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Improving Drug Sensitivity Prediction Using Different
Types of Data

HA Hejase1 and C Chan1,2,3*

The algorithms and models used to address the two subchallenges that are part of the NCI-DREAM (Dialogue for Reverse
Engineering Assessments and Methods) Drug Sensitivity Prediction Challenge (2012) are presented. In subchallenge 1, a
bidirectional search algorithm is introduced and optimized using an ensemble scheme and a nonlinear support vector
machine (SVM) is then applied to predict the effects of the drug compounds on breast cancer cell lines. In subchallenge 2, a
weighted Euclidean distance method is introduced to predict and rank the drug combinations from the most to the least
effective in reducing the viability of a diffuse large B-cell lymphoma (DLBCL) cell line.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e2; doi:10.1002/psp4.2; published online on 00 Month 2015.

Given that cancer is the leading cause of death around the
world, developing drug compounds to target and treat can-
cers is a priority. However, developing cancer therapeutics
is a long and expensive procedure as well as a challenging
pharmaceutical task involving different developmental and
clinical testing stages. To facilitate this process, the use of
computational and simulation models to predict the
response of cancer cell lines to drug compounds has grown
in recent years.1,2 Models could aid in the drug design pro-
cess and address some of these challenges, i.e., help in
identifying drug candidates.3 Identifying effective lead drug
candidates for treating diseases, e.g., cancer, could benefit
from approaches that can predict the sensitivity of cancer
cells to drug compounds. These in silico predictors (mod-
els) have been built (learned) using static conditional as
well as time-series gene expression data.4,5

Statistical techniques, e.g., regression integrated with
random forest, have been applied on gene expression data
from cancer cells treated with different drug compounds to
predict the ability of the drugs to inhibit proliferation of the
cancer cell lines.6 Naive Bayes classifiers have been
applied on gene expression, chromosomal copy number
variation, and sequencing data from human cancer cell
lines treated with 24 anticancer drugs to predict the ability
of the drugs to inhibit their proliferation.7 Similarly, a
weighted voting classification model has been applied on
gene expression data to predict the drug responses (sensi-
tive or resistant) of 60 human cancer cell lines.3 A combina-
tion of relief, a nearest neighbor method, and random
forest also have been applied on proteomic data to predict
the response (sensitive, intermediate, or resistant) of
human cancer cell lines to drugs.8 Likewise, a weighted-
voting algorithm based on a set of differentially expressed
genes to evaluate the ability of an anticancer drug (Doce-
taxel) to treat breast cancer, correctly classified (predicted)
80% of the 26 samples (patients), i.e., whether a sample
was treated with the drug or not.9

Many of the statistical techniques have been employed on
only gene expression data with few applied on two or more
different types of data (e.g., proteomic, gene expression,
and sequencing data) to predict the response of the cancer
cells to drug compounds. The results reported are in
response to the NCI-DREAM (Dialogue for Reverse Engi-
neering Assessments and Methods) Drug Sensitivity Predic-
tion Challenge (2012) and consist of two subchallenges. For
the two NCI-DREAM subchallenges, subchallenge 1 was
based on five different types of data (i.e., proteomic, gene
expression, RNA-seq data, DNA methylation, and DNA
copy-number variation), and subchallenge 2 was based on
time series gene expression data of treated vs. untreated dif-
fuse large B-cell lymphoma (DLBCL) cancer cells.

In the first subchallenge, we use a greedy search algo-
rithm (bidirectional search) that combines the merits of
ensemble modeling and kernel methods (support vector
machine (SVM)) to predict the sensitivity of the breast can-
cer cell lines to previously untested drug compounds. We
assume that predictions of drug sensitivity could be
improved by integrating different types of information. The
data provided in the subchallenge either control (or alter)
the gene expression level or are further analyzed to gain
insight into the regulation of the genes. Given the diverse
types of data, ensemble models would be amenable, and
further have the advantage of increased solution stability.
Most of the ensemble models applied to drug sensitivity
predictions have thus far used different base algorithms to
extract features from one type of data (i.e., microarray6 or
proteomic8. In contrast, we developed an ensemble model
that extracts features from different types of data (proteo-
mic data, gene expression, RNA-seq, DNA methylation,
and DNA copy number variation) rather than using different
base algorithms on a single type of data. In other words,
we use the same base learning algorithms on the five dif-
ferent types of data. The ensemble model based on the dif-
ferent types of data can better exploit the different behavior
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of the base learning models and thereby enhance and
improve the accuracy of the overall model.

