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1  | INTRODUC TION

The phylum Apicomplexa comprises more than 5,000 species, most 
of which are obligate intracellular parasites, including important 
pathogens for humans such as Plasmodium spp., Toxoplasma gondii 
and Cryptosporidium spp. Tremendous progress has been achieved 
over the past 20 years with the advent of genome sequencing and the 
availability of powerful bioinformatics interfaces to interrogate ge-
nome resources from many species and strains (Harb & Roos, 2015). 

An additional leap forward comes from the development of a vari-
ety of genetic tools to manipulate the genome of apicomplexan par-
asites. Reverse genetics has become a central approach to explore 
parasite biology, unravel gene function and identify new targets 
for therapeutic strategies (Sexton et  al.,  2019). Genetic manipu-
lation in apicomplexan parasites has been limited until now mainly 
to Toxoplasma and a few species of Plasmodium (including P. falci-
parum), but has been greatly facilitated over the past years through 
the diversification of selection procedures, including flow cytometry 
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Abstract
Apicomplexan parasites encompass diverse pathogens for humans and animals, includ-
ing the causative agents of malaria and toxoplasmosis, Plasmodium spp. and Toxoplasma 
gondii. Genetic manipulation of these parasites has become central to explore parasite 
biology, unravel gene function and identify new targets for therapeutic strategies. 
Tremendous progress has been achieved over the past years with the advent of next 
generation sequencing and powerful genome editing methods. In particular, various 
methods for conditional gene expression have been developed in both Plasmodium 
and Toxoplasma to knockout or knockdown essential genes, or for inducible expression 
of master developmental regulators or mutant versions of proteins. Conditional gene 
expression can be achieved at three distinct levels. At the DNA level, inducible site-
specific recombinases allow conditional genome editing. At the RNA level, regulation 
can be achieved during transcription, using stage-specific or regulatable promoters, or 
post-transcriptionally through alteration of mRNA stability or translation. At the pro-
tein level, several systems have been developed for inducible degradation or displace-
ment of a protein of interest. In this review, we provide an overview of current systems 
for conditional control of gene expression in Plasmodium and Toxoplasma parasites, 
highlighting the advantages and limitations of each approach.
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assisted parasite sorting, and the advent of genome editing based 
on CRISPR-Cas9 (Di Cristina & Carruthers, 2018). In Toxoplasma, a 
major progress has been the development of ΔKu80 strains (Huynh 
& Carruthers, 2009). The Ku80 protein is involved in DNA repair and 
is required for the non-homologous end-joining pathway that is re-
sponsible for the high rate of random integration of transfected DNA 
in the T. gondii genome. In the ΔKu80 T. gondii strains, deletion of this 
gene increases the likelihood of homologous recombination to occur, 
therefore enhancing the chances of integration to the targeted locus, 
like in Plasmodium parasites. Moreover, together with the CRISPR-
Cas9 technology, this now allows reducing the homology arm length 
to 30–40 bp for genetic engineering of T. gondii parasites, therefore 
abrogating most of the lengthy cloning steps.

Genetic manipulation requires access to parasite replicative 
stages to allow the selection of recombinant parasites, that is, asexual 
blood stages in Plasmodium spp. or tachyzoites in T. gondii. Some spe-
cies are easily propagated in culture, such as P. falciparum, P. knowlesi 
or T. gondii, while others require passage and selection in animals. 
This is the case for P. berghei and P. yoelii, two rodent malaria spe-
cies that can be propagated in laboratory mice and Cryptosporidium, 
which can multiply in immunocompromised mice. Recently, culture 
methods based on intestinal organoids and air-liquid interface culti-
vation systems have been developed that support C. parvum growth 
in vitro, opening new perspectives for the genetic manipulation of 
this parasite (Heo et al., 2018; Wilke et al., 2019).

Apicomplexan parasites are haploid in stages that can be manipu-
lated, facilitating gene targeting. However, one inherent limitation of 
genetic manipulation is that genes that are essential for parasite inva-
sion, growth or egress in genetically tractable stages are refractory 
to direct gene deletion. In this context, conditional approaches are 
necessary for functional studies targeting essential genes. Genome-
wide screens based on targeted or random mutagenesis showed that 
around 40% of genes appeared essential in both P. berghei and P. fal-
ciparum asexual blood stages (Bushell et al., 2017; Zhang et al., 2018). 
Similarly, a genome-wide CRISPR-Cas9 screen performed in T. gondii 
revealed that around 40% of genes contribute to parasite fitness during 
proliferation of tachyzoites in cell cultures (Sidik et al., 2016). Many 
of these genes represent potential therapeutic targets. Evidence for 
genetic essentiality is important to validate targets, and conditional 
approaches are necessary to investigate the function of these genes 
in other parts of the life cycle. Conditional genome editing can also 
be applied to non-essential genes, in particular to avoid adaptation of 
the parasite that can occur during long selection procedures associ-
ated with conventional approaches, and which sometimes results in 
upregulation of compensatory gene expression masking the biological 
importance of a gene product. Conditional gene expression can also 
be used to induce parasite differentiation massively in a population, 
as exemplified with induced sexual conversion in Plasmodium (Filarsky 
et  al.,  2018; Kent et  al.,  2018; Poran et  al.,  2017) or conversion to 
bradyzoites in T. gondii (Waldman et al., 2020), and can be used to ex-
press dominant negative mutants or toxic genes (Kremer et al., 2013).

