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Abstract

Background: In cemented primary total knee arthroplasty (TKA), aseptic loosening remains a major cause for
failure. Cementing techniques and characteristics of a chosen cement play a key role for good fixation and implant
survival. A pastry bone cement was developed to facilitate the cement preparation and to rule out most of
preparation-associated application errors. The pastry bone cement was compared to a conventional polymethyl
methacrylate cement in a TKA setting.

Methods: Standardized implantations of total knee endoprostheses were performed in bilateral knee cadavers to
investigate handling properties, variables of cement application, working time, and temperature development.
Mechanical aspects and cementation quality were assessed by pull-out trials and microscopic interface analysis.

Results: Both cements expressed similar characteristics during preparation and application, only the curing time of the
pastry cement was about 3 min longer and the temperature peak was lower. Fractures of the conventional cement
specimens differed from the pastry cement specimens in the tibial part, while no differences were found in the femoral
part. Penetration depth of the pastry cement was similar (tibia) or deeper (femur) compared to the conventional cement.

Conclusions: The pastry cement facilitates the feasibility of cemented TKA. The pre-clinical tests indicate that the pastry
bone cement fulfills the requirements for bone cement in the field of knee arthroplasty. A clinical trial is needed to
further investigate the approach and ensure patient safety.
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Background
In the field of joint replacement surgery, cemented and
cement-less (“press-fit”) techniques are used for implant
fixation [1]. Even though the use of uncemented im-
plants has increased in recent years, bone cement re-
mains the predominant technique used in total knee
arthroplasty (TKA). Aseptic loosening is the most fre-
quent reason for TKA revisions [2, 3].

While some studies show that cemented TKAs have
lower failure rates and greater functional outcomes com-
pared to uncemented TKAs [4–6], others show similar
outcomes for cemented and uncemented TKAs [7–13].
The widespread use of cemented TKA is supported by

extensive clinical experience and provides the advantage
of local antibiotic protection, if required. Advancements
in cementing are usually referred to as first-, second-, or
third-generation techniques. The developments include
vast improvements in bone bed preparation, cement
preparation, and cement delivery [14].
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Although the underlying mechanism of aseptic loosen-
ing after TKA is not fully understood, it is commonly ac-
cepted that it has a multifactorial etiology [15] that can
be patient and/or treatment related. In cemented TKA,
better outcomes have been achieved with several tech-
nical improvements of the later generation techniques,
including vacuum mixing, compression with a cement
gun, cement precooling, and high-pressure lavage. The
quality of the chosen cement also plays an essential role
in prevention of aseptic loosening, as cement fractures
and debonding between cement and implant are likely
to initiate failure.
For the optimal outcome, knowledge about the bone

cement is of paramount importance and a precise, stan-
dardized cementing technique is essential [14]. Various
types of polymethyl methacrylate (PMMA) bone ce-
ments are commercially available, usually provided as
two (liquid/powder) sterile components along with mul-
tiple additives. Dependent on the PMMA cement com-
position, usage and cement properties vary. PMMA
cements express distinct characteristics regarding viscos-
ity, curing process, temperature development, handling
characteristics, cement structure, mechanical properties,
and release capacity. However, even slight changes in
the mixing ratio can affect the characteristics of a given
cement tremendously. Despite several improvements
during the recent years, cement preparation remains a
source for mistakes.
In contrast to the conventional cement consisting of a

powder and a fluid component, the pastry bone cement
[16] is prepared by mixing two different paste-like com-
ponents offering a ready to use cement option without
the need of a mixing procedure, thereby facilitating ce-
ment preparation and limiting preparation-associated
application errors.
The objective of this pre-clinical investigation was to

evaluate the quality of cementation, handling and prod-
uct properties, as well as the mechanical characteristics
of this pastry bone cement compared to a conventional
cement in a TKA setting.

Materials and methods
Investigation design
This pre-clinical investigation was conducted in the
Anatomical Institute of the University of Basel, which
furnished 16 medically prepared knees of 8 deceased
persons without obvious pathological findings. Pre-trials
were conducted on artificial and cadaver material in the
sense of feasibility.
Standardized implantations of total knee endoprosth-

eses with a bone cement paste and an established bone
cement were performed in bilateral knee cadavers (pre-
pared isolated cadaver material). On one side, the pros-
theses components were implanted with the

conventional powder/liquid cement, while on the oppos-
ite side, the bone cement paste was applied under other-
wise equal conditions. The selection was performed
randomly and alternating.