In the second subchallenge, we applied a weighted
Euclidean distance method to predict the rank order of drug
pairs that have a synergic effect in reducing the viability of
a DLBCL cell line and demonstrated that this simple
approach outperformed more advance similarity/statistical
measures.

RESULTS

The scores for subchallenge 1 are based primarily on the
similarity between the predicted and experimental rankings
of the 18 test cancer cell lines with respect to their sensitiv-
ity (from most to least) to the drugs. Additionally, to break
ties between teams achieving the same score based on the
ranking of the 18 test cancer cell lines, a score based on
the full ranked list (18 test cancer cell lines 1 35 training
cancer cell lines) is compared. The scoring metric used to
compare the different models is based on the modified con-
cordance index (c-index), also known as the weighted prob-
abilistic c-index (weighted pc-index or wpc-index). The wpc-
index quantifies the similarity between two ranked lists, in
this case, the predicted and the experimental rankings of
any two cell lines (i.e., their sensitivity to a drug) in this list

of 18 cancer cell lines.10 The wpc-index is normalized to a
final value that ranges from (0,1); the higher the normalized
wpc-index, the more similar the predicted ranking is to the
experimental ranking. The pc-index compares the predicted
rankings of any two cell lines to their experimental rankings
(this process is repeated for all possible cell line pairs).
This generates a score that reflects the relationship (con-
cordant or discordant) between the predicted rankings of
two cell lines to their corresponding experimental rankings.
If the predicted rankings between the two cell lines corre-
spond to their experimental rankings, then a value between
(0.5,1) is returned according to an error function (e.g., the
error function takes into account the ranking (predicted vs.
experimental) as well as the response (predicted vs. experi-
mental) of the cancer cell lines to drugs). On the other
hand, if they do not correspond, then a value between
(0,0.5) is returned. The pc-index is calculated for each drug
individually and then the average of the pc-index scores
across all drugs is calculated to obtain the wpc-index.

As shown in Figure 1, the bidirectional search (wpc-
index of 0.549) outperformed several other ensemble
approaches, including ones that used random forests (wpc-
index of 0.524), gradient boosting (wpc-index of 0.538),
bagging and gradient boosting (wpc-index of 0.544), deci-
sion trees (wpc-index of 0.548), a combination of k-nearest
neighbor regression, linear least-squares regression,

Figure 1 Comparison of the normalized wpc-index (0 for (worst) and 1 for (best)) between different ensemble approaches. The wpc-
index is a composite score based on the ranking of the 18 test cancer cell lines with respect to their sensitivity to all the drug com-
pounds and relative to the 35 training cancer cell lines. The rankings are based on the sensitivity of the cancer cell lines to each drug
compound (from most to least effective). Ensemble of methods (1) corresponds to an ensemble model of random forest, SVM, and lin-
ear regression and where the predictions are made with the best-performing ensemble model of SVM. Ensemble of methods (2) corre-
sponds to an ensemble of SVM with a radial kernel, SVM with a polynomial kernel, random forest, ridge regression, and boosting and
where each method is applied on the five datasets and the results are then combined. Ensemble of methods (3) corresponds to an
ensemble of k-nearest neighbor regression, linear least-squares regression, support vector regression, and gradient boosting regres-
sion and where the predictions are made with the best-performing ensemble model. SVM, support vector machine.
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support vector regression, and gradient boosting regression
(ensemble model 3, wpc-index of 0.506), and a combina-
tion of SVM, random forest, ridge regression, and boosting
(ensemble model 2, wpc-index of 0.517). Therefore, the
ensemble scheme using the bidirectional search outper-
formed several state-of-the-art ensemble schemes (e.g.,
random forest, bagging, boosting). This is because the
bidirectional search algorithm (feature selection method)
obtains a set of representative features that is achieved by
iteratively applying sequential forward and backward selec-
tions to select good and remove bad features from the fea-
ture set, and further provides a solution that is close to
optimal.11 However, our ensemble scheme was outper-
formed by two other ensemble models, the ensemble of
regression models (wpc-index of 0.562) and SVMs (ensem-
ble model 1, wpc-index of 0.554). It is notable that the top
three performing ensemble approaches used the SVM fam-
ily of supervised learning methods.