Three types of conditional approaches can be distinguished, de-
pending on whether gene expression is controlled at the DNA, RNA, 

or protein level. Conditional genome editing strategies operate at 
the DNA level and involve inducible recombination. Other strate-
gies act at the RNA level to manipulate the timing and/or level of 
transcription or alter the stability and/or translation of mRNA. The 
third class of conditional methods controls the expression of pro-
teins by modifying their stability or their localization. However, all 
three types of conditional strategies share a same final objective, to 
achieve temporal control on the expression of a protein of interest, 
and rely on modification of the parasite genome to introduce con-
trol elements in the gene of interest (GOI). While it is possible to 
conditionally and irreversibly knockout a gene with strategies based 
on DNA recombination, the other approaches result in a conditional 
knockdown, which is usually reversible. In the following sections, 
we summarize the current methods for conditional control of gene 
expression in Plasmodium and Toxoplasma parasites and discuss the 
advantages and limitations of each approach (Table 1).

2  | CONDITIONAL DNA EDITING

Removal of DNA sequences from the genome can be achieved by 
activating site-specific recombinases and is the most radical and irre-
versible method to disrupt gene function. Site-specific recombination 
(SSR) can also be used for conditional allelic replacement or recycling 
of selectable markers. Two SSR systems have been implemented in 
Plasmodium and/or Toxoplasma, one based on the yeast Flippase (Flp) 
and the other on the bacteriophage Cre (Collins et al., 2013; Lacroix 
et al., 2011). Both recombinases recognize short specific 34-bp se-
quences, termed Flippase Recognition Target (FRT) or locus of X-oxer 
in P1 (LoxP), respectively. FRT and LoxP sites can be introduced in 
the parasite genome to flank a target DNA sequence. Flp and Cre will 
induce DNA recombination between the two FRT or LoxP, respec-
tively, resulting in excision of the flirted/floxed DNA if the two sites 
are in the same direction, or inversion of the target DNA sequence 
if the sites are in the opposite orientation. Depending on the posi-
tion of the FRT/Lox sites, complete or partial gene deletion can be 
achieved by SSR. Diverse Lox site sequences can be used, which in-
creases the versatility of the system. Modifying the parasite genome 
to introduce FRT/Lox sites has been greatly facilitated by CRISPR-
Cas9 approaches (Knuepfer et al., 2017). One critical issue with both 
systems is the positioning of the FRT/Lox sites, which may have 
detrimental effects on gene expression by disrupting native gene 
regulatory elements with the introduction of exogenous sequences. 
To solve this issue, a strategy has been developed in P. falciparum, 
consisting in introducing Lox sites inside the GOI within a natural or 
artificial intron (Jones et al., 2016). Another option is to flank the 3’ 
UTR with FRT/Lox sites, to avoid detrimental effects on gene tran-
scription. However, SSR-mediated removal of the 3’ UTR may not be 
sufficient to induce gene silencing depending on the GOI for both 
Toxoplasma and Plasmodium, as exemplified with CRT in P. berghei or 
SERA5 in P. falciparum (Collins et al., 2013; Ecker et al., 2012).

The efficiency of SSR-based strategies depends on various fac-
tors, including the recombination rate, its effects on mRNA and/
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or protein synthesis in the case of partial gene deletion, as well as 
mRNA and/or protein stability following DNA excision. All these 
factors can vary depending on the GOI and the accessibility of the 
targeted locus. In this regard, the inclusion of a fluorescent marker 
which expression is switched on (or off) upon DNA recombination 
can facilitate the monitoring of SSR.

A common limitation of SSR approaches is the need for specific 
parental parasite lines that express the recombinase. Also, even 
though DNA excision can be rapid upon activation of the recom-
binase, SSR is not suitable to achieve rapid depletion of a protein 
of interest. Recombinase-based DNA excision is a potent approach 
as successful gene excision completely prevents gene transcription, 
however the major challenge is to obtain tight control of the recom-
binase activity. This has been achieved by expressing the Flp recom-
binase in a stage-specific manner, or by using a split version of Cre 
(DiCre) that can be activated by a small ligand, as detailed below.

2.1 | The Flp/FRT recombination system

The Flp/FRT SSR method consists in inserting FRT sites on each 
side of a target DNA sequence in a parasite line expressing the Flp 

recombinase via a regulatable or developmental stage-specific pro-
moter (Figure 1a). The activity of Flp is optimal at 30°C, and the Flp/
FRT system was shown to be poorly efficient in P. falciparum blood 
stage cultures (O’Neill et al., 2011). However, the system has been 
successfully implemented in the P. berghei model using stage-specific 
promoters active during parasite development in the mosquito to 
drive expression of the recombinase (Carvalho et al., 2004; Combe 
et al., 2009; Lacroix et al., 2011). Indeed, Flp activity is maintained at 
temperatures permissive for parasite development in the mosquito 
(20–25°C). Several deleter parental parasite lines have been gener-
ated in P. berghei NK65 and ANKA strains, expressing Flp or its ther-
molabile variant FlpL under control of trap or uis4 promoter (Lacroix 
et al., 2011; Panchal et al., 2012). The promoter of trap is active in 
mosquito midgut sporozoites, allowing Flp expression in immature 
sporozoites, whereas uis4 is upregulated in salivary gland sporozo-
ites and drives SSR after colonization of the insect salivary glands 
(Lacroix et al., 2011). In this system, Flp is not expressed in blood 
stages and the flirted GOI locus is not impacted. After transmission 
of the parasite to the mosquito, the Flp recombinase is expressed, 
leading to the excision of flirted DNA. This system thus requires pas-
sage through the mosquito to induce SSR, and can be used to confirm 
the essentiality of a gene and the consequences of gene deletion 
during pre-erythrocytic stages (Giovannini et al., 2011). However, it 
is less suitable for functional studies of essential genes in the blood 
stages. In addition, SSR occurs late during sporozoite development 
in the mosquito, with the risk of incomplete depletion due to pro-
tein carryover after DNA recombination, as documented for PKG in 
TRAP/FlpL parasites (Falae et al., 2010; Govindasamy et al., 2016).