Medical devices
A pasty two-component bone cement [16] and the
established cement Palacos® R+G (Heraeus Medical
GmbH, Wehrheim), based on the powder-liquid system,
were used in this pre-clinical investigation. Both devices
are high-viscous polymethylmethacrylate cements with
comparable component compositions and the same
amount of gentamicin.
The implants used for the tibial and femoral parts

were Duracon® (Stryker) and porous-coated anatomic
(PCA) prosthesis (Howmedica), both with an identical
porous coating. Either sample implants, or implants ob-
tained by explantation during revision surgery were
used. The components were purified thoroughly, adher-
ent cement remnants were removed by incubation in
acetone and mechanical post-processing, and final
sterilization was achieved by gamma radiation.

Preparation of cement
For both knee implants, 60 g of conventional cement (40
g powder + 20 g fluid) or of pastry cement (30 g paste A
+ 30 g paste B) were initially mixed according to the
manufacturer specifications. The mixing procedure was
performed by using the Palamix® (Heraeus Medical) Sys-
tem (hand mixing) without a vacuum. Cement applica-
tion was executed by a conventional cement gun.

Surgical approach
Investigation was executed on prepared isolated cadaver
material (knee joints) that was fixed with a buffered for-
maldehyde solution. Detailed instructions were given
during an onsite training performed by specialists from
Heraeus Medical. Tendons, ligaments, and cartilage
structures of the knee joint were removed. Bone was
prepared without patella.
The surgical handling of the experiments was executed

by two fully trained orthopedic surgeons specialized in
TKA. Preparation of the bone surfaces: the valgus angle
of the femur was 5°, femur size was measured, and the
final preparation of the femur with the bevel saw cuts
took place. Dorsal condyles were sawed off. The required
tibial resection template was applied; a correct slope and
the physiological tibial axis to the second (2°) toe were
aligned. The tibial plateau was sectioned, the size was
measured, and the prosthesis chosen. To remove loose
cancellous bone, blood, fat, and marrow, all bone sur-
faces were washed with pulsatile lavage using warm tap
water. Washing time (3 min) and water temperature
(40–43 °C) were monitored.
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The correct handling of the cement preparation was
taken over by the Heraeus team. The tibial component
was cemented first. Cement was applied early during its
working phase onto the bone-side surface of the metal
implant (sparing the cross entering in the tibial head),
not on the bone surface (Fig. 1). As soon as the cement
was no longer adhesive, it was manually shaped, match-
ing the implant mold. The implant was inserted down
into the hole for the tibial cross and onto the plateau.
Holding pressure was applied and maintained until the
cement had hardened to mimic the real-life situation.
Cement curing was determined by a penetration test
with a dissection needle and by the “ball-test” [17].
The femoral component was cemented separately, but the

procedure was analogous to the tibial component (Fig. 2).
To determine the total amount of used cement, the

surplus of cement was measured, as well as all equip-
ment in contact with cement before and after use, and
subtracted from the initial amount.

Overall assessment
Variables of cement application and working time were
investigated. Maximum temperature was measured at

the bone-cement interface with an implanted thermo-
sensor (Testo-AG, 735-2) that was fixed by a clamp to
keep it in place during the cementation process. The
thermo-sensor was fixed at the location with the thickest
layer of cement, where the highest curing temperatures
were to be expected (Figs. 1 and 2). Bone cement mech-
anical properties, attributes, amount of applied cement,
technical data, and user acceptance were tested.

Pull out trials
Trials were conducted in the Center of Biomechanics,
University of Basel. A servo-hydraulic testing machine
(Typ MTS Bionix 858) was used to measure the max-
imum tractive force of 5 knee implants for each cement.
Femur and tibia were fixed on a pipe socket by bolting
and by applying a two-component adhesive based on
epoxy resin (Sikadur-31 CF Normal, Sika AG, Zürich).
Remaining space between bone and pipe socket was
filled with the adhesive. According to the manufacturer,
a tensile strength of 17–23 N/mm2 is achieved after a
setting time of 3 days at room temperature.
To test the tibial component, the tibia-plateau was

linked to the connecting element of the femur condyle.