An ensemble scheme that combines proteomic, gene
expression, RNA-seq data, DNA methylation, and DNA
copy number variation was compared to models that used
only one of the five data types. These single dataset mod-
els applied the same methods as the ensemble scheme to
select the features (here bidirectional search was used)
and predict the sensitivity of the cancer cell lines to the
drug compounds (here SVM was used). As shown in
Figure 2, an ensemble scheme (wpc-index of 0.549) that
integrates multiple types of data in learning the classifica-
tion models outperformed classification models that use a
single type of data, i.e., RNA-seq (0.446), microarray
(0.392), DNA methylation (0.439), proteomic (0.317), or
DNA copy number variation (0.382) alone.

The weighted Euclidean distance measure was compared
to other similarity/statistical measures in subchallenge 2.
Each method had a score (wpc-index), which was calculated
by comparing the predicted ranked list of the 91 drug pairs to
the experimental ranked list (the ground truth). The experi-
mental ranked list was based on the difference between the
experimentally determined IC20 (20% inhibition concentra-
tion) and the expected IC20 (20% inhibition concentration) for
pairs of drug combinations. The expected IC20 was computed
by calculating the synergy between two drug compounds
based on their individual activity.12 As shown in Table 1, a
weighted Euclidean distance similarity measure (0.51624)
outperformed Pareto ranking (0.50653), t-test (0.48988),
information theoretic measure (0.48568), Pearson correlation
(0.41993), and a nonlinear similarity measure (0.43479).

DISCUSSION

The 2012 NCI-DREAM Drug Sensitivity Prediction Chal-
lenge consisted of two subchallenges with different types of

Figure 2 Comparison between the wpc-index of different models. The bidirectional search is based on five different types of data
(RNA-seq, microarray, DNA methylation, reverse phase protein array (RPPA), DNA copy number variation (DNA CNV)). The five other
models applied the bidirectional search algorithm to only one of the five types of data.

Table 1 Comparison of score (wpc-index) between different similarity and

statistical measures

Similarity/statistical measure Score

Weighted Euclidean distance 0.51624

Pareto ranking 0.50653

t-test 0.48988

Information theory measure 0.48568

Pearson correlation 0.41993

Nonlinear similarity measure 0.43479

Score is normalized between 0 (worst) and 1 (best).
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data used to predict the sensitivity of cancer cell lines to
drugs.

Since different types of data are provided for subchal-
lenge 1, ensemble modeling is a reasonable approach to
tackle the different data. Different supervised learning algo-
rithms (e.g., decision trees, k-nearest neighbors, SVMs,
regression models, etc.) can generate different predictions
since they involve stochastic learning.13 An ensemble
framework, using different base learning algorithms or fea-
ture representations, could mitigate this shortcoming by
generating a more stable solution as compared to individual
supervised learning methods. Previously, we showed
through simulation experiments that an ensemble classifica-
tion approach outperformed a single classification model
when applied to gene expression data.14

Similarly, applying an ensemble framework to the five dif-
ferent types of data generated better predictions and a
more stable solution as compared to applying models
based on single type of data (Figure 2). Using different
types of data provides an advantage in building more reli-
able models. We previously showed that models based
only on gene expression and protein-protein interaction
data outperformed models based on only gene expression
data.15–18 Thus far, predictions of the response of cancer
cells to drug compounds have been applied mostly on a
single type of data (i.e., gene expression data).3,6,8,9

Indeed, integrating different types of data (RNA-seq, DNA
methylation, DNA copy number variation, reverse phase
protein array, and microarray gene expression data) gener-
ated a model that better predicted the response of cancer
cells to drug compounds as compared to using each type
of data alone (Figure 2). Thus, combining the different
types of data in an ensemble scheme yielded more accu-

rate predictions as compared to single classifier models or
models based on a single type of data.

Missing values present a disadvantage to the algorithm
proposed in subchallenge 1 and degrades its general
performance. Therefore, in the future, strategies to
address missing values could increase the general per-
formance of the bidirectional search algorithm. The bidir-
ectional search algorithm presented deals mainly with
quantitative data (e.g., gene expression, methylation,
RNA-seq) but has a limitation in handling other types of
data structures (e.g., protein-protein interaction/network
data or qualitative data). To address this limitation, meth-
ods (e.g., these generate a binary matrix to convert a
PPI network into a quantitative model) to quantify these
network/qualitative data structures can be applied to inte-
grate them into our model. The ensemble scheme pre-
sented in subchallenge 1 can be generalized and applied
to other systems (e.g., human, plants, etc.) or diseases.
As long as the data are quantitative, the proposed model
can be applied. The main objective is to build separate
models at the feature level (Figure 3). In our approach,
five different feature level models were constructed for
the five different types of data, i.e., RPPA, copy-number
variation, methylation, gene expression, RNA-seq. Once
these models are constructed, the classification/prediction
as well as the combination (e.g., ensemble scheme) of
predictions are straightforward.

