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Background and Objective: While evidence has demonstrated that the default-mode

network (DMN) plays a key role in the broad-scale cognitive problems that occur in right

temporal lobe epilepsy (rTLE), little is known about alterations in the network homogeneity

(NH) of the DMN in TLE. In this study, we used the NH method to investigate the NH of

the DMN in TLE at rest, and an support vector machine (SVM) method for the diagnosis

of rTLE.

Methods: A total of 43 rTLE cases and 42 healthy controls (HCs) underwent

resting-state functional magnetic resonance imaging (rs-fMRI). Imaging data were

analyzed with the NH and SVM methods.

Results: rTLE patients have a decreased NH in the right inferior temporal gyrus (ITG)

and left middle temporal gyrus (MTG), but increased NH in the bilateral precuneus (PCu)

and right inferior parietal lobe (IPL), compared with HCs. We found that rTLE had a

longer performance reaction time (RT). No significant correlation was found between

abnormal NH values and clinical variables of the patients. The SVM results showed that

increased NH in the bilateral PCu as a diagnostic biomarker distinguished rTLE from

HCs with an accuracy of 74.12% (63/85), a sensitivity 72.01% (31/43), and a specificity

72.81% (31/42).

Conclusion: These findings suggest that abnormal NH of the DMN exists in rTLE,

and highlights the significance of the DMN in the pathophysiology of cognitive problems

occurring in rTLE, and the bilateral PCu as a neuroimaging diagnostic biomarker for rTLE.

Keywords: right temporal lobe epilepsy, resting-state functional magnetic resonance, default mode network,

network homogeneity, biomarker
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INTRODUCTION

Temporal lobe epilepsy (TLE), the most common form of
adult epilepsy, is a common nervous system disease (1, 2).
It is characterized by complex partial seizures, and secondary
generalizations resulting from abnormal electrical activity in
the temporal lobe, presenting as epileptic foci (3, 4). The
recurring seizures in most people with TLE, result in cognitive
dysfunction in areas such as learning, language, memory,
emotion, perception, attention, consciousness, and behavior,
which has a serious impact on their cognitive abilities and their
lives (5–7). Existing studies have shown that the pathogenesis
of epilepsy can be further understood through the study of
the brain network properties, and interactions between different
brain regions. However, the exact mechanism of the onset of this
disorder is still not clear.

Advances in neuroimaging techniques have enabled
increasingly detailed observation of alterations in the brain that
are involved in the pathophysiology of TLE. Such observations
have shown that topological patterns of brain structural networks
were aberrant in patients with TLE (8). Abnormalities of the
uncinate fasciculus correlate with executive dysfunction in
patients with left TLE (9). Resting-state functional magnetic
resonance imaging (fMRI), has a potential to detect abnormal
neural activity, and is therefore extensively used in neuroscience.
Up to the present, there are a large number of studies using fMRI
to study TLE, investigating diverse abnormalities in different
brain regions (10–15). However, according to the findings of
these studies, the pathophysiology of TLE is still unclear.

In recent, the growing body of functional neuroimaging,
at-rest data has opened up new avenues for surveys of the
previously neglected field of intrinsic network organization. TLE
is increasingly thought to be a disorder involving abnormal
epileptogenic networks, rather than a single focal epileptogenic
source (16–18). Accumulating evidence has shown that TLE
exists in several networks disturbances, including alertness
network (19), attention network (20) and default mode network
(DMN) (13, 21, 22). However, there are only a few reports
concerning the DMN and its function in patients with TLE.

Interestingly, the DMN has received increasing attention
because it plays important roles in many medical or neurological
illnesses. This network is characterized by showing higher activity
at rest, deactivating during task-related cognitive processes
(23, 24). Recently, the DMN was thought to include several
special brain regions, such as medial prefrontal cortex (MPFC),
lateral posterior cortices, posterior cingulate cortex / precuneus
(PCC / PCu) (25), lateral temporal gyrus (26), cerebellar Crus
1 and Crus 2 (27). Researchers have demonstrated that the
DMN is closely correlated with episodic memory processing,
negative ruminations, complex self-referential stimuli (28) and
in some special mind-states, such as anesthesia and sleep (29).
Furthermore, the DMN is associated with cognitive functioning,
especially executive function (30).