Fig. 1 Tibial component. Location of thermo-sensor (a, red arrow), cement layer with implant (b), and curing temperature of cement (c). N = 8
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Similarly, the femur condyle was used with the corre-
sponding connecting element for the femoral compo-
nent trials. To allow proper fixation, plastic shims were
inserted into little notches of the prostheses medially
and laterally of the tibia-plateau and femur condyle dur-
ing cementation. They were removed after curing of the
cement, to allow the positioning of the pincers.
Surgical tools (Stryker) were used as joints to connect

the implants with the testing machine. The tractive force
and the displacement speed of the axial cylinder were re-
corded at sampling rate of 1000 Hz, and the whole
process was documented with high-speed filming (300
frames per second). After fixation on the testing ma-
chine, human preparations were exposed to tractive
forces of 20 N. Subsequently, tractive forces were in-
creased constantly (1 m/min) until implant-cement-bone
anchoring failed.

Microscopic interface analysis
One cadaver was used for analysis (male, 69 years). Pas-
try cement was applied at the left side, and conventional
powder/liquid cement at the right side.
All preparations were sectioned with a diamond tipped

bend saw. To prevent melting of the cement, cutting

was water-cooled and slow (about 12 h per sample). The
femoral longitudinal cut was frontal through the anchor-
age pins. The tibial longitudinal cut was frontal, right be-
hind the frontal metal anchor. All segments were
analyzed with a Keyence microscope.

Statistical methods
Only descriptive statistical methods were used in the
present pre-clinical investigation. Continuous parame-
ters are presented with their means, standard deviations
(SDs), medians, and minimum and maximum values.
Frequencies were calculated for categorical variables.

Results
Factual investigation
Sixteen knee joints from eight prepared cadavers were
used for the evaluation of TKA. The demographic data
are shown in Table 1. One cadaver was female, seven
were male.
The mean valgus angle was 8.1 ± 1.57° for the pastry

cement and 6.8 ± 3.33° for the conventional cement.
Mean values for the length of caput femoris–condyles
medialis femoralis and condyles medialis tibiae–pilon
tibiale are shown in Table 2. Mean width of the femoral

Fig. 2 Femoral component. Location of thermo-sensor (a, red arrow), cement layer with implant (b), and curing temperature of cement (c). N = 8
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condyles and the tibial plateau were about 81 mm for
both treatment groups. In the OP room, mean
temperature was 20.8 °C for both cements. The mean
humidity was 65 ± 1.31% for the pastry, and 64.3 ±
1.28% for the conventional cement.

Surgical preparation
For both cement types, the mainly used implant for the
tibial part was Duracon® (Stryker) (six implants [75%]
each). The other used implant was the PCA prosthesis
(Howmedica) (two implants [25%] each). In case of the
pastry cement, Duracon® was used during all surgical
preparations of the femoral part (eight implants [100%]),
while Duracon® (seven implants [87.5%]) and PCA (one
implant [12.5%]) were used for the conventional cement.
The mean preparation time of the tibial condyles was

about 5.5 min (pastry cement: 5.7 ± 2.91 min; powder/li-
quid cement: 5.45 ± 1.79 min), and about twice as long
for the femoral condyles (pastry cement: 10.05 ± 3.06
min; powder/liquid cement: 13.06 ± 6.09 min). In all
cases, mean lavage washing time was 3 min, and mean
temperature was approximately 43.5 °C, except for the
pastry cement during the preparation of the tibial part
(40.4 ± 8.25 °C). The mean preparation time for the de-
vice ready to use was shorter for the powder/liquid ce-
ment compared to the pastry cement for both tibial
(1.07 ± 0.12 min; 1.96 ± 1.36 min) and femoral condyles
(1.02 ± 0.06 min; 1.81 ± 0.95 min). The mean weight of
the application system plus cement (ready to apply) for
both condyles was around 179 g for the powder/liquid
cement and 188 g for the pastry cement. Immediate loss

of stickiness after extrusion was documented for both
cement types during all surgical preparations of the tibial
and femoral part.