2.2 | Dimerisable Cre

The Cre-Lox is a highly efficient technology that has been ex-
tensively used in many organisms (Hamilton & Abremski,  1984) 
(Nagy, 2000; Sauer, 1998), including Apicomplexa. Initial attempts 
to control Cre expression through regulated promoters revealed 
that leaky transcription combined with the high activity of Cre was 
sufficient to induce excision of floxed DNA even in the absence of 
induction (Brecht et al., 1999; O’Neill et al., 2011). An inducible ver-
sion of Cre, fused to a ligand domain of the estrogen receptor and 
activated by tamoxifen has been widely used in mammalian systems. 
However, tamoxifen affects the growth of P. falciparum in cultures 
and P. berghei in mice (Weinstock et al., 2019), and in T. gondii the Cre 
fusion with the hormone-binding domain was found to be constitu-
tively active, limiting the utilization of this conditional system (Brecht 
et al., 1999). This issue was solved through the use of ligand-induced 
activation of a split DiCre (Jullien et  al.,  2003). The DiCre system 
relies on the expression of the bacteriophage P1 Cre recombinase in 
the form of two separate enzymatically inactive polypeptides, a N-
terminal CRE59 fragment and a C-terminal CRE60 fragment, fused 
to a different rapamycin-binding protein (FKBP12 and FRB respec-
tively) (Jullien et al., 2003). Heterodimerization of the two subunits 
in the presence of rapamycin restores recombinase activity, inducing 

F I G U R E  1   Conditional genome editing. (a) In the Flp/FRT 
system, stage-specific expression of the Flp recombinase in 
mosquito stages results in site-specific recombination between 
FRT sites and excision of the flirted target DNA fragment during 
parasite maturation in the mosquito. (b) In the DiCre system, the 
Cre recombinase is expressed as two subunits fused to FKBP and 
FRB, respectively, that dimerize in the presence of rapamycin. 
Rapamycin-dependent heterodimerization of the two subunits 
restores recombinase activity, inducing site-specific recombination 
between Lox sites and excision of the floxed target DNA fragment
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SSR between Lox sites and excision (or inversion) of the floxed target 
DNA fragment (Figure 1b). The DiCre system has been implemented 
in both Toxoplasma and Plasmodium (Andenmatten et  al.,  2012; 
Collins et al., 2013). The system is highly efficient with excision rates 
approaching 100% in Plasmodium (Collins et  al.,  2013; Fernandes 
et al., 2020). Upon exposure to rapamycin, Cre activation occurs rap-
idly, with complete DNA recombination achieved in a few hours (Kent 
et al., 2018). The DiCre SSR system has now been extensively used in 
P. falciparum for conditional knockout of a variety of GOI, including 
those encoding essential invasion proteins or signaling components 
(Flueck et al., 2019; Perrin et al., 2018; Tibúrcio et al., 2019; Wilde 
et al., 2019). DiCre has also been implemented in the widely used 
rodent malaria model parasite P. berghei, providing a specific, rapid, 
robust and tunable conditional system (Fernandes et al., 2020; Kent 
et al., 2018). It has also been used for allelic replacement, for exam-
ple to express mutated versions of proteins (Bui et al., 2019), or for 
excision of selectable markers (Fernandes et al., 2020). Induction of 
sexual conversion has been achieved in Plasmodium through DiCre-
based inversion of a promoter sequence to drive expression of the 
master regulator AP2-G (Kent et al., 2018; Llorà-Batlle et al., 2020). 
Of interest, the DiCre approach was shown to be suitable to investi-
gate the function of essential Plasmodium genes in mosquito and pre-
erythrocytic stages. Rapamycin can be administered immediately 
before parasite transmission or directly to the mosquitoes, allowing 
SSR activation in mosquito stages (Fernandes et al., 2020; Tibúrcio 

et  al.,  2019). The DiCre system thus appears as a highly efficient 
and versatile system that allows targeting genes at multiple stages 
of development. The DiCre system has also been used in T. gondii 
to delete essential genes (Andenmatten et al., 2012), although to a 
lesser extent as compared to P. falciparum. This is mainly due to the 
weak excision performance of the original parental strain expressing 
DiCre (Venugopal et al., 2017) and the complexity of cloning steps 
when trying to target large genes. However, a new parental strain, 
expressing both DiCre subunits in the same transcriptional subu-
nit, greatly enhances the excision performance (Hunt et al., 2019). 
DiCre was also used to conditionally insert U1 recognition sites in 
the terminal exon of GOI in T. gondii, resulting in efficient silencing 
by the spliceosomal component U1snRNP (Hammoudi et al., 2018; 
Pieperhoff et al., 2015).

