 2018 23 / 25

http://www.ncbi.nlm.nih.gov/pubmed/9482939
https://doi.org/10.1016/j.neuroimage.2007.03.065
http://www.ncbi.nlm.nih.gov/pubmed/17513133
https://doi.org/10.1111/j.1469-7610.2006.01684.x
http://www.ncbi.nlm.nih.gov/pubmed/17073983
https://doi.org/10.1016/j.cub.2009.01.065
http://www.ncbi.nlm.nih.gov/pubmed/19285401
http://www.ncbi.nlm.nih.gov/pubmed/9183247
http://www.ncbi.nlm.nih.gov/pubmed/11971088
http://www.ncbi.nlm.nih.gov/pubmed/15003179
https://doi.org/10.1523/JNEUROSCI.5091-09.2010
https://doi.org/10.1523/JNEUROSCI.5091-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/9103996
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
https://doi.org/10.1103/PhysRevE.69.066133
http://www.ncbi.nlm.nih.gov/pubmed/15244693
https://doi.org/10.1016/j.neuroimage.2017.06.044
https://doi.org/10.1016/j.neuroimage.2017.06.044
http://www.ncbi.nlm.nih.gov/pubmed/28645843
https://doi.org/10.1016/j.biopsych.2013.08.031
http://www.ncbi.nlm.nih.gov/pubmed/24124929
https://doi.org/10.1093/cercor/bhr265
http://www.ncbi.nlm.nih.gov/pubmed/21980019
https://doi.org/10.1016/j.neuropsychologia.2007.04.011
http://www.ncbi.nlm.nih.gov/pubmed/17509627
https://doi.org/10.1016/j.dcn.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26011750
https://doi.org/10.1371/journal.pone.0208923


44. Koyama MS, Di Martino A, Kelly C, Jutagir DR, Sunshine J, Schwartz SJ, et al. Cortical signatures of

dyslexia and remediation: an intrinsic functional connectivity approach. PLoS One. 2013; 8(2):e55454.

https://doi.org/10.1371/journal.pone.0055454 PMID: 23408984

45. Nagy Z, Westerberg H, Klingberg T. Maturation of white matter is associated with the development of

cognitive functions during childhood. Journal of cognitive neuroscience. 2004; 16(7):1227–33. https://

doi.org/10.1162/0898929041920441 PMID: 15453975

46. Saygin ZM, Norton ES, Osher DE, Beach SD, Cyr AB, Ozernov-Palchik O, et al. Tracking the roots of

reading ability: white matter volume and integrity correlate with phonological awareness in prereading

and early-reading kindergarten children. Journal of Neuroscience. 2013; 33(33):13251–8. https://doi.

org/10.1523/JNEUROSCI.4383-12.2013 PMID: 23946384

47. van der Mark S, Klaver P, Bucher K, Maurer U, Schulz E, Brem S, et al. The Left Occipitotemporal Sys-

tem in Reading: Disruption of Focal Fmri Connectivity to Left Inferior Frontal and Inferior Parietal Lan-

guage Areas in Children with Dyslexia. NeuroImage. 2011; 54(3): 2426–36. https://doi.org/10.1016/j.

neuroimage.2010.10.002 PMID: 20934519

48. Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA. Development of white matter and reading

skills. Proc Natl Acad Sci U S A. 2012; 109(44):E3045–53. https://doi.org/10.1073/pnas.1206792109

PMID: 23045658

49. Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, et al. Anatomi-

cal properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neu-

rosci. 2011; 23(11):3304–17. https://doi.org/10.1162/jocn_a_00061 PMID: 21568636

50. Johnson MH. Functional brain development in humans. Nat Rev Neurosci. 2001; 2(7):475–83. https://

doi.org/10.1038/35081509 PMID: 11433372

51. Schlaggar BL, Church JA. Functional Neuroimaging Insights Into the Development of Skilled Reading.

Current Directions in Psychological Science. 2009; 18(1):21–6. https://doi.org/10.1111/j.1467-8721.

2009.01599.x PMID: 19750204

52. Schlaggar BL, McCandliss BD. Development of neural systems for reading. Annu Rev Neurosci. 2007;

30:475–503. https://doi.org/10.1146/annurev.neuro.28.061604.135645 PMID: 17600524

53. Bitan T, Burman DD, Lu D, Cone NE, Gitelman DR, Mesulam MM, et al. Weaker top-down modulation

from the left inferior frontal gyrus in children. Neuroimage. 2006; 33(3):991–8. https://doi.org/10.1016/j.

neuroimage.2006.07.007 PMID: 16978881

54. Koyama MS, Di Martino A, Zuo XN, Kelly C, Mennes M, Jutagir DR, et al. Resting-state functional con-

nectivity indexes reading competence in children and adults. J Neurosci. 2011; 31(23):8617–24. https://

doi.org/10.1523/JNEUROSCI.4865-10.2011 PMID: 21653865

55. Liu X, Gao Y, Di Q, Hu J, Lu C, Nan Y, et al. Differences between child and adult large-scale functional

brain networks for reading tasks. Human brain mapping. 2018; 39(2):662–79. https://doi.org/10.1002/

hbm.23871 PMID: 29124823

56. Horowitz-Kraus T, Toro-Serey C, DiFrancesco M. Increased resting-state functional connectivity in the

cingulo-opercular cognitive-control network after intervention in children with reading difficulties. PloS

one. 2015; 10(7):e0133762. https://doi.org/10.1371/journal.pone.0133762 PMID: 26197049

57. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human

brain function. Proceedings of the National Academy of Sciences. 2010; 107(10):4734–9.