Cement application—tibial part
A mean duration of cement application of 0.60 ± 0.17
min for the pastry cement and 0.62 ± 0.19 min for the
powder/liquid cement was revealed. The mean time to
implant set for the pastry cement was 1.77 ± 0.37 min
and 1.48 ± 0.71 min for the powder/liquid cement. A
longer time from start of the application to curing (tro-
car test) of about 3 min was shown for the pastry ce-
ment (mean value: 10.46 ± 2.01 min) compared to the
powder/liquid cement (mean value: 7.53 ± 0.37 min).
The mean really applied amount of cement during the
surgical preparations of the tibial part was 9.06 ± 1.43 g
for the pastry cement and 11.04 ± 1.55 g for the pow-
der/liquid cement.
For both cement types, the time to place the metal im-

plant was sufficient during all surgical preparations of
the tibial part. The mean maximum temperature before
the cementation process was 24.78 ± 1.79 °C for the pas-
try, and 25.49 ± 1.39 °C for the powder/liquid cement.
Mean temperature peaks of 33.90 ± 4.15°C (9 min) and
36.28 ± 1.91 °C (6.5 min) were measured for the pastry
and powder/liquid cement, respectively. The mean max-
imum temperature after the cementation process was
29.10 ± 1.93 °C for the pastry cement and for the pow-
der/liquid cement it was 29.24 ± 1.28 °C (Fig. 1).

Cement application—femoral part
The mean duration of cement application was 0.61 ±
0.21 min for the pastry cement and 0.7 ± 0.27 min for
the powder/liquid cement. Mean time to implant set was
1.8 ± 0.69 min for the pastry cement and 1.83 ± 0.47
min for the powder/liquid cement. Comparable to the
tibial part, a longer time from start of the application to
curing (trocar test) of about 3 min was shown for the
pastry cement (mean value: 10.21 ± 0.94 min) than for
the powder/liquid cement (mean value: 7.47 ± 0.88 min).
The mean really applied amount of cement during the

Table 1 Demographic data

Variable N Mean (SD) Median Min; Max

Age [years] 8 76.8 (13.19) 82.0 57; 93

Body size [cm] 8 172.9 (7.41) 174.5 162; 183

Body weight [kg] 8 71.0 (10.61) 68.0 59; 85

BMI [kg/m2] 8 23.81 (3.55) 25.35 17.9; 26.8

BMI body mass index, Max maximum, Min minimum, N number of non-
missing values, SD standard deviation

Table 2 Length and diameter of the leg

Variable Medical device N Mean (SD) Median Min; Max

Caput femoris–condylus medialis femoralis [mm] Pastry cement 8 473.1 (± 27.33) 466 437; 513

Powder/liquid cement 8 474.4 (± 22.35) 469 448; 505

Femoral condyles (width) [mm] Pastry cement 8 80.74 (± 5.102) 80.1 73.8; 89.2

Powder/liquid cement 8 81.29 (± 5.107) 81.9 73.0; 87.0

Condylus medialis tibiae–pilon tibeale [mm] Pastry cement 8 372.0 (± 28.46) 361 345; 414

Powder/liquid cement 8 367.4 (± 28.13) 356 339; 404

Tibia plateau (width) [mm] Pastry cement 8 80.60 (± 3.954) 79.6 75.6; 88.3

Powder/liquid cement 8 81.56 (± 4.842) 81.3 74.2; 90.2
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surgical preparations of the femoral part was 10.96 ±
2.35 g for the pastry cement and 12.41 ± 1.46 g for the
powder/liquid cement.
For both cement types, the time to place the metal im-

plant was sufficient during all surgical preparations of the
tibial part. The mean maximum temperature before the
cementation process was 25.71 ± 1.55 °C for the pastry,
and 26.16 ± 1.64 °C for the powder/liquid cement. Mean
temperature peaks of 35.93 ± 9.16 °C (8.5 min) and 36.93
± 5.91 °C (7.5 min) were measured for the pastry and
powder/liquid cement, respectively. The mean maximum
temperature after the cementation process was 27.39 ±
3.88 °C for the pastry cement and for the powder/liquid
cement it was 29.51 ± 1.61°C (Fig. 2).
Thus, the total amount of either pastry of powder/li-

quid cement used was about 20 to 23 g per knee, which
is roughly 30% of the initially prepared 60 g of cement.
For all surgical preparations, no evaluation of the
amount of cement needed for facultative Patella remod-
eling was performed.

