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Abstract

Background: Better life satisfaction (LS) is associated with better psychological and

psychiatric outcomes. To the best of our knowledge, no studies have examined predic-

tionmodels for LS.

Methods: Using resting-state functional magnetic resonance imaging (R-fMRI) data

from theHumanConnectome Project (HCP) YoungAdult S1200 dataset, we examined

whether LS is predictable from intrinsic functional connectivity (iFC). All the HCP data

were subdivided into either discovery (n= 100) or validation (n= 766) datasets. Using

R-fMRI data in the discovery dataset, we computed a matrix of iFCs between brain

regions. Ridge regression, in combination with principal component analysis and 10-

fold cross-validation, was used to predict LS. Prediction performancewas evaluated by

comparing actual and predicted LS scores. The generalizability of the predictionmodel

obtained from the discovery dataset was evaluated by applying this model to the vali-

dation dataset.

Results: The model was able to successfully predict LS in the discovery dataset

(r = 0.381, p < .001). The model was also able to successfully predict the degree of LS

(r = 0.137, 5000-repetition permutation test p = .006) in the validation dataset, sug-

gesting that our model is generalizable to the prediction of LS in young adults. iFCs

stemming from visual, ventral attention, or limbic networks to other networks (such as

the dorsal attention network and defaultmode network) were likely to contribute pos-

itively toward predicted LS scores. iFCs within ventral attention and limbic networks

also positively contributed to predicting LS. On the other hand, iFCs stemming from

the visual and cerebellar networks to other networks were likely to contribute nega-

tively to the predicted LS scores.

Conclusion: The present findings suggest that LS is predictable from the iFCs. These

results are an important step toward identifying the neural basis of life satisfaction.
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1 INTRODUCTION

Good subjective well-being (SWB) is protective against the psycholog-

ical impacts of major life events and is related to longevity and a lower

chance of physical illness (Diener & Chan, 2011; Luhmann et al., 2012;

Wood & Joseph, 2010). Because of these advantages, achieving bet-

ter SWB has been an important issue for policymakers since the 1980s

(Diener, 1984; Layard, 2010). However, because of its complex multi-

faceted nature, improving SWB is not easy. One of the most important

components of SWB is life satisfaction (LS), defined as “a cognitive and

global evaluation of the quality of one’s life as awhole” (Pavot&Diener,

2008). LS is associated with a wide variety of psychological and psychi-

atric sequelae, such as self-esteem (Diener & Marissa, 2009) and even

suicide (Koivumaa-Honkanen et al., 2001).

Despite such importance, LS itself is complex and changes with

life course; thus, only a few studies have examined its neural basis

(Kong, Ding, et al., 2015; Waldinger et al., 2011). A morphometric

study showed that LS is positively associated with regional gray mat-

ter volume in the right parahippocampal gyrus and negatively corre-

lated with gray matter volume in the left precuneus and ventromedial

prefrontal cortex (Kong, Ding, et al., 2015). A functional magnetic reso-

nance imaging (fMRI) study showed that higher LS is associated with

stronger functional connectivity within the emotion-processing net-

work (Waldinger et al., 2011). These prior studies showed that unique

neural correlates of LS can be foundwithin their respective participant

groups. However, a generalizable common neural basis for LS has not

yet been conclusively demonstrated.

Given the importance of LS to SWB, the consequences of lowLS, and

the relevance of LS to individuals worldwide, whether or not LS has a

generalizable neural basis should be determined. In the present study,

we examinewhether a predictivemodel for LS can be constructed from

intrinsic functional connectivity (iFC) data and subsequently examine

whether the neural basis of LS in one group of healthy adults is gener-

alizable to a larger, separate healthy adult group.

2 MATERIALS AND METHODS

2.1 Human Connectome Project dataset

We used the Human Connectome Project (HCP) Young Adult dataset,

comprising MRI data collected from 1200 young adult participants

(22−35 years old) (Glasser et al., 2013). We then removed subjects

who did not complete two resting-state fMRI (R-fMRI) sessions, for

whom psychological well-being measures were not obtained, or who

exhibited excessive head motions during the MRI scans. After these

exclusion criteria, 866 subjects remained. Because this dataset con-

tained biological siblings, there was a possibility for biasing the pre-

diction model due to the genetic and shared environmental factors

among siblings. The HCP dataset provided a list of subjects unrelated

to other subjects. To avoid undesirable information leakage in con-

structing the predictionmodels, we used 100 unrelated subjects (male:

n = 46, female: n = 54, LS: 54.47 ± 9.00 [mean ± SD]) out of the 866

for the discovery dataset. The remaining 766 subjects were used for

the validation dataset (male: n= 363, female: n= 403, LS: 54.79± 8.89

[mean ± SD]). The degree of general LS in HCP participants was mea-

sured using the National Institutes of Health (NIH) toolbox (Salsman

et al., 2014). We note that the overarching aim of the current study

is building the generalizable model to predict LS. Thus, we eschewed

adjusting potential confounding demographic factors, such as race

and income. In other words, we intended to accept heterogeneity of

the participants, while aiming to achieve the acceptable prediction

performance.