In addition, increasing evidence has shown a connectivity
of abnormal resting state within the DMN in patients with
epilepsy, but the results are mixed. For instance, many findings
showed that there are increased PCC, and decreased medial

prefrontal cortex (MPFC) functional connectivities in TLE (31,
32). However, other studies found decreased DMN connectivities
in PCC, anterior frontal, and parietal regions (33, 34). Moreover,
antiepileptic drugs and duration of illness could also contribute
to the abnormality of DMN (35). These findings consistently
show that the DMN plays a crucial role in TLE. However, the
homogeneity of this network has not been fully explored.

Recently, the SVM is widely used in neuropsychiatric diseases
due to its scientificity and effectivity (10, 11, 15, 36–38). An
optimal separating hyperplane of the high-dimensional space can
be confirmed by the SVM. In the fMRI analysis, a discrimination
map can be generated by superimposing the SVM weights back
to the original brain space, and the most significant weights
can be visually traced back to the most discriminative parts
of the brain. The SVM method has great potential to provide
clinically useful criteria for decision-making from such high-
dimensional neuroimaging data. In this study, we investigated
NH of DMN in rTLE patients, and hypothesized NH values in
altered brain regions could be used as potential neuroimaging
biomarkers to diagnose rTLE through the SVM method. In this
work, we used a method called network homogeneity (NH)
(39) to analyze resting state data in TLE. This informative
approach studies a given network without specifying the location
of network abnormalities. It assesses the correlation of a voxel
with all other voxels within a specific network of interest.
Homogeneity is defined to be the average correlation of the
time series of any given voxel with the time series of all
other voxels within the network. The NH method has been
used for depression, somatization, attention-deficit/hyperactivity
disorder, schizophrenia and their unaffected siblings (39–46).
Epilepsy encompasses different epileptic types with differing
discharge places, which illustrates the differences in structure
and functional impairment are possible (31). Even in identical
brain regions, the left and right sides show differences (47). Thus,
studies on unilateral TLE may have the advantage when assessing
brain function, because it lessens the confounding effects of
differences in discharging places. Using the NH method, we
studied the NH of the DMN in people with rTLE, and examined
the characteristics of the DMN and possible mechanism that
causes rTLE in patients with rTLE. Furthermore, we try to
find a potential biomarker to diagnosis rTLE from healthy
controls (HCs).

MATERIALS AND METHODS

Subjects
A total of 43 patients with rTLE were recruited from the Epilepsy
Clinic at the Department of Neurology, Sleep and Psychosomatic
Medicine Center, Taihe Hospital, Hubei University of Medicine.
The diagnosis of rTLE was made according to the diagnostic
criteria of the International League Against Epilepsy (48).
Patients with epilepsy who met any two of the following
symptoms were classified as patients with rTLE: (1) the clinical
onset of symptoms suggested the location of epileptogenic
focus in the temporal lobe; (2) interictal electroencephalographic
(EEG) traces illustrated lesions in the right temporal lobe; and
(3) an MRI showed sclerosis or atrophy in the right temporal
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lobe. Exclusion criteria were as follows: left-handed; pregnant
or breastfeeding, history of tobacco, alcoholic, drug abuse,
and history of serious medical diseases; mental disorders or
other neurological illnesses; a score <24 in a mini-mental state
examination (MMSE), and contraindications for MRI.

A total of 42 age-, gender-, and years of education- matched
healthy controls were recruited from the community. Exclusion
criteria for the healthy controls were: (1) history of brain
operations; (2) history of severe neuropsychiatric diseases; (3)
serious medical illness; and (4) pregnant or breastfeeding; history
of tobacco, alcoholic, drug abuse. Participants who had any
contraindications for MRI were excluded. Patients and healthy
controls were subjected to an MMSE to evaluate cognitive
function. The reaction time (RT) measurements obtained from
the Attentional Network Test (49) were used to assess executive
function. All participants provided a written informed consent
before entering the study. The ethics committee of the Taihe
Hospital, Hubei University of Medicine approved the study.

Scan Acquisition
Scanning was conducted using an Achieva 3T MRI scanner
(Philips, Netherlands). Participants were asked to lie down with
their eyes closed and to remain awake. We used a prototype
quadrature birdcage head coil fitted with foam padding to
minimize head movement. The scanning parameters were as
follows: (1) structural scan (T1-weighted): spin-echo sequence,
repetition time (TR) = 20ms, echo - time (TE) = 3.5ms, slice
thickness = 1mm, and field of view (FOV) = 24∗24 cm, scan
time about 7min. (2) rs - fMRI scan: gradient echo - echo planar
imaging sequence (echo - planar imaging T2∗ weighted), TR/TE
= 2,000/30ms, slice thickness = 5mm, pitch = 1mm, FOV =

220× 220 mm2, and flip angle= 90◦, scan time was about 9 min.