Properties of cement
For the pastry cement, the cement mantle was free of
blisters at 6 implanted cadaver sides. For 2 implanted ca-
daver sides, concerning data were missing. An excellent
adhesiveness to the implant was revealed at all 8 im-
planted cadaver sides.
For the powder/liquid cement, the mantle was free of

blisters at all 8 implanted cadaver sides. The adhesive-
ness was mainly fair (5 implanted cadaver sides [62.5%]),
followed by excellent (2 implanted cadaver sides [25%]),
and poor (1 implanted cadaver side [12.5%]).
For both cement types, it was easy to remove the sur-

plus cement and the prosthesis was assessed to be in
position at all implanted cadaver sides. It was easy to
manually transfer and mold the cement from gloves
onto the implant surface. Only non-latex gloves (Biogel®)
were used during the implantations.

Overall assessment
The stress level for the user was low and the handling of
the cement was easy at all implanted cadaver sides for
both cement types.
A higher percentage of unproblematic methyl meth-

acrylate (MMA) odor was revealed for the pastry cement
(87.5%) compared to the predicate device (62.5%). The
MMA odor was assessed to be tolerable for both cement
types at the remaining implanted cadaver sides.

Pull-out trial
In the tibial part (Fig. 3a), fractures of the powder/liquid
cement specimens (Suppl. 1) were located mostly along
the implant-cement-bone interface. Part of the fracture
took place between implant and cement and continued

often into the bone-cement interface at the central,
cross-formed shaft. For the pastry cement (Suppl. 2),
fractures mainly occurred in the bone-cement interface.
The mean pull-out force was slightly higher for the pas-
try cement (3764 ± 671 N) compared to the conven-
tional powder/liquid cement (3312 884 N) (Fig. 3c).
In the femoral part (Fig. 3b), the fracture surfaces of

the powder/liquid (Suppl. 3) and pastry (Suppl. 4) ce-
ment specimens were mostly across the condyle. The
drill holes for fixation were often still visible. In one ex-
ceptional case (pastry cement), the fracture went
through the implant-cement interface. The mean pull-
out force was 7008 ± 2552 N for the pastry cement and
5964 ± 3364 N for the powder/liquid cement (Fig. 3c).

Microscopic interface analysis
The cut surface of the tibia had a slightly concave shape
(Fig. 4). Both cement types accumulated in the center of
the plateau and the cement was thicker compared to the
periphery. In the center, penetration depth was about 3
mm, and about 1 mm at the lateral and medial side.
Similarly, penetration was fully achieved at the spher-
oidal structure of the bottom side of the implant, while
it remained incomplete at the periphery. A small gap
was detected between bone and cement on the edge of
the implant.
In the femoral part (Fig. 5), penetration depth of the

powder/liquid cement differed along the bone, with 0.67
mm medially and 0.47 mm laterally. Penetration depth
of the pastry cement was 1.36 mm medially and 0.39
mm laterally. Accordingly, the cement thickness was big-
ger laterally then medially for both cements.

Discussion
In the present study, a pastry bone cement was intro-
duced and compared to a conventional PMMA cement,
aiming to refine cemented TKA. Regarding the cement-
ing technique, bone preparation and surgical approach,
initial conditions were simulated as closely as possible.
Both cements expressed similar characteristics during

preparation and application, only the curing time of the
pastry cement was about 3 min longer for the tibial and
femoral parts. The prolonged curing time may increase
cement flow, thereby facilitating penetration. However,
this was not confirmed by the present results.
The temperature was measured where cement was the