2.2 R-fMRI data processing and network
construction

We obtained minimally preprocessed R-fMRI data from the publicly

available HCP database (Glasser et al., 2013). Using an in-house MAT-

LAB code, we applied additional processing procedures to the R-fMRI

data, including the removal of the first 10 s of data for each run and

nuisance regression on the data. Nuisance regressors comprised lin-

ear detrending, six headmotion parameters, and averaged signals from

subject-specific white matter, ventricle, and graymatter masks, as well

as their derivatives. A band-pass filter (0.008−0.1Hz)was then applied

to the residuals. Frame-wise displacement (FD) was calculated to iden-

tifymotion-contaminated volumes, and a scrubbingmethodwith anFD

thresholdof0.5mmwasapplied to reduce spurious changes in iFCsdue

to subtle headmotion during the scans (Power et al., 2012 ).

We characterized each individual’s whole-brain functional connec-

tome using 427 regions of interest (ROIs): 400 surface-based cortical

regions (Schaefer et al., 2018), 17 subcortical regions (Fischl et al.,

2002), and 10 functionally parcellated cerebellar regions (King et al.,

2019). Pearson correlation coefficients were calculated between

all possible pairs of ROIs, yielding a 427 × 427 iFC matrix for each

participant. Fisher’s r-to-z transform was further applied to each

correlation coefficient. These procedures yielded 90,951 unique iFCs,

excluding the diagonal elements of the iFCmatrix. The lower triangular

portion of the iFC matrix was vectorized and concatenated across

participants, resulting in a 100 × 90,951 feature matrix. To improve

the interpretability of our findings, we characterized the 427 ROIs

into nine resting-state network (RSN) labels comprising seven RSNs

previously described (Yeo et al., 2011), aswell as basal ganglia (BG) and

cerebellar (CER) networks.

2.3 Constructing the prediction model for LS
using iFCs

To test the association between iFC and the degree of LS, we con-

structed a prediction model for LS using ridge regression in combi-

nation with principal component (PC) analysis (PCA) and a 10-fold

cross-validation (CV) approach (Hoerl & Kennard, 1970). As shown

in Figure 1, we first applied PCA to the discovery dataset to reduce

the dimensionality of features into 99 PC scores. The transformation
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F IGURE 1 Schematic diagram of the procedure for constructing the life satisfaction (LS) predictionmodel and assessing its predictive power

matrix obtained from the discovery dataset was also applied to the val-

idation dataset, which, it should be noted, had not been used to obtain

the transformation matrix. Then, the discovery dataset was divided

into 10 groups, or folds, for 10-fold CV.Weused nine folds to construct

the ridge regression predictionmodel, and the remaining foldwas used

to test the efficacy of the constructedmodel. The hyperparameter was

optimized within the internal loop; that is, the test fold data were not

used to optimize the hyperparameter. To evaluate the prediction per-

formance of the obtainedmodel, we calculated thePearson correlation

coefficient between averaged predicted and actual scores.

2.4 Permutation test for assessment of prediction
performance

To assess the statistical significance of the performance of themodel in

predicting LS, we used a permutation test with 5000 iterations. Briefly,

we shuffled LS scores at each iteration and constructed a prediction

model with 10-fold CV as described above. To assess the null models’

prediction performance, we computed the Pearson correlation coeffi-

cient between predicted and actual scores, yielding a null distribution

fromwhich the p value could be calculated. Statistical significance was

set to p< .05.

2.5 Generalization of the prediction model for
the validation dataset

The generalizability of the prediction model was tested using the val-

idation dataset (n = 766). As we had obtained 10 prediction models

from 10-fold CV, we applied these prediction models to the validation

dataset and computed thePearson correlation coefficient between the

averaged predicted and actual scores. Again, we constructed the null

distribution using predictionmodels obtainedbypermutation testwith

5000 iterations. Statistical significance was set to p< .05.

2.6 Contribution of iFCs to predicted LS

Wemeasured the extent towhich iFCs contributed to the prediction of

LS by calculating the weight contribution of each iFC. As both PCA and

ridge regression are linear methods, the contribution of each iFC was

calculated by multiplying the PCA-derived transformation matrix and

the regression coefficient matrix of our prediction models, yielding 10

weights for each iFC. The contribution of each iFC was assessed using

one-sample t-tests, with statistical significance set to p < .05 adjusted

with a Bonferroni correction for multiple comparisons (90,951 com-

parisons).

