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Abstract: A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is
often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic
influenza–bacterial co-infection represents a serious medical problem. The pathogenic changes in
the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host
immune response. IAV infection triggers a complex process linked with the blocking of innate and
adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune
system allows for easier initiation of bacterial superinfection. Therefore, many new studies have
emerged that aim to explain why viral–bacterial co-infection can lead to severe respiratory disease
with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins—namely,
PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1—known to play a role in modulating the
immune defense of the host, which consequently escalates the development of secondary bacterial
infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading
to pathological disorders caused by bacterial superinfection after the previous viral infection is
important for the development of more effective means of prevention; for example, by vaccination or
through therapy using antiviral drugs targeted at critical viral proteins.

Keywords: influenza virus; influenza viral proteins; Streptococcus pneumoniae; co-infection; secondary
bacterial infection

1. Introduction

Lower respiratory tract infections annually cause millions of human deaths world-
wide [1]. A substantial portion of these deaths is attributable to seasonal influenza virus
infections, due to the constant emergence of new variants of influenza A viruses (IAV)
and synergistic infections with other viruses or bacteria [2,3]. The development of severe
disease is often associated with the ability of primary viral infection to alter the host im-
mune response, resulting in the promotion of the secondary infection. Such an infection
can cause a potentially lethal disease associated with the systemic inflammatory response
of the body [4–6].

Secondary bacterial infections can be caused by several bacterial species, such as Acine-
tobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis,
Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, or Streptococcus pyo-
genes [6–9]. The most common is the bacterium Streptococcus pneumoniae, which can persist
in the human nasopharynx in a dormant state from early childhood to adulthood [6]. The
dormant form of S. pneumoniae is non-invasive but can be reactivated and cause invasive
infection after influenza infection [6,10,11]. Both IAV and S. pneumoniae are considered
to be among the most important pathogens of the respiratory tract. An example of their
synergistic relationship is the Spanish flu pandemic in 1918. It has been shown that the
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high mortality of this pandemic was not caused by the virus itself, but was instead the
result of co-infection by these two pathogens, which led to synergistic pathologic disor-
ders with devastating impacts [12]. Analyses of influenza-associated bacterial infections
in mouse models have revealed higher morbidity and mortality rates in comparison to
infection with the individual pathogens [13,14]. In the last three years, influenza viruses
have been replaced by the coronavirus SARS-CoV-2 as the prevailing respiratory infection
agents. Published data have shown that SARS-CoV-2 is also capable of making patients
vulnerable to secondary bacterial infection [15–17]. Therefore, exploring and identifying the
underlying mechanisms and the role of influenza virus proteins in establishing consequent
bacterial infection would provide a new perspective on the prevention through vaccination
and treatment, not only by antibacterial drugs, but preferentially by drugs against viral
infections [15,18,19].

2. Pathogenesis of Co-Infection by IAV and Streptococcus pneumoniae
2.1. Viral Influenza Infection

Infection with influenza A viruses occurs in the upper airway epithelium. In the
human population, the influenza virus spreads by droplets, and the manifestation of
airway infection may be asymptomatic or with only very mild symptoms of uncomplicated
upper respiratory tract infection. However, IAVs can also trigger complicated disease
associated with severe pneumonia, leading to multi-organ failure or the worsening of
existing health conditions, especially in individuals with immunodeficiency or chronic lung
or heart disease [20–22]. The initial sites of influenza A infection are the pseudostratified
columnar cells of the respiratory epithelium in the trachea, nasal cavity, and sub-mucosal
nodes, as well as the pneumocytes in pulmonary alveoli. The virus further spreads and
infects surrounding epithelial as well as immune cells, such as macrophages, dendritic cells,
and NK cells [23,24].