3  | REGUL ATED GENE TR ANSCRIPTION

Apicomplexa display transcription profiles that are tightly regulated 
during their life cycle. The characterization of stage-specific promot-
ers has enabled strategies to control gene expression through sim-
ple promoter exchange (Figure 2a). This strategy has been applied 
in P. berghei to knockdown genes in gametocytes or ookinetes, by 
exchanging the endogenous promoter with a promoter that is ac-
tive in asexual blood stages but not transmission stages (Laurentino 

F I G U R E  2   Conditional control of gene expression at the RNA level. (a) The Tet-ON method is based on the TetR repressor that inhibits 
transcription through binding to tetO elements placed in the promoter region of a gene of interest (GOI). In the presence of anhydrotetracycline 
(ATc), TetR is displaced from the promoter, allowing gene transcription. (b) In the Tet-OFF system, TetR fused to a transactivator domain (TATi) 
binds to tetO elements placed in a minimal promoter upstream of the GOI, allowing transcription. In the presence of ATc, the TeR-TATi is 
displaced, resulting in transcription inhibition. (c) GlmS ribozyme is a catalytic RNA element that can be introduced in the 3’ UTR of a GOI. GlmS 
is activated in the presence of glucosamine (GlcN), resulting in mRNA cleavage and degradation. (d) In the TetR-DOZI-aptamer strategy, a TetR-
DOZI fusion protein binds to aptamer elements introduced in the 3’ UTR of a GOI, resulting in the relocalization of the mRNA to P bodies and 
translational repression. In the presence of ATc, TetR-DOZI is displaced and the mRNA can be translated
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et al., 2011; Siden-Kiamos et al., 2011), or for stage-specific knock-
down of rhoptry genes in sporozoites by replacing their endogenous 
promoter by that of MSP1 or MSP5 genes (Bantuchai et  al.,  2019; 
Ishino et al., 2019; Nozaki et al., 2020). While these approaches do 
not require the use of a specific parental line, the heterologous pro-
moter may lead to overexpression and/or inappropriate expression 
timing, with potentially deleterious effects or protein mislocaliza-
tion. In addition, simple promoter exchange approaches are limited 
to stage-specific alteration of gene expression.

3.1 | Tetracyclin-regulated promoters

To achieve tunable control of gene expression, more sophisticated 
strategies have been developed in Toxoplasma and Plasmodium, 
based on tetracycline (Tet)-regulatable promoters (Meissner 
et  al.,  2001, 2005; Meissner et  al.,  2002). Two versions of Tet-
dependent gene regulation are available, allowing either conditional 
activation (Tet-On) or repression (Tet-Off) of transcription of the 
GOI. Tet-based methods use anhydrotetracyclin (ATc) instead of tet-
racycline or doxycycline, as it is less toxic to the parasite (Meissner 
et al., 2001).

The Tet-On strategy is based on the tetracycline resistance 
operon of E. coli Tn10 transposon, and requires two components, 
tetracyclin operator (tetO) sequences introduced upstream of 
the transcriptional start site in the promoter of the GOI, and the 
Tetracyclin repressor (TetR) (Meissner et  al.,  2001). The binding 
of TetR on tetO sequences interferes with the recruitment of the 
transcription machinery and blocks transcription of the gene. In 
the presence of tetracycline derivatives, TetR dissociates from tetO 
sequences, allowing gene transcription (Figure  2b). In Toxoplasma, 
using a bulkier version of TetR fused to YFP increased the regulation 
efficiency (van Poppel et  al.,  2006). Introduction of multiple tetO 
elements may also impair promoter activity, although a suitable pro-
moter for tetO integration was identified (van Poppel et al., 2006). 
The Tet-on system suffers from several limitations, including resid-
ual promoter activity in the absence of ATc, and the need to main-
tain parasite growth under constant exposure to ATc, which can be 
toxic, in order to achieve conditional knockdown of essential genes. 
However, it has been used as an approach to fine-tune the controlled 
overexpression of proteins (Etheridge et al., 2014).

In the Tet-Off system, tetracycline derivatives are used to con-
ditionally repress the expression of the GOI. It relies on a transacti-
vator composed of TetR fused to a transactivator domain that is able 
to induce the recruitment of the transcription machinery (Meissner 
et al., 2002). In T. gondii, the transactivator domain is a synthetic se-
quence that was selected for its ability to induce gene expression 
(Meissner et al., 2002). This hybrid polypeptide can bind to tetO se-
quences fused to a minimal promoter placed upstream of the GOI, 
thereby activating gene expression. In the presence of ATc, binding 
of the transactivator to tetO sequences is impaired and transcrip-
tion of the GOI is switched off (Figure 2c). Minimal promoters used 
in Toxoplasma are derived from the gene promoters of TgSAG1 or 

TgSAG4 (Meissner et  al.,  2001). More recently, a GRA2-derived 
minimal promoter was shown to allow more robust regulation 
(Sharifpour et  al.,  2021). The Tet-off system has been first devel-
oped in Toxoplasma using the transactivator TATi-1 (Trans-Activator 
Trap identified), which was selected through a genetic screen based 
on random integration of TetR in T. gondii (Meissner et  al.,  2002) 
and was later shown to work as well in P. falciparum (Meissner 
et al., 2005). A parasite strain expressing the TATi-1 transactivator 
in a ΔKu80 background was created to facilitate genetic engineering 
of endogenous promoter sequences via homologous recombination 
(Sheiner et al., 2011). The TATi-1 system has now been extensively 
used in Toxoplasma for conditional knockdowns or various GOI. An 
alternative strategy has been developed in P. berghei, based on acti-
vating domains from Apicomplexa AP2 transcription factors as TetR-
activating domains (Pino et al., 2012). However, this system was only 
scarcely used since then.