To further improve the interpretability of our findings, we examined

network anatomy in a similarmanner to previous studies (Barron et al.,

2020; Lake et al., 2019). Briefly, we computed the probability that iFCs

are shared between the networks identified by our prediction model

andwithin or between nine canonical RSNs. Statistical significancewas

determined using a hypergeometric cumulative distribution function

after applying Bonferroni correction for 45 comparisons.

3 RESULTS

3.1 Prediction performance in the discovery
dataset

Themodelwas able to successfully predict the degree of LS reported in

healthy young adults by using PC scores derived from iFCs (r = 0.381,
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F IGURE 2 Scatter plots of actual versus model-predicted life
satisfaction (LS) scores. For the discovery (a) and validation (b)
datasets, Pearson correlation coefficients were calculated between
actual and predicted LS scores. Permutation tests with 5000 iterations
were conducted to examine the statistical significance. Statistical
threshold was set to p< .05

5000-repetition permutation test p < .001) in the discovery dataset of

100 individuals (Figure 2a).

3.2 Prediction performance in the validation
dataset

Having determined that our obtainedmodel could successfully predict

the degree of LS in the discovery dataset, we applied this prediction

model to the validation dataset. Aswe obtained 10models through the

10-fold CV, we applied each of these models to the validation dataset

and considered their averaged scores as the predicted scores for the

validation dataset. The model was also able to successfully predict the

degree of LS (r = 0.137, 5,000-repetition permutation test p = .006) in

the validation dataset of 766 individuals, suggesting that our model is

generalizable to the prediction of LS in young adults (Figure 2b).

3.3 Contribution of iFCs to the prediction
performance

We computed the contribution of each iFC by multiplying the PCA-

derived transformation matrix and the weights of prediction models.

Statistical analyses revealed that 6164 iFCs were significant contribu-

tors to the prediction of LS (p< .05/90,951), comprising 3479 iFCs con-

tributing positively to predicted LS scores and 2685 iFCs contributing

negatively to predicted LS scores (Figure 3). Qualitatively, iFCs stem-

ming from the default mode network (DMN) were the dominant con-

tributors to the prediction of LS.

To further examine the model’s network anatomy, we computed p

values between our network and within or between nine canonical

RSNs (with a significance level of p < .025/45) for iFCs contributing

positively and negatively to LS prediction. Among iFCs contributing to

LS, iFCs stemming from visual, ventral attention (VAN), or limbic net-

works to other networks (such as the dorsal attention network [DAN]

and DMN) were likely to contribute positively toward predicted LS

scores (Figure 4a). iFCswithin VAN and limbic networks also positively

F IGURE 3 Overview of intrinsic functional connectivities (iFCs) contributing to the prediction of life satisfaction. The left panel shows the
matrix, each element of which represents t-statistics. The red and blue colors indicate that iFCs positively and negatively contributed to predict
the life satisfaction (LS) score, respectively. Themiddle and left upper panels show the connectogram of iFCs contributing to the prediction of LS
scores. Themiddle and left bottom panels show the brainmaps
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F IGURE 4 Network anatomy of predictionmodel. For (a) positively and (b) negatively contributing intrinsic functional connectivities (iFCs),
edge overlap within and between nine canonical resting-state networks (RSNs) was plotted. Each plot shows the likelihood (1− p value) estimated
from the probability of edges shared between canonical RSNs and the predictionmodel. In all plots, the nine within-network (left panel) and 36
between-network (middle panel) pairs are sorted in descending order of probability. The right panel shows the interaction of networks. The
asterisk represents the statistical significance after Bonferroni correction for multiple comparisons (i.e., p< .025/45). Abbreviations: BG, basal
ganglia; CER, cerebellar; DAN, dorsal attention network; DMN, default mode network; FP, fronto-parietal; Limb, limbic; Somat, somatomotor;
VAN, ventral attention network; Vis, visual

contributed to predicting LS. On the other hand, iFCs stemming from

the visual and cerebellar networks to other networks (such as theDAN,

DMN, BG, and limbic networks) were likely to contribute negatively to

the predicted LS scores (Figure 4b).

4 DISCUSSION

Analyzing a sizable R-fMRI dataset in adults, we demonstrated that LS

scores in healthy young adults could be predicted by a model based on

iFC. Furthermore, the LS predictionmodel constructed using data from

one group of healthy people could be used to predict the LS of another

group of healthy people, suggesting a generalizable neural basis for LS.