Since it is very difficult and computationally infeasible to
enumerate all possible solutions to determine the best set
of features to build a base model, there is a need for a
method (in our case, the bidirectional search algorithm was
used) to select a subset of features that can be used by
the optimization technique (e.g., SVM) to achieve good

Figure 3 Subchallenge 1 feature selection and learning through an ensemble model. (a) Feature level—from the training set that con-
tains five different types of data, multiple training datasets are created (CNV, RPPA, methylation, gene expression, and RNA-seq). (b)
Classifier level—each of the five training datasets represents a distinct set of features, which are used to learn five different classifica-
tion models. (c) Combination level—the prediction results generated from the five models are combined to obtain the final drug sensi-
tivity predictions. CNV, copy-number variation; RPPA, reverse phase protein array.
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predictions. The greedy algorithm we chose is a combina-
tion of two algorithms (sequential forward selection and
sequential backward selection), and as shown from empiri-
cal experiments outperformed a number of approaches that
used an ensemble scheme. Our method was able to out-
perform several state-of-the-art ensemble schemes (e.g.,
random forests, boosting, bagging). However, our method
was outperformed by two ensemble schemes where the
same evaluation function (SVM) was used. Based on the
aforementioned results, it is possible that the use of an
ensemble scheme with different feature selection methods
as base models could generate improved results. For
example, each base model in the ensemble scheme could
use a different feature selection method (e.g., bidirectional
search, Spearman’s rank correlation, correlation, PCA,
Lasso or the Ridge method). Each base model would pro-
vide predictions using a SVM evaluation function, and the
overall prediction based on all the models would be com-
bined to achieve better results.

Since efficiency is also an important factor in our study,
we developed an approach (feature selection 1 evaluation
function) that minimizes the number of features selected
while maximizing the accuracy of the model. In other
words, one can liken this to a dual optimization problem,
where the goal is to increase the accuracy with the fewest
number of features. Addressing this problem as a single
optimization problem (e.g., maximizing accuracy) could
improve the results, but will suffer from the disadvantage of
being inefficient computationally.

Applying any optimization technique (e.g., SVM) prior to
applying a feature selection method can result in the “curse
of dimensionality” (e.g., a large number of features where it
becomes difficult to select the representative features that
are the basis for any base classification algorithm). There-
fore, prior to applying SVM, which is an evaluation function
responsible for predicting the response of a cell line to a
drug, it is important to select a set of representative/impor-
tant features (e.g., genes) that can accurately (or at least
with minimal error function) predict the response of the can-
cer cell lines to the drug compounds.

SVM, the evaluation function used in our study, is known
to be computationally intensive and cannot be run on the
entire set of features provided. Therefore, running a prepro-
cessing technique (e.g., feature selection method—bidirec-
tional search algorithm) to select a subset of features that
is capable of being handled by this evaluation function
would improve its computational efficiency. Applying other
evaluation functions (e.g., decision trees, k-nearest neigh-
bor, linear discriminant analysis) that tend to be less com-
putationally intensive, with our feature selection method,
could provide an alternative for selecting more representa-
tive/important features, while improving the overall accuracy
and efficiency.

For subchallenge 2, we demonstrated that a simple
method such as the weighted Euclidean distance can
achieve competitive results to more advanced mathematical
or hypothesis testing approaches. We show that it is not
always the case that the more advanced the mathematics
or statistical assumptions made, the better the results
achieved, sometimes the simpler and fewer assumptions

can yield comparable results. As shown from our empirical
experiments, it is possible that a simple model with a
straight-forward weighting scheme and simple similarity
measure is able to perform as well as more advanced
approaches.

The weighted Euclidean distance model presented is
simple and applies a straightforward weighting scheme
and a simplified similarity measure. Thus it is easy to
implement. This simple scheme achieved satisfactory
results as compared to more advanced similarity meas-
ures/statistical methods in predicting the drug compound
combinations that are both effective (or ineffective) in
reducing the viability of the DLBCLcell line (Table 1). A
word of caution, this observation is based on the data-
sets analyzed in this study and should not be generalized
to other scenarios. Thus, it is sometimes the case that
simpler and fewer assumptions could yield improved
results.