The Tet-off system has some limitations. Exchanging the endog-
enous promoter can result in alterations of the level or kinetics of 
expression of the GOI (Lesage et al., 2018; Mital et al., 2005), with 
potential detrimental effects even in the absence of ATc. Moreover, 
promoter replacement proved impossible for number of GOI when 
the level or kinetics of expression was essential for the activity of 
the gene product. To mitigate this drawback, the TATi-1 transactiva-
tor can be placed under the control of the promoter of the targeted 
gene (Lamarque et al., 2014). Complete protein knockdown some-
times necessitates long parasite exposure to ATc, depending on the 
protein turn over, with the risk of accumulating secondary pheno-
types over time that render data interpretation difficult. However, 
the system has proved easy to use in vivo in mouse models with the 
limitation that the TATi strain was shown to have reduced virulence 
compared to the parental strain (Lesage et al., 2018). This type of 
approach has been used in P. berghei but not P. falciparum (Chisholm 
et al., 2016). Both the Tet-on and Tet-off strategies require a spe-
cific parental parasite line, expressing the TetR or the transactivator, 
respectively. In both cases, regulation is reversible but the system 
inherent inertia (time needed to completely abrogate protein ex-
pression) makes it difficult to use in a reversible manner.

4  | CONTROL OF mRNA STABILIT Y OR 
TR ANSL ATION

In the absence of a functional RNAi pathway in Plasmodium and 
Toxoplasma, alternative strategies have been developed to control 
gene expression post-transcriptionally at the mRNA level, based on 
inducible ribozymes or TetR-aptamer systems.

4.1 | Ribozymes

Ribozymes are self-cleaving RNA elements that retain autocatalytic 
activity when placed in various RNA contexts, and which can be en-
gineered to respond to ligands. Initial proof-of-concept studies used 
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the Sm1 hammerhead ribozyme of Schistosoma mansoni to regulate 
gene expression in Toxoplasma and P. falciparum (Agop-Nersesian 
et al., 2008), but the absence of specific and non-toxic inhibitors has 
limited its use. In contrast, the Glucosamine-inducible glmS ribozyme 
has emerged as a potent system for inducible knockdown of gene ex-
pression in P. falciparum (Prommana et al., 2013). The glmS ribozyme is a 
natural ribozyme originating from Gram-positive bacteria, and requires 
glucosamine-6-phosphate for catalytic activity, providing a simple and 
tunable platform for inducible knockdown strategies. In this system, 
the ribozyme sequence is introduced in the 3’UTR of a GOI, leading to 
the expression of a chimeric mRNA containing the ribozyme element. 
GlmS self-cleavage can be induced by the addition of glucosamine 
(GlcN) in the culture medium, leading to instability and degradation of 
the chimeric mRNA (Figure 2d). Regulation is tunable as the level of 
self-cleavage can be controlled by varying the concentration of GlcN. 
Also, an inactive version of the glmS ribozyme, M9, which contains a 
single point mutation that abrogates autocatalytic activity, provides a 
suitable control in knockdown experiments (Prommana et al., 2013). 
Another advantage of this system is that it requires no additional 
genetic element since all the information is contained within the au-
tocatalytic RNA. In particular, the endogenous promoter of the GOI 
can be preserved to avoid interference with transcription. However, 
insertion of the glmS element can alter gene expression and may cause 
over-expression due to the stabilization of the transcripts (Jankowska-
Döllken et  al.,  2019). In addition, the level of knockdown varies de-
pending on the GOI and the protein turnover, with lower efficacy for 
proteins that are highly expressed or with low turnover. While glmS 
is rather simple to implement, only requiring modest molecular clon-
ing and addition of a molecule in the medium to induce knockdown, 
glucosamine can be toxic to the parasite at high concentrations. The 
glmS has been used with success to target various GOI in P. falciparum 
(Aroonsri et al., 2019; Ghosh et al., 2018; Liu et al., 2020; Sheokand 
et al., 2021), and also operates in P. berghei (Aroonsri et al., 2016).

4.2 | TetR-aptamers

RNA aptamer systems allow synthetic translational control via ligand-
controlled RNA-protein modules that can be introduced in native 
gene contexts. One such system has been developed in P. falciparum 
for tetracyclin-controlled gene regulation at the mRNA level. The ap-
proach is based on genetically encoded TetR-binding RNA aptamers in-
troduced in the 5’ UTR of a GOI (Goldfless et al., 2014). In this system, in 
the absence of ATc, TetR binds to the aptamer and prevents translation 
of the mRNA. When ATc is added, TetR dissociates from the aptamer, 
allowing mRNA translation and protein synthesis (Figure 2e). This sys-
tem was shown to be functional in the context of several native and 
engineered promoters, allowing rapid induction of gene expression.

The RNA aptamer approach has been further refined in P. falci-
parum by fusing the TetR repressor to DOZI, a protein involved in 
translational repression through mRNA sequestration in P-bodies 
(Figure 2f; Ganesan et  al.,  2016). This approach resulted in higher 
regulation efficiency as compared to TetR, especially when an array 

of 10 aptamers was introduced in the 3’ UTR in combination with 
a single aptamer element placed in the 5’ UTR of the target gene. 
Similar results were also obtained with TetR fused to another post-
transcriptional effector, CITH. Both TetR-DOZI and TetR-CITH 
provided substantially improved translational regulation over TetR 
alone (Ganesan et al., 2016). This system has been successfully used 
in P. falciparum for conditional knockdown of various genes (Gupta 
et al., 2020; Ling et al., 2020; Polino et al., 2020). One potential issue 
is the loss of one or several aptamer copies following recombination 
in the parasite genome, leading to a loss of knockdown efficiency. 
This was recently solved by redesigning the aptamer array to mini-
mize recombination while preserving the control elements (Rajaram 
et al., 2020).