thickest and heat development produced by PMMA cur-
ing was expected to be maximal. Temperature peaks
were about 34 to 36 °C for the pastry cement and about
36 to 37 °C for the powder/liquid cement, the peaks
were rather short-lived. In an animal model, it was
shown that bone formation is reduced after 1-min ex-
posure to a temperature between 47 and 50 °C, while no
effects were observed at 44 °C [18]. Thermal bone
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necrosis starts only at 55 °C after 30 s of exposure [19].
The extent of thermal damage is both temperature and
time dependent. The present results suggest that the risk
of thermal injuries is low, which is in line with previous
findings [20], but the thermal injury safety margin is nar-
row. It must be emphasized that the measured
temperature is different from the real-life situation, since
the initial cadaver temperature varied about 10 °C from
the temperature of patients. Under physiologic condi-
tions, vascularization will buffer the heat, but the cooling
effect may be lower in the knee joint in case of an in-
flated tourniquet.
In earlier pull-out trials, it was shown that less dense

bones with wide cancellous clefts allowed large cement
pegs extending into the cancellous bone, entailing

interface fractures that predominantly occurred within
the bone. In dense bones, fractures occurred rather in
the cement [21, 22]. In this study, fractures of the pow-
der/liquid cement specimens differed from the pastry ce-
ment specimens in the tibial part, while no differences
were found in the femoral part. Although bone density
was not investigated directly, the devices were implanted
in a random and alternating manner, ensuring compar-
able conditions. The results indicate that the cement-
implant interface may be stronger for the pastry cement,
but this can only be described as a tendency.
PMMA is used to tightly fill the space between the ir-

regular bone surface and the implant. The penetration
depth of cement into bone is supposed to be crucial for
increased implant stability [23, 24]. Penetration depths

Fig. 3 Tibia (a) and femur (b) fixed on the pipe socket and mean pull-out forces (c). N = 5. (the value of the femoral part from cadaver no. 82
[powder/liquid cement] was not considered due to failure of the implant).
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Fig. 4 Interface analysis of the tibial part. Red bar marks the cutting line (a). Overview of the cut surface (b). Close-up of implant-cement-bone
interface (c). Close-up of implant-cement (d), cement (e), and cement-bone interface (f). Figures are representative for powder/liquid and
pastry cement

Fig. 5 Interface analysis of the femoral part. Red bar marks the cutting line (a). Overview of the cut surface (b). Close-up of area 1* (c) and 2* (d)
from the cut surface (b). Close-up of implant-cement interface area 3* (e) and cement bone interface area 4* (f) from figure 9d. Figures are
representative for powder/liquid and pastry cement
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of 2 to 4 mm into the proximal tibia is regarded as suitable
for optimal fixation [25, 26], while penetration beyond 5
mm may increase the risk of thermal damage [27]. In
addition, the degree of bone cement interdigitation may
further affect the tensile strength of the cement-bone
interface [28]: Microscopic interface analysis revealed that
although cement was only applied onto the implant, both
cements achieved a penetration depth of 3 mm in the cen-
ter of the tibial part. Laterally, penetration depth was
about 1 mm. In the femoral part, penetration depth of the
pastry cement was centrally twice as deep as the powder/
liquid cement. Again, penetration depth was lower in the
periphery, suggesting that applied pressure was stronger
centrally than laterally. However, patient-related condi-
tions (e.g., bone density) and differences in the treatment
(e.g., pulse lavage, tourniquet, surface drilling, use of lapar-
otomy sponges, and suction) will lead to different penetra-
tion depths of the cement in vivo [29].
Pull-out trials and microscopic interface analysis indi-

cate that the cement-bone/cement implant contact area
is important for the interfacial strength as well. The
findings are in line with Waanders et al., showing that
cement penetration depth as well as contact area are key
elements for optimizing the interfacial strength [30].
This study has several limitations. Obviously, the knee is

exposed to a variety of motions, shear forces, and tensile or
compressive loadings that cannot be assessed by pull-out tri-
als. Moreover, the present study does not consider biological
reactions due to polymerization heat, trauma, or monomer
toxicity and clinical tests are needed to address these issues.

Conclusion
The pre-clinical tests reported here show equal or even
slightly improved properties of the pastry cement com-
pared to the powder/liquid cement, indicating that the
pastry bone cement fulfills the requirements for bone ce-
ment in the field of knee arthroplasty. As an elaborate
mixing procedure (e.g., vacuum pump) is not needed for
the pastry cement and the operator needs to perform
only a few simple steps, the potential risk of cement-
related failures is reduced. A clinical trial is needed to
further verify the system.
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