IAV infection activates the immune response in the respiratory tract by triggering the
innate defense mechanisms. IAV must first overcome the physical barrier, consisting of
mucosal surface fluid containing antimicrobial peptides, neutralizing secretory antibodies,
IgA, mucus, and a protective layer of basal and ciliated epithelial cells. The integrity of
the airway epithelium is also under the constant surveillance of leukocytes [25,26]. Home-
ostasis is maintained through the release of cytokines, chemokines, and growth factors.
When IAV enters cells, a signal is transmitted along the interferon signaling pathway and
the antiviral response is activated. After pattern-recognizing receptors (PRRs) recognize
virus-specific nucleic acids, they activate the transcription of interferon (IFN) genes and
the secretion of proinflammatory cytokines. Secreted type I IFNs trigger the expression
of IFN-stimulated genes in infected cells, as well as in adjacent uninfected cells, which
encode a variety of antiviral proteins, thus protecting them from viral invasion [27]. IFNs
are major cytokines with antiviral, antiproliferative, and immunomodulatory functions
against viral and bacterial infections and represent the first line of defense against IAV
infection [28]. When the IFN response and leukocytes do not prevent IAV replication, the
pro-inflammatory response and apoptosis are activated. The presence of the virus also
triggers the adaptive immune response, which is mediated by T-cells and B-cells, and the
production of IgM and IgG antibodies, which can interfere with different stages of the
viral life cycle [25]. However, IAV proteins can inhibit the functions of IFN at all levels,
helping viruses to avoid the antiviral response [27,29]. The impaired antiviral response and
activity of type I and type II interferons as a result of IAV infection inhibit the function of
neutrophils and macrophages, as well as the response of T-cells and NK cells [30–34].

Influenza viruses contain eight gene segments that, together, encode nine structural
proteins and at least nine non-structural proteins with regulatory functions [35,36]. The
most abundant envelope protein of the IAV is hemagglutinin (HA), which is incorporated
into the lipid bilayer derived from the infected cell [37,38]. It is a glycoprotein responsible
for the attachment of the virus to the host cell receptor—sialic acid—and the fusion of
viral and endosomal membranes, enabling the viral genome to be released into the cy-
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toplasm [23,39]. During uncoating, the matrix protein 2 (M2), with ion channel activity,
plays an essential role [40]. The inner side of the virion is lined by matrix protein 1 (M1),
which determines the shape of the viral particles and surrounds the eight segments of the
ribonucleoprotein (RNP) complex comprising the nucleoprotein (NP) and negative-sense
RNA. Each of the eight segments is bound by its own polymerase complex, composed
of three proteins (PB1, PB2, and PA) responsible for the replication and transcription of
the genome segments [41]. The viral replication and suppression of immune response
against IAV infection are mediated mainly by the multi-functional non-structural protein
1 (NS1) [42,43]. Viral RNA is synthetized de novo in the nucleus and is exported to the
cytoplasm by the nuclear export protein (NEP), also known as non-structural protein 2
(NS2), which is found freely in the mature virion [44,45]. Newly translated proteins are
transported to the cell membrane, where virus particles are completed and released from
the infected cell with help of the exo-sialidase activity of second immunodominant protein,
neuraminidase (NA) [41]. Novel accessory proteins of IAV, including PB1-F2, PB1-N40,
PA-X, PB2-S1, matrix protein M42, and NS3, have recently been discovered. These are
products of alternative reading frames within IAV gene segments, and they provide a
replication advantage to the virus or emerge as a consequence of IAV adaptation to a new
host [23,24,39,46].

The pathogenesis of IAV infection is characterized by two phases. The first phase
lasts approximately 1–3 days and determines the maximum level of viral titer and the
extent of the associated inflammatory response. Depending on these two parameters,
the second phase may result in the acquisition of control over the virus transmission or
end up as a widespread disease associated with acute respiratory distress syndrome and
death. The clinical course of the infection and the outcome of the pathogenetic processes
of the viral infection are determined by both viral and host factors [22,47,48]. The viral
factors influencing the course of infection include the proteins encoded by the IAV [49–52].
The most variable viral proteins are HA and NA. At present, 18 different HA sub-types
and 11 NA sub-types are known, which together can create more than 130 IAV sub-type
combinations [53]. This means that there is a possibility of more potentially dangerous
variants emerging in the future. Here, we discuss the roles of particular IAV proteins in
modulating viral infection, viral–bacterial co-infection, and immune response.