Data Preprocessing
DPARSF software (50) was used in MATLAB for preprocessing
rs-fMRI imaging data. First, the first 5 time points were
discarded. Then, slice-time and head-motion correction were
performed. At this point, participants who had more than 2mm
ofmaximal displacement on the x, y, or z axis, andmore than 2◦of
maximal rotation were excluded. Subsequently, normalization
and resampling were performed to generate the dimensions
of 3 × 3 × 3mm. During the process of functional image
normalization, head motion parameters, white matter signal and
cerebrospinal fluid signal were used as removal covariates, and
a voxel size of 3 x 3 x 3mm was used as a functional covariate.
After that, an 8mm, full-width at half-maximumGaussian kernel
was used to smooth the acquired images. Temporal bandpass
filtering (0.01–0.08Hz) and linear detrending were used to
reduce the influence of low-frequency drifts, and physiological
high-frequency noise. During preprocessing, the signal from a
region centered in the white matter, six head motion parameters
obtained by rigid body correction, and signal from a ventricular
region of interest were removed. However, the global signal
was preserved, given that removal may introduce artifacts into
the data and distort resting-state connectivity patterns, and the
regression of the global signal may significantly distort results
when studying clinical populations (51, 52).

DMN Identification
The group independent component analysis (ICA) method was
used to pick out DMN components according to the templates
provided by GIFT (53). Briefly, the ICA analysis included
three main steps using the GIFT toolbox (52): data reduction;
independent component separation; and back reconstruction.
The generated DMNwas used as a mask for further NH analyses.

NH Analysis
NH analysis was performed using an in-house script in Matlab.
For each subject, the correlation coefficient of each voxel was
computed against all other voxels within the DMN mask. Then,
the mean correlation coefficient was averaged and subsequently
changed into a z-value by using a z-transformation. The resultant
values generated the NH maps. Finally, the NH maps were
z-transformed for group comparison.

Statistical Analyses
Demographic information, including age, gender, years of
educational, and imaging data were compared between the rTLE
and the HCs. Chi-square test and the two-sample t-test were,
respectively used to compare the categorical data and continuous
variables. The NH maps of patients and HCs were analyzed with
a two-sample t-test via voxel-wise cross-subject statistics within
the DMN mask. The significance level was set to be p < 0.01,
and corrected for multiple comparisons using Gaussian Random
Field (GRF) theory (GRF corrected, voxel significance: p< 0.001,
cluster significance: p < 0.01).

Classification Analyses
LIBSVM (a Library for Support Vector Machines) software
package was applied to examine whether abnormal NH in
the DMN could be used as potential biomarkers for diagnosis
of rTLE.

RESULTS

Demographics and Clinical Characteristics
of the Subjects
No patients or controls were excluded due to excessive head
movement. No significant differences were found between the
two groups in terms of gender, age, years of education and
MMSE. The rTLE group had longer RTs, but no significant
differences in RT were found between the rTLE group and the
HCs. The demographic data for the recruited subjects are given
in Table 1.

The DMN Maps Determined by Group ICA
The DMN mask was constructed from the control group using
the ICAmethod. The DMN included the following brain regions:
bilateral MPFC; PCC/PCu; ventral anterior cingulate cortex;
lateral temporal cortex; medial, lateral, inferior parietal lobes; and
cerebellum Crus 1 and Crus 2. The generated DMN mask was
used in the subsequent NH analysis.
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TABLE 1 | Characteristics of the participants.

Demographic data Patients (n = 43) NC (n = 42) T (orx2) P-value

Gender (male/female)

Age (years)

Years of education (years)

Illness duration (years)

ECRT

43 (23/20)

27.91 ± 6.48

13.01 ± 2.67

8.49 ± 7.1

91.60 ± 54.85

42(22/20)

26.96 ± 5.31

13.67 ± 1.88

67.81 ± 48.02

0.12

0.74

−1.33

2.13

0.29a

0.46b

0.19b

0.04b

aThe p-value for gender distribution was obtained by chi-square test.
bThe p-value were obtained by two sample t-tests.

NC, normal control; ECRT, executive control reaction time.

TABLE 2 | Signification differences in NH values between the groups.