The approach presented in subchallenge 2 accounts for
linear relationships and does not capture nonlinear depend-
ence. Therefore, a distance function that accounts for non-
linear relationships (e.g., dynamic time warping) could
improve the results. There are certain scenarios where this
approach could fall short. For instance, in cases where we
have two drugs that are exactly the same, the weighted
Euclidean distance between those two drugs would be
approximately zero, which according to our approach
means that the combination of those drugs yields a high
synergistic score. In reality, this would be incorrect. This is
due, in part, to the simplicity of the weighting scheme used,
which ranks every drug according to its activity. This limita-
tion of a simple weighting scheme could be addressed by
adding more assumptions. For example, developing a prob-
abilistic weighting scheme (e.g., probabilistic hidden Markov
model) could potentially address this situation. In this case,
one can add an assumption in a probabilistic model to
require that two of the same drugs cannot yield a highly
synergistic score. Alternatively, applying clustering using a
weighted Euclidean distance as a similarity measure could
potentially generate a partition containing groups of similar
objects (drugs). Further analysis can be applied on each
group (e.g., cluster) to generate predictions. Hypothetically,
there might be scenarios where a cluster could contain a
number of effective drug combinations 1 a drug combina-
tion where its activity (effective or ineffective) is unknown.
Based on this evidence, it could suggest that this drug
combination with unknown activity is also effective, and
thus could provide novel predictions.

METHODS
Data
The data description for subchallenge 1 and 2 is contained
in the Supplementary Methods online.

Algorithms and models
The algorithms and models used to address subchallenge
1 include a bidirectional search algorithm to select a set of
features from each data are set where the training and test-
ing is performed with a supervised learning method, SVM
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with a radial basis kernel. In subchallenge2, a weighted
Euclidean distance method is introduced to predict the sen-
sitivity of binary combinations of drug compounds and
whether they have a synergic effect on reducing the viability
of the DLBCL cell line.

Subchallenge 1. The data provided in the NCI-DREAM
data-sets are of high dimensionality (contain a large num-
ber of features). This large number of features degrades
the performance of supervised and unsupervised learning
algorithms because the feature space becomes sparse
and the distance between the samples becomes less pre-
cise. Feature selection methods can address this chal-
lenge, which arises from high data dimensionality
prevalent in most high-throughput or high-throughput
omics studies (e.g., microarray, RNA-seq, DNA methyla-
tion) by selecting or extracting a subset of features
through linear combinations or nonlinear mapping of the
feature set. In addition, it is computationally infeasible to
enumerate all possible feature sets to find the optimal set
of features. Therefore, to address the two aforementioned
limitations, a near-optimal bidirectional search algorithm
was introduced to select a subset of features11 that were
used to predict the response of the breast cancer cell
lines to drug compounds. The bidirectional search algo-
rithm finds a near-optimal set of features to predict the
response of the cells to the drugs by combining the
merits of sequential forward and backward selections.
Figure 3 summarizes the general framework applied in
subchallenge 1.

Feature level. Sequential forward and backward selections
are combined to implement the bidirectional search algo-
rithm. The sequential forward selection starts from an
empty set of features and successively adds features until
it forms a locally optimal feature set that is used for classifi-
cation, i.e., to predict the response of the cancer cell lines
to the drug compounds. On the other hand, the sequential
backward selection starts from a full set of features and
successively removes features until it forms a locally opti-
mal feature set that is used for prediction (Supplementary
Methods online).

Classifier level. In the classifier level, where the models are
constructed and used to predict the sensitivity of the cancer
cell lines to each drug compound, we learned five different
models, each capturing a set of features from a data type.
This is achieved through building an ensemble framework
of base learning systems (i.e., individual models). The moti-
vation behind using an ensemble framework is to assist in
the process of handling diverse sets of data where each
data type exhibits different characteristics.22 The base clas-
sifiers (individual models) were constructed through a
supervised learning method, e.g., SVM. SVM was used as
an objective function in Algorithm 3 to determine the best
features to add to the feature set (sequential forward selec-
tion) as well as the worst features to remove from the fea-
ture set (sequential backward selection). The Libsvm tool
was used to implement SVM23 where tenfold crossvalida-
tion was used to avoid overfitting the model. By applying
SVM, the sensitivity or response of the breast cancer cell

lines to the different drugs was predicted. Since the under-
lying structure of the data is nonlinear, SVM maps the data
to a higher dimensional space through a kernel function
(radial basis function: e2c�ju2v j2 where c5 1

# of features
) and

then applies linear regression in this new feature space to
compute the predicted sensitivity. The training set contained
35 breast cancer cell lines that were used to train the SVM
classifier/model. Next, the classification (prediction) model
was applied on the test set containing the remaining 18
breast cancer cell lines to predict the sensitivity or response
of these 18 breast cancer cell lines to each drug com-
pound. Mean squared error was used to assess the quality
of the features in the training set.