2.2. Bacterial Infection with Streptococcus pneumoniae

The human upper respiratory tract is a suitable environment for colonization by
the various micro-organisms constituting the human microbiome [54–56]. A frequently
occurring bacterial species in the upper respiratory tract is S. pneumoniae, which
is a Gram-positive extracellular pathogen belonging to a group of approximately
100 different serotypes [57] depending on an important virulence factor—the polysaccha-
ride capsule [58–60]. S. pneumoniae form a biofilm, a highly organized multi-cellular
community of one or more bacterial types that produce an extracellular matrix and adhere
to abiotic and biological surfaces such as the human nasopharynx. The main characteristic
of this biofilm is high antibiotic resistance and the presence of a protective matrix on the
surface of the biofilm, which enables the avoidance of immune surveillance by the host
and helps to maintain the persistence and dissemination of bacteria in the host organ-
ism [11,61–64]. The nasopharyngeal environment, low temperatures (34 ◦C), and limited
nutrient supply are essential for the formation of a bacterial biofilm [65,66]. Depending
on the part of the human body where the bacterium enters, such as the spinal cord and
brain, heart, middle ear, sinuses, or lungs, it can cause various diseases, including bacterial
meningitis [67], endocarditis [68], otitis media [69], sinusitis [70,71], and pneumococcal
pneumonia [59], respectively. The ability of the bacteria to enter the body is limited by the
maturity of the immune system; therefore, young children, the elderly, and immunocom-
promised individuals are the most vulnerable groups [58]. The mechanisms responsible for
the disease-related transition of bacterial colonization from an asymptomatic biofilm in the
nasopharynx to an invasive phenotype are not yet known [63,72–75].
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2.3. Co-Pathogenesis of IAV and Streptococcus pneumoniae

Infection with IAV paves the way for S. pneumoniae invasion by causing respiratory
tract damage, manifested by impaired integrity of the epithelial barrier, inflammation, and
elevated glucose availability [76]. Several very serious complications can occur in the lung,
such as a decrease or loss of gas exchange function, oedema, or pleurisy [7,77], which appear
mostly in immuno-compromised patients, individuals with underlying genetic conditions,
children under the age of five, and elderly adults above the age of 65 years. Extensive
tissue damage in the alveolar space also results in a loss of the repair ability [78–81]. Loss
of healing response to lung damage and also the loss of basal epithelial cells required for
airway epithelial regeneration (including alveolar epithelial cells type I and II) are associated
with an increased number of cellular receptors for bacterial adhesion, the attachment
of bacteria to the surface of these cells, and their apoptosis. Defective tissue integrity
promotes the development of complications ranging from bacteremia to sepsis [76,82–84].
The clearance of bacteria is slowed by decreased mucociliary velocity [7,85] and by the
disruption of immune mechanisms. The depletion of alveolar macrophages and neutrophils,
along with the increased production of anti-inflammatory cytokines such as IL-10, TGF-β,
type I interferons, and IFN-γ, creates suitable conditions for bacteria dispersing from the
biofilm (see Figure 1) [54,61,63,72,76,86–88].
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Figure 1. Illustration of influenza virus protein functions in the enhancement of S. pneumoniae lung
infection. The mucosal layer in the lungs is damaged due to sialidase activity of viral NA, and ciliated
epithelial cells in lungs, together with immune cells, are infected with IAV. During infection, IAV
proteins PB1-F2, NS1, HA, NA, and M2 cause impairment of the immune response, the apoptosis and
inflammation, leading to the destruction of tissue integrity. All of these viral protein functions can
lead to enhanced susceptibility to secondary S. pneumoniae infection observed approximately 7 days
after viral infection (7 dpi).

2.3.1. Disruption of Innate Immunity and Inflammatory Response during IAV and
Bacterial Co-Infection

The first line of defense against respiratory pathogens includes the alveolar
macrophages, which represent more than 90% of the immune cells found in the bron-
choalveolar lavage fluid of a healthy individual [7]. These immune cells are specifically
targeted by IAV, causing their depletion. As the proliferation and differentiation of new
alveolar macrophages takes up to two weeks, the lung tissue is not sufficiently protected
for this period of time, thus establishing a niche for the development of pneumococcal
superinfection [89–93].

A crucial step in the development of a secondary bacterial infection is the disruption
of the innate immunity and the inflammatory response. At the time of primary viral
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infection, when the viral titer decreases—usually 7 days after IAV infection—the anti-
inflammatory response is very strongly induced, mainly by IL-10 or TGF-β produced by
macrophages [94–97].

At this stage, IAV induces inhibition of the Th17 pathway, which suppresses bacterial
clearance through NADPH-oxidase-dependent phagocytosis [31,98]. Previous recognition
of viral dsRNA by the toll-like receptors (TLRs) of remaining alveolar macrophages causes
an inability of the TLRs to recognize foreign bacterial products [90,91,99,100] and also
triggers the production of IFN-γ by T-cells, preventing the clearance of S. pneumoniae by
neutrophils and alveolar macrophages [32,101,102]. This step ensures that homeostasis is
established but also reduces the ability of the immune system to recognize pathogens and
to effectively defend itself [7,103,104].