Cluster location Peak X (MNI) Y Z Number of

voxels

T value

Patients<controls

Right ITG

Left MTG

Patients >controls

Right PCu

Left PCu

Right IPL

51

−48

12

0

51

6

−3

−60

−78

−57

−36

30

30

33

48

135

70

45

50

47

−4.80

−4.64

4.59

3.59

4.16

MNI, Montreal Neurological Institute; ITG, inferior temporal gyrus; MTG, middle temporal

lobe; PCu, Precuneus; IPL, inferior parietal lobe.

NH: Group Differences in the DMN
With the two-sample t-tests via voxel-wise, cross-subject
comparisons, significant differences were observed within the
DMN, between the NH values for the patient and control groups.
Compared to HCs, the rTLE patients had decreased NH in the
right inferior temporal gyrus (ITG) and left middle temporal lobe
(MTG), but increased NH in the bilateral precuneus (PCu) and
right inferior parietal lobe (IPL) (Table 2, Figure 1).

Correlations Between NH and Clinical
Variables
The mean NH values were extracted in the four regions (right
ITG, left MTG, bilateral PCu, and right IPL), with significant
group differences. Pearson’s linear correlation analyses were
performed between NH and these clinical variables in the
patient group: RT; illness duration; and age at seizure onset.
Results showed no significant correlation between NH and these
clinical variables.

SVM Results
The increased NH in the bilateral PCu in the rTLE patients
were analyzed by the SVM method with a classification accuracy
of 74.12%, a sensitivity of 72.01%, and a specificity of 72.81%
(Figure 2).

DISCUSSION

NH is a new approach for detecting specific loci of compromised
connectivity, and for studying within-network coherence. It
has been used to study several diseases, such as attention

deficit/hyperactivity disorder (39), major depressive disorder (54,
55), schizophrenia (42) and mild cognitive impairment (56). We
applied this method to estimate the DMN homogeneity in TLE at
rest. The results showed that rTLE patients have a decreased NH
in the right ITG and left MTG, but increased NH in the bilateral
PCu and right IPL when compared with HCs.

In TLE, it is widely considered that the temporal lobe
plays an important part in the regulation and propagation of
epileptic discharges, because of the presentation of epileptic foci.
Hence, the temporal lobe has proven to be a common target
for both structural and functional study of TLE. One study
showed altered intrinsic functional connectivity in the temporal
regions during both the latent and chronic periods of TLE (4).
Among the numerous studies, aberrant regional activation of
ITG and/or MTG were repeatedly found from neuroimaging.
The ITG, with the localization of lateral and inferior surface of
the temporal neocortex, is thought to be the central region for
language formulation, and a tertiary visual association cortex
region (57), which related to cognitive functions such as memory,
language, and visual perception (58, 59). Consistent results
from neuroimaging studies of major depressive disorder have
demonstrated that this region is involved in emotional processing
and social cognition (46, 60). Moreover, the ITG is a key node in
a widespread network of frontal, temporal, parietal, occipital, and
sub-cortical structures. Thus, abnormal activation of this region
could significantly impair the function of the temporal lobe. The
MTG plays a critical role in semantic memory and language
processing (61). As a result, abnormal activation in the MTG
could also consequently affect the function of the temporal lobe.
In this study, we demonstrated decreased NH in the right ITG
and the MTG. Accordingly, these abnormalities could impair
memory and language functions, and result in dysfunction in
rTLE patients.

The PCu, a key region of the DMN, is selectively connected
with the intraparietal sulcus, the inferior and superior parietal
lobules, and the caudal parietal operculum. Acting in concert,
these structures are involved in the processing of visuo-spatial
information (62–64). It is a significant and integrative structure
which exhibits widespread connectivity with some cortical
and sub-cortical regions (65). The PCu is responsible for
various, essential, cognitive and behavioral functions, including
episodic memory retrieval, visuospatial imagery, self-processing
operations, and consciousness (65, 66). The right IPL is crucial
in the DMN and the frontal parietal network, participating in
sustaining attention, alertness, and task switching. Studies in
rTLE using resting state fMRI, found that the right IPL had
lower functional connectivity (FC) in TLE when compared with
the control group (14, 67), which might result in alertness
impairment in patients. Because the parietal lobe is connected
to the temporal lobe, epileptic discharges from the epileptogenic
zone (right temporal lobe) can spread to distant brain regions
through the superior longitudinal fasciculus. However, we did
not find the same activation pattern in our study. The discrepancy
in findings might be attributed to there different epileptic focal
positions in patients recruited in previous studies. A smaller
sample size, or the application of different methods might
also have influenced the results. Here, the inconsistent result
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FIGURE 1 | NH differences between patients with rTLE and HCs. Red and blue denote higher and lower NH, respectively, and the color bars represent the T values

from the two-sample t-test of the group analysis. NH, network homogeneity; rTLE, right temporal lobe epilepsy; HCs, healthy controls.