5  | CONTROL OF PROTEIN STABILIT Y

Conditional approaches acting directly at the protein level rely on 
genetically encoded protein elements that are fused to a protein of 
interest, which can then be directed to degradation pathways under 
specific conditions. These approaches allow fast protein knockdown 
and are thus more suitable than DNA- or RNA-based strategies to 
study rapid cellular processes. Three different systems have been 
developed in Plasmodium and Toxoplasma parasites, the FKBP-DD 
and DDD systems, which both rely on destabilization domains caus-
ing protein degradation in the absence of a stabilizing agent, and the 
auxin-inducible degron system (AID), which allows inducible protein 
depletion upon addition of auxin. A common limitation to all three 
methods is the need to incorporate a specific tag fused to the pro-
tein of interest, which may alter its function.

5.1 | The FKBP-DD system

The FKBP-DD system is based on the destabilization domain of 
the FK506-binding protein FKBP12, which contains destabilizing 
mutations that induce misfolding in the absence of the rapamycin-
derived ligand Shield (Shld-1) (Banaszynski et  al.,  2006). The DD 
system has been successfully adapted to modulate protein expres-
sion in Toxoplasma and Plasmodium (Armstrong & Goldberg,  2007; 
Herm-Götz et al., 2007). When fused at the N- or C-terminus of a 
target protein, the FKBP-DD domain interferes with protein stability, 
resulting in protein degradation by the proteasome. In the presence 
of Shld-1, the DD domain is stabilized and the protein escapes deg-
radation (Figure 3a). One advantage of the DD system is that protein 
depletion is rapid and reversible. In Toxoplasma, a YFP-DD fluores-
cent reporter could be fully induced within 90 min upon addition of 
Shld-1, and extinguished in about 5 hr following removal of Shld-1 
(Herm-Götz et al., 2007). The DD method is thus well-suited to in-
terfere with proteins involved in fast processes such as trafficking or 
signaling pathways. It is also tunable by varying the concentration of 
Shld-1. However, Shld-1 is costly and can be toxic when administered 
for long periods or at high concentrations. Conditional knockdown of 
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essential proteins is possible yet implies the continuous exposure of 
the parasite to Shld-1 during selection of recombinant parasites. On 
the opposite, the DD system is particularly well suited for the expres-
sion of dominant negative mutants or toxic genes and was used to 
investigate the role of Rab proteins in T. gondii (Kremer et al., 2013). 
Nevertheless, Shld-1 can impact parasite growth, which can be con-
founding in the phenotypical analysis. The poor bioavailability of 
Shld-1 in vivo is a limitation for its usage in mice. The DD domain 
works optimally when positioned at the N-terminus of the target 
protein, which renders the system less appropriate for secreted pro-
teins (Limenitakis & Soldati-Favre, 2011). Degradation of the target 
protein requires access to the cytoplasmic proteasome, implying that 
the DD-mediated regulation works optimally with cytoplasmic pro-
teins but may not be suited for secreted proteins, although efficient 
knockdown of the P. falciparum vacuolar protein falcipain-2 could be 
achieved with the DD system (Armstrong & Goldberg, 2007). The ef-
ficacy of the DD-mediated regulation may thus vary depending on 
the GOI. Also, introduction of the 12-kDa DD domain may impair 
protein function, even when stabilized by the ligand, as exemplified 
with MyoA (Herm-Götz et al., 2007). The DD system does not rely on 
specific promoter elements, and thus the endogenous promoter can 
be used, avoiding complications resulting from inappropriate expres-
sion level or timing. The DD domain has now been extensively used 
for overexpression of dominant negative copy of genes in T. gondii 

(Agop-Nersesian et al., 2010; Breinich et al., 2009; Daher et al., 2010; 
van Dooren et al., 2009; Jia et al., 2017) and to a lesser extent P. fal-
ciparum (Azevedo et al., 2013). In P. falciparum, the DD has been used 
for conditional knockdown of a variety of essential genes (Armstrong 
& Goldberg,  2007; Blomqvist et  al.,  2020; Brancucci et  al.,  2014; 
Josling et al., 2015; Kumar et al., 2017; Robbins et al., 2017). The DD 
system was also used for conditional expression of Cas9 in T. gondii 
(Serpeloni et al., 2016) or AP2G in P. falciparum (Poran et al., 2017).

5.2 | The DHFR destabilization domain system

The DDD system is based on a mutated E. coli dihydrofolate 
reductase (DHFR) destabilization domain, which can be sta-
bilized by the folate analogue trimethoprim (TMP) (Iwamoto 
et al., 2010) (Figure 3b). This method has been implemented in 
P. falciparum (Muralidharan et al., 2011). TMP is an inexpensive 
compound with antimalarial activity, therefore the DDD sys-
tem necessitates working with parasites containing a human 
DHFR cassette that confers resistance to TMP. Similar to the 
DD system, tagging with the DDD can impact the protein func-
tion, even in the presence of TMP. The selection of transgenic 
parasites for knockdown of essential proteins requires the con-
stant supply of TMP during the selection procedure. TMP has 