Combination level. After learning the five different classi-
fiers, each representing a distinct feature set through SVM,
five lists were generated that provided a ranking (from the
most to the least efficacious drug) of the sensitivity or
response of the breast cancer cell lines to each drug com-
pound. These five ranked lists were integrated by averaging
the rank of each drug compound across the five lists for
each breast cancer cell line. Next, a final rank list was gen-
erated by sorting the ranks of the different breast cancer
cell lines based on their average rank. In other words, a
ranked list of 53 breast cancer cell lines from the most to
the least sensitive (i.e., from the most to the least respon-
sive cancer cells to the drug) was constructed for each
drug compound.

Subchallenge 2. A weighted Euclidean distance was used
to compute the similarity between different, treated,
time-series profiles to predict the activity of drug pairs.
The assumption is that the closer the time-series profiles
two drug compounds are in the feature space (e.g., the
more similar they are based on a distance measure),
the more similar their effects on the cell response will
be. Although the Euclidean distance measure is simple
to compute and is limited to linear relationships between
samples, it has been shown through different empirical
experiments that the similarity measure using the Euclid-
ean distance achieves comparable results to more
advanced similarity measures (e.g., nonlinear similarity
measures).24,25

Each drug compound was weighted according to its
activity, thus the 14 drugs were weighted differently accord-
ing to their “measure of importance” or the therapeutic effi-
cacy of each drug on the DLBCL cell line. The weight of
each drug corresponds to the rank of the drug based on its
activity or ability to inhibit growth of the cells, with a higher
ranking for drugs with higher therapeutic efficacy. The drug
compounds were weighted from 1 to 14:

wi 5ranki ji51 to 14

After computing the weight of every drug according to
its sensitivity to the DLBCL cell line, a weighted Euclid-
ean distance measure was employed to calculate the
similarity between all drug compounds. The similarity
between all pairs of drugs generated 91 similarity values,
where each similarity measure represents the distance
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(di,j) between two drug compounds (i,j) across different
time points.

di ;j 5
X i :j51

i 6¼ j

14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k51

ðwi � drugi ;k 2wj � drugj;k Þ
2

vuut

where

• drugi,k where k 5 1. . .n corresponds to the time-series expression
profile (treated and untreated) vector for drugi

• drugj,k where k 5 1. . .n corresponds to the time-series expression
profile (treated and untreated) vector for drugj

• n corresponds to the size of the expression profile vector.

The above equation calculates the distance between all
pairs of drugs (totaling 91 drug pairs). Therefore, di,j is a
final similarity vector of size 91.

After computing the similarity between all pairs of drugs,
the drug pairs were ranked from the most to the least simi-
lar. The more similar two drug compounds are, the more
alike their effects or efficacy should be. The 91 similarity
measures were ranked from the most similar to the most
dissimilar (e.g., from the most synergistic to the most
antagonistic), and therefore, a list was generated based on
the therapeutic efficacy of pairs of drug compounds on the
DLBCL cell line.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THIS
TOPIC?

� Ensemble models have been applied on a single type of
biological data to predict the sensitivity of cancer cell
lines to drug compounds.

WHAT QUESTION DID THIS STUDY ADDRESS?

� How different types of data can be used to more accu-
rately predict the sensitivity or response of cancer cell
lines to drug compounds.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

� Ensemble approaches can capture and extract key
features from different types of biological data by
capitalizing on different base models to increase the
accuracy of the final model as compared to ensem-
ble models that are applied on a single type of
data. Additionally, a simple weighted Euclidean dis-
tance measure could achieve competitive results to
more advanced similarity/statistical measures for pre-
dicting the response of a cancer cell line to combina-
tions of drug compounds.

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

� This study can aid the drug design process by facilitating
the identification of effective lead drug candidates for
treating cancer.
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