FIGURE 2 | Depiction of classifications based on the SVM using a combination of NH values in the bilateral PCu to differentiate rTLE patients from HCs. Left: SVM

parameters result of 3D view. g means gamma, c means penalty coefficient. Right: dimension 1 and dimension 2 represent the NH values in the bilateral PCu. Green

crosses represent rTLE patients, and the red crosses represent HCs. SVM, support vector machine; NH, network homogeneity; PCu, precuneus; rTLE, right temporal

lobe epilepsy; HCs, healthy controls.

may relate to the different analysis methods. Another probable
explanation is as follows: according the roles of IPL and PCu in
the cognition process, the increased NH in the bilateral PCu and
right IPL might be a compensatory function for the damage to

the temporal lobe, and this function becomes stronger depending
on the severity of the temporal lobe damage. In addition, by
measuring the abnormal NH values of lTLE, our previous study
suggested that NH could be utilized as a neuroimaging biomarker

Frontiers in Psychiatry | www.frontiersin.org 5 June 2022 | Volume 13 | Article 923583

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Huang et al. Abnormal Precuneus in Right TLE

for monitoring lTLE progression (unpublished). In this study,
SVM analysis showed that increased NH values in the bilateral
PCu could be used to distinguish rTLE patients from HCs with
an accuracy of 74.12% (63/85), a sensitivity 72.01% (31/43), and
a specificity 72.81% (31/42).

In the network mode of the human brain, DMN is
characterized with a group of brain regions that are functionally
consistent, that is, high activity while in a resting state, but
decreased activity during non-specific task execution such as
paying attention. It is closely related to the mental activities
of other advanced cognitive functions, such as introspection,
scene memory, environmental monitoring and awareness levels
(68–72). A previous study confirmed that the DMN changed,
which may be relevant to altered cognition and memory in
TLE (13, 14, 73). Consistent with the studies referred to
above, we thought that the DMN is dysfunctional in TLE,
thereby negatively influencing memory and cognition in TLE
patients. Furthermore, our study showed a dissociation pattern
of activity in DMN, with hypoactivity in anterior regions
of the DMN (right ITL and left MTL), but hyperactivity
in posterior regions of the DMN (bilateral PCu and right
IPL). Other studies of TLE have found significant differences
in activity in the resting-state of the DMN, which may
explain the symptoms of patients with TLE, such as loss of
consciousness, impairments to learning and memory, emotions;
and motor, sensory, or psychiatric symptoms (74, 75). The
consistent results indicated that the DMN was disturbed, and
this aberrance plays an important role in the pathophysiology
of TLE.

It is worth noting that patients with rTLE had longer
RTs, but no significant correlations between abnormal NH
values and RT were found. As studies have demonstrated,
TLE patients usually exhibit executive functional impairment.
Since it is universally acknowledged that the DMN plays a
crucial role in executive functions, we speculate that the regions
showing abnormal NH in this study indirectly participate in
executive functions. No significant correlations were found
between abnormal NH values and RT, nor age of seizure onset
or illness duration. These observations might imply that the
abnormal NH values for the DMN, might be a trait change in
rTLE patients.

There are several limitations to this study. First, the patients
were not drug naïve, which might influence the results. Second,
we could not thoroughly remove the physiological noise at rest,
such as cardiac and respiratory rhythms using a 2-s repetition
time, and that may bias the results. Third, this study focused on
the DMN. Understanding the neurophysiological abnormalities
of the DMN in rTLE would be helpful. For the same reason,
some meaningful findings from other brain regions besides this
network may have been excluded. Lastly, previous studies have
shown that there are somemorphological differences between the
Chinese population and the others (76). For this reason, the use
of the Chinese brain atlas for the data processing in this study
may also partly limit the results.

In conclusion, the altered NH in the right ITG, left MTG, left
MTG and bilateral PCu may be state-related changes of rTLE.
And, the increased NH in the bilateral PCu may be a potential
neuroimaging biomarker for rTLE.
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