F I G U R E  3   Protein-based conditional strategies. (a) In the FKBP-DD system, a FKBP degradation domain fused to a protein of interest 
causes protein degradation by the proteasome. In the presence of the Shield-1 (Shld-1) compound, the DD domain is stabilized and the 
protein escapes degradation. (b) In the DDD system, a DHFR degradation domain appended to a protein of interest is responsible for 
proteasome-dependent protein degradation. In the presence of trimethoprim (TMP) the DHFR DD domain is stabilized and the protein 
escapes degradation. (c) In the auxin inducible degron (AID) method, an AID tag is introduced in a protein of interest. In the presence of 
indole-3-acetic acid (IAA), genetically encoded TIR1 binds to the AID tag and recruits a E3 ubiquitin ligase complex (Skp, Cullin, F-box, Rbx), 
resulting in protein ubiquitination and degradation by the proteasome. (d) The knock sideways strategy relies on two components, a FKBP tag 
appended to a protein of interest, and a mislocalizer protein fused to FRB and containing targeting motifs to a specific cellular compartment. 
In the presence of rapamycin, FKBP binds to FRB, resulting in sequestration of the protein of interest in the mislocalizer compartment
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good pharmacological properties and can be used in mice, thus 
the DDD system could be adapted to P. berghei. Interestingly, 
the DDD tagging appears to be a relevant approach to study 
chaperones in P. falciparum, where binding of the DDD-tagged 
chaperone to the unfolded domain prevents interactions with 
client proteins (Beck et al., 2014; Muralidharan et al., 2012). The 
DDD approach has been recently adapted to Cryptosporidium 
(Choudhary et al., 2020).

5.3 | The auxin-inducible degron system

Another expanding method to conditionally control protein lev-
els is the plant-derived auxin-inducible degron (AID) system 
(Nishimura et  al.,  2009). In plants, the hormone auxin induces 
rapid degradation of AUX/IAA transcription repressors by a SCF 
(Skp1-Cullin-F-box protein) E3 ubiquitin ligase complex comprising 
the TIR1 protein. While TIR1 is a plant-specific protein, the SCF 
degradation pathway is conserved in other eukaryotes, including 
Apicomplexa, where an auxin response system can be activated 
upon TIR1 transgenic expression. In the AID method, an auxin-
responsive element (degron) is fused to a protein of interest, in a 
parental parasite line expressing TIR1. Upon addition of the small 
molecule auxin (indole-3-acetic acid, IAA), the AID-tagged protein 
is targeted to the SCF E3 ubiquitin ligase by TIR1 via its F-box do-
main, resulting in degradation of the ubiquitinated protein by the 
proteasome (Figure 3c). This approach has been successfully imple-
mented in P. falciparum (Kreidenweiss et al., 2013), P. berghei (Philip 
& Waters,  2015), P. yoelii (Liu et  al.,  2021) and T. gondii (Brown 
et  al.,  2017; Brown et  al.,  2018), albeit with contrasting efficien-
cies (Zeeshan et al., 2021). The AID approach allows rapid (within 
30 min) degradation of the tagged protein, and is reversible and in 
theory tunable by varying the auxin concentrations. One advan-
tage is the small size of the AID tag in its mini version (68 amino 
acids) (Brown et al., 2017), reducing the risk of interference of the 
tag with protein function. The AID tag can be inserted at the 3’ end 
of the gene coding sequence, and therefore does not interfere with 
the endogenous promoter activity. The AID method works well 
with cytosolic or nuclear proteins, but also on integral membrane 
protein of the alveoli (Harding et al., 2019). A major advantage of 
this system is the rapid degradation of the targeted protein and its 
reversibility. Indeed, several studies have shown that phenotypes 
caused by the depletion of a targeted protein can be reversed by 
simply washing out auxin from the culture media (Hu et al., 2020; 
Khelifa et  al.,  2021). The AID system can also be used in vivo in 
mice, although in this case auxin needs to be provided by oral gav-
age and in the drinking water (Brown & Sibley, 2018).

Another system relies on a ligand-induced degradation (LID) do-
main that can be appended to a protein of interest, and which consists 
of the FKBP protein fused to a small degron (Bonger et al., 2011). In the 
absence of Shld-1 the degron is bound to the FKBP moiety and the pro-
tein is stable. When Shld-1 is added, it binds to FKBP and displaces the 
degron, which is responsible for rapid degradation of the LID domain 

and the fused partner protein. This system has been recently used in P. 
falciparum to knockdown the PfSWIB protein (Wang & Zhang, 2020).

6  | REGUL ATED PROTEIN LOC ALIZ ATION

One strategy to interfere with the function of a protein is to alter 
its localization. Such an approach, termed knock sideways (KS), has 
been developed in P. falciparum using the rapamycin-dimerizable 
domains FKBP and FRB (Birnbaum et  al.,  2017). The protein of 
interest is tagged with FKBP in a parasite line that expresses a 
mislocalizer protein, which consists of the FRB domain fused to 
a targeting signal for localization in a specific compartment (nu-
cleus or plasma membrane for example). Addition of rapamycin 
allows FKBP-FRB interaction and induces relocalization of the 
FKBP-tagged protein to the target site and depletion from its nor-
mal site of action (Figure 3d). One limitation of this system, similar 
to the protein degradation methods described above, is that the 
mislocalizer protein must be accessible to the FKBP-tagged pro-
tein for KS to be efficient. In addition, the fusion with the FKBP 
tag may alter protein function, irrespective of rapamycin expo-
sure. Theoretically, mislocalization of the FRB-tagged protein in 
the presence of rapamycin may also be a confounding event and 
proteins may interact with non-natural interactors in the newly 
targeted compartment.