To achieve this novel finding, we first constructed a prediction model

using iFCs of 100 healthy participants. We applied PCA and 10-fold

CV in the prediction model, which were then applied to the validation

dataset. Although the correlation between the actual and predicted

scores was weaker in the validated dataset than that in the discovery

dataset (Figure 2), the findings showed high generalizability of the pre-

dictionmodel.

Significantly, the present study established a protocol to predict LS

from R-fMRI. This research was inspired by connectome-based pre-

dictive modeling (CPM), which uses large-scale neuroimaging data to

predict individual differences in traits and behavior (Shen et al., 2017).

Utilizing CPM, a number of studies have successfully predicted atten-

tion, anxiety, and mother–infant bonding (Ren et al., 2021; Rutherford

et al., 2020; Yoo et al., 2018). In line with the conclusions of these prior

studies, the present findings suggest that changes in functional connec-

tivity may improve LS. Additionally, the present results provide insight

into the functional connectivity pathways on which we should focus.

Future research could investigate potential mechanisms of interven-

tion to enhance LS.

The current findings should be interpreted in the context of sev-

eral prior neuroimaging studies that examined the brain-LS relation-

ships. Kong,Wang, et al. (2015) showed that LS can be predictablewith

regional homogeneity (ReHo). Kong et al. and the current study share

a part of findings. Namely, they identified that dorsal anterior cingu-

late cortex (ACC) was related to LS, while the dorsal ACCwas included

in the current list of nodes. However, there are some important differ-

ences in the assumption. First, we did not intend to identify one brain

region or a few as a neural correlate for LS, but we did assume that iFC

pattern would serve as a neural correlate of LS. Second, we adopted

iFC as a marker for the LS because we assumed that not only short-

distance but also long-distance connectivity would also work as neural

correlates. In contrast, ReHo focuses on the local connectivity. Another

study by Waldinger et al. (2011) adopted functional connectivity, but
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they focusedon somebrain regionsby settingROIs.However, they split

the participants based on LS into high LS and lowLS groups. In contrast,

the current study assumed that LSwas not categorical but dimensional.

In this context, we identified a large number of iFCs contributing signif-

icantly to the prediction of LS (Figure 3), despite employing stringent

corrections for multiple comparisons. The number of iFCs significantly

involved in LS prediction is most extensive in the DMN, which may be

driven by the fact that the DMNpossesses the largest number of ROIs.

Indeed, at the network level, the DMN did not frequently reach statis-

tical significance (Figure 4). Instead, the VAN and limbic system both

showed a significant contribution to LS. Given that the VAN and lim-

bic system play roles in reorienting the attention (Vossel et al., 2014

) and in motivation and emotional processing (Mogenson et al., 1980),

these components of cognition may be associated with LS. It should be

noted that these networks comprise several structures, that is, nodes

in the present analyses. However, we do not delve into which nodes in

these networks are involved, as this is beyond the scope of the present

study; additionally, the large-scale brain network concept assumes that

the network per se serves as the neural basis for these cognitive com-

ponents. The present findings are indirectly consistent with prior psy-

chological studies that reported a link between LS and emotion and

attention (Bastian et al., 2014; Diener et al., 2012). However, LS is not a

simple combination of emotion and attention but is more complex and

is related to culture, society, and the environment (Chen et al., 2015;

Schimmack et al., 2002). In this regard, we need to emphasize that

although the present study aimed to show the generalizability of our

predictionmodel for LS, the current study did not overcome the impact

of the difference in culture, society, and the environment as the data

were obtained in a single-center in the states. Future large-scale inter-

national collaborative study is expected to overcome the limitation.

The present findings have some more limitations. First, we used

a cross-sectional dataset to examine the associations between iFCs

and LS. Although we used the validation dataset to confirm the main

findings, the causal relationship between iFCs and LS remains unclear.

Future longitudinal investigations are necessary to elucidate causal

relationships. Second, LS scores were self-reported, which may intro-

duce bias. However, LS is intrinsically self-reported as a measure of

how he or she subjectively feels, regardless of objective evaluation by

others. Finally, although we paid much attention to avoiding undesir-

able information leakage in constructing the prediction model, demo-

graphic characteristics that might potentially be related to LS, such as

life events (Luhmann & Eid, 2009), medical status and religiosity (Levin

et al., 1995), in the present participant groupswere not available. How-

ever, given that the present study aimed to show the generalizability of

the prediction model, the potential heterogeneity of the present par-

ticipants would further support the generalizability of our model.

5 CONCLUSION

We successfully predicted LS in unrelated healthy young adults using

a prediction model constructed from R-fMRI data. Additionally, the

obtained model successfully predicted the LS scores in a further vali-

dation dataset, suggesting that LS has generalizable neural basis. The

present findings are a step toward future intervention strategies to

enhance LS, which could potentially bring the wide variety of benefits

associated with good SWB to people worldwide.
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