58. Gonzalez-Castillo J, Bandettini PA. Task-based dynamic functional connectivity: Recent findings and

open questions. Neuroimage. 2017.

59. Vogel AC, Church JA, Power JD, Miezin FM, Petersen SE, Schlaggar BL. Functional network architec-

ture of reading-related regions across development. Brain Lang. 2013; 125(2):231–43. https://doi.org/

10.1016/j.bandl.2012.12.016 PMID: 23506969

60. Horowitz-Kraus T, Buck C, Dorrmann D. Altered neural circuits accompany lower performance during

narrative comprehension in children with reading difficulties: an fMRI study. Annals of dyslexia. 2016;

66(3):301–18. https://doi.org/10.1007/s11881-016-0124-4 PMID: 26987654

61. Wechsler D. Wechsler Abbreviated Scale of Intelligence1999.

62. Woodcock RW, McGrew KS, Mather N. Woodcock-Johnson III Tests of Cognitive Abilities2001.

63. Torgesen JK, Rashotte CA, Wagner RK. Towre: Test of Word Reading Efficiency1999.

64. Smith GJ, Booth JR, McNorgan C. Longitudinal task-related functional connectivity changes predict

reading development. Frontiers in Psychology. In Press.

65. Zeno S, Ivens S, Millard R, Duvvuri R. The Educator’s Word Frequency Guide1995.

66. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An Automated Labeling

System for Subdividing the Human Cerebral Cortex on Mri Scans into Gyral Based Regions of Interest.

NeuroImage. 2006; 31(3): 968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021 PMID: 16530430

Network analysis of dyslexia

PLOS ONE | https://doi.org/10.1371/journal.pone.0208923 December 17, 2018 24 / 25

https://doi.org/10.1371/journal.pone.0055454
http://www.ncbi.nlm.nih.gov/pubmed/23408984
https://doi.org/10.1162/0898929041920441
https://doi.org/10.1162/0898929041920441
http://www.ncbi.nlm.nih.gov/pubmed/15453975
https://doi.org/10.1523/JNEUROSCI.4383-12.2013
https://doi.org/10.1523/JNEUROSCI.4383-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23946384
https://doi.org/10.1016/j.neuroimage.2010.10.002
https://doi.org/10.1016/j.neuroimage.2010.10.002
http://www.ncbi.nlm.nih.gov/pubmed/20934519
https://doi.org/10.1073/pnas.1206792109
http://www.ncbi.nlm.nih.gov/pubmed/23045658
https://doi.org/10.1162/jocn_a_00061
http://www.ncbi.nlm.nih.gov/pubmed/21568636
https://doi.org/10.1038/35081509
https://doi.org/10.1038/35081509
http://www.ncbi.nlm.nih.gov/pubmed/11433372
https://doi.org/10.1111/j.1467-8721.2009.01599.x
https://doi.org/10.1111/j.1467-8721.2009.01599.x
http://www.ncbi.nlm.nih.gov/pubmed/19750204
https://doi.org/10.1146/annurev.neuro.28.061604.135645
http://www.ncbi.nlm.nih.gov/pubmed/17600524
https://doi.org/10.1016/j.neuroimage.2006.07.007
https://doi.org/10.1016/j.neuroimage.2006.07.007
http://www.ncbi.nlm.nih.gov/pubmed/16978881
https://doi.org/10.1523/JNEUROSCI.4865-10.2011
https://doi.org/10.1523/JNEUROSCI.4865-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21653865
https://doi.org/10.1002/hbm.23871
https://doi.org/10.1002/hbm.23871
http://www.ncbi.nlm.nih.gov/pubmed/29124823
https://doi.org/10.1371/journal.pone.0133762
http://www.ncbi.nlm.nih.gov/pubmed/26197049
https://doi.org/10.1016/j.bandl.2012.12.016
https://doi.org/10.1016/j.bandl.2012.12.016
http://www.ncbi.nlm.nih.gov/pubmed/23506969
https://doi.org/10.1007/s11881-016-0124-4
http://www.ncbi.nlm.nih.gov/pubmed/26987654
https://doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
https://doi.org/10.1371/journal.pone.0208923


67. Bitan T, Burman DD, Chou TL, Lu D, Cone NE, Cao F, et al. The interaction between orthographic and

phonological information in children: an fMRI study. Hum Brain Mapp. 2007; 28(9):880–91. https://doi.

org/10.1002/hbm.20313 PMID: 17133384

68. Van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity

density using graph theory. PloS one. 2010; 5(10):e13701. https://doi.org/10.1371/journal.pone.

0013701 PMID: 21060892

69. Vijayalakshmi R, Nandagopal D, Dasari N, Cocks B, Dahal N, Thilaga M. Minimum connected compo-

nent–a novel approach to detection of cognitive load induced changes in functional brain networks.

Neurocomputing. 2015; 170:15–31.
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