A strategy based on conditional localization domains (CLD) 
has been designed to specifically control apicoplast protein traf-
ficking. Export of nuclear-encoded apicoplast proteins relies on 
a N-terminal bipartite signal comprised of a signal peptide and a 
transit peptide. The transit peptide must be unstructured to allow 
efficient trafficking to the apicoplast. Roberts et al developed a 
system where a CLD derived from FKBP is appended to a protein 
of interest. In the absence of the ligand Shld-1, the CLD is un-
structured and the protein traffics normally to the apicoplast. In 
the presence of Shld-1, the CLD is stabilized, causing the tagged 
protein to be secreted from the parasite. This approach was used 
in P. falciparum to conditionally localize the biotin ligase HCS1 to 
the apicoplast in asexual blood stages (Roberts et al., 2019).

7  | METABOLIC RESCUE

Conditional disruption of genes encoding essential apicoplast proteins 
has been achieved through chemical rescue in P. falciparum (Yeh & 
DeRisi, 2011). This method exploits the fact that the only essential 
function of the apicoplast during the asexual blood stages is to syn-
thesize isoprenoid precursors. The apicoplast becomes dispensable 
when the isoprenoid precursor isopentenyl pyrophosphate (IPP) is 
provided in the culture medium, permitting conditional disruption of 
genes that are essential for the biogenesis or maintenance of the plas-
tid (Yeh & DeRisi, 2011). More recently, a transgenic line expressing a 
functional heterologous mevalonate pathway was engineered in P. fal-
ciparum, allowing synthesis of the isoprenoid precursors in parasites 
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supplemented with mevalonate, providing another platform for con-
ditional disruption of apicoplast genes (Swift et al., 2020).

8  | CONCLUSION AND FUTURE 
PROSPEC TS

The toolbox for conditional gene regulation in Apicomplexa has now 
expanded considerably over the past years. Many methods are avail-
able for conditional gene expression, each with their advantages and 
limitations. There is not a single universal approach permitting rapid, 
efficient, tunable and reversible regulation of any GOI, therefore the 
choice of the method should be made after careful consideration 
of the context. When complete and irreversible gene knockout is 
desired, SSR-based conditional genome editing is probably the best 
option. In this respect, the DiCre strategy has been shown to work 
on virtually all the life cycle stages of Plasmodium, which is not the 
case for other approaches. In general, low turnover of mRNA and/
or protein increases the time needed to achieve sufficient depletion 
with DNA and RNA-based methods. Therefore, protein degradation 
approaches are the best suited for rapid depletion of proteins, pro-
vided that the localization of the protein of interest allows access 
to the degradation pathways. When possible, several approaches 
should be attempted, and different strategies can be combined to 
increase the efficiency of gene expression control. As an example, 
a dual regulation strategy combining ATc-mediated transcription 
suppression and FKBP-DD-mediated protein degradation was used 
for more robust and stable knockdown of Centrin 2 in Toxoplasma 
(Leung et al., 2019).

One can anticipate that the toolbox will expand further in the 
next coming years with implementation of techniques developed 
in other organisms, including CRISPR interference (CRISPRi) strat-
egies, which are based on a catalytically inactive dead Cas9 enzyme 
(dCas9). Targeting of the dCas9 using specific gRNA to the region 
upstream of a GOI can inhibit transcription initiation or elongation, 
resulting in reduction in gene expression. CRISPRi strategies have 
already been implemented in P. falciparum and P. yoelii to inhibit the 
expression of specific loci (Barcons-Simon et al., 2020; Baumgarten 
et al., 2019; Walker & Lindner, 2019). The dCas9 can also be fused 
with epigenetic effector domains to activate or repress transcription 
via hyperacetylation or hypoacetylation of chromatin, respectively 
(Xiao et al., 2019). Conditional CRISPR-based approaches can now 
be envisaged based on inducible dCas9 systems to knockdown es-
sential genes. In this respect, a major progress has been the devel-
opment of the ribozyme-guide-ribozyme (RGR) method, which now 
allows expressing single guide RNA (sgRNA) from RNA polymerase II 
(instead of RNA polymerase III) promoters (Walker & Lindner, 2019). 
This opens the possibility to use stage-specific or regulatable pro-
moters to control the expression of sgRNA for CRISPR-RGR condi-
tional control of gene expression. Alternatively, methods have been 
developed to control Cas9 activity, through chemical activation of a 
split Cas9 (Zetsche et al., 2015) or based on photoactivable split Cas9 
(Yu et al., 2020). Optogenetics techniques in general are developing 

in many fields, including parasitology. As an example, an optogenetic 
approach based on the photoactivated adenylate cyclase from the 
lithotropic bacterium Beggiatoa allowed rapid spatiotemporal con-
trol of cAMP levels in Toxoplasma (Hartmann et al., 2013).

Finally, as illustrated in this review, conditional gene manipula-
tion in Apicomplexa has been restricted so far to laboratory strains 
of P. falciparum, P. berghei, and T. gondii. The availability of whole ge-
nome sequence data and progress in genome editing now open new 
avenues to envisage extending these approaches to a wider range 
of parasite strains and species that are amenable to genetic manip-
ulation, including Cryptosporidium and the simian malaria parasites 
P. knowlesi and P. cynomolgi. In the post-genomic era, and owing to 
the progress in genome editing methods, one can expect that condi-
tional genetic approaches will play an ever-growing role in the study 
of Apicomplexa biology, to unravel gene function and ultimately 
identify novel therapeutic targets.
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