In addition to the apoptosis of macrophages during IAV infection, the apoptosis of neu-
trophils [105,106], human dendritic cells [107], and NK cells [108] has also been observed.
NK cells and T-cells produce immunomodulatory cytokines and mediate the cytotoxic
response to viral infection; however, imbalances in their function during influenza infection
can lead to an excessive inflammatory response and lung tissue damage [80,109–112].

2.3.2. Autophagy and Apoptosis Mediated by Influenza Infection

Influenza viruses are able to activate, as well as inhibit, the host-cell apoptotic process,
depending on the phase of infection [113–116]. Apoptosis appears to be linked with
autophagy during IAV infection [117–120], which is important for maintaining cellular
homeostasis [121–124]. Interactions among several IAV proteins, such as PB1-F2, NA, HA,
NS1, nucleoprotein (NP), matrix protein 1 (M1), and matrix protein 2 (M2), manipulate
autophagy and apoptosis. Recent in vivo and in vitro studies have shown that autophagy is
viral-strain-dependent [116,118,125–128].

IAV alters autophagy and apoptosis in favor of viral replication and the release of new
viral particles. In the early phase of infection (see Figure 1), viral NS1 protein up-regulates
the synthesis of HA and M2, thereby indirectly promoting the formation of autophago-
somes [115,117,119,120,129–132]. Autophagosomes are transient double-membrane vesi-
cles, which are usually fused by lysosomes in the process known as autophagosome
maturation. During the terminal stage of IAV infection, M2 protein interfere with the
formation of autophagolysosomes [129,133–135]. Accumulated viral antigens enwrapped
in autophagosomes avoid recognition by the immune system and antiviral response. At
this phase of IAV infection, M2–dependent inhibition of autophagy promotes apopto-
sis for effective replication [117–120,135] and, consequently, induces damage to lung ep-
ithelial cell as well as the production of anti-inflammatory cytokines. All of these pro-
cesses triggered by IAV contribute to the development of secondary bacterial infection by
S. pneumoniae [93,102,118,136].

3. Role of IAV Proteins in Viral and Bacterial Co-Infection

Many studies have shown that, during primary infection, the influenza virus proteins
facilitate bacterial infection, colonization, and disease development by S. pneumoniae in
individuals of all ages [6,86,137]. Different IAV proteins are involved in the progression of
bacterial superinfection through various mechanisms (Figure 1). NA facilitates access to
receptors and nutrients for S. pneumoniae, which promotes the development of bacterial
infection [23,138,139]. NS1 and PB1-F2 affect the regulation of the interferon response,
the disruption of the inflammatory response, and/or the manipulation of the processes
of autophagy and apoptosis [35,140,141]. Other IAV proteins have not yet been shown to
play a direct role in the development of bacterial co-infection, but M1 [142], NP [143,144],
and HA [119,129] facilitate the manipulation of apoptosis. M2 protein is required for the
activation of inflammasomes in macrophages and dendritic cells [145], which indirectly
helps in secondary bacterial infection development (Table 1) [35,146,147].
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Table 1. Function of IAV proteins predisposing host to pneumococcal co-infection.

IAV Protein Function Functional Domain References

PB1-F2

Inhibition of IFN response N66S mutation [148,149]
Apoptosis of epithelial and immune cells - [150,151]

Cytotoxic death of epithelial and immune cells Cytotoxic motif [152]
Induction of rapid inflammatory response Inflammatory motif [153,154]

Regulation of NLRP3 inflammasome activity - [155–158]

HA Regulation of autophagosome formation - [119,127,159,160]

NA

Creation of environment for bacterial entrance

Alteration of glycosylation on cell surface Catalytic domain [138,139]
Desialylation of surface glycans [161,162]

Affection of innate immunity

Direct activation of TGF-β Catalytic domain [163–165]

NS1

Inhibition of IFN response in several ways

Blocking of RIG-I activation
RNA-binding domain

[166–168]
Blocking of PKR activation [168–170]

Blocking OAS function [171,172]
Interaction with host factors Effector domain PDZ-binding motif [173–176]

Manipulation of apoptosis in several ways

Binding to PKR linker domain Effector domain [120,132]
Activation of PI3K pathway SH3-binding motif aa 164–167 [119,177–179]

Interaction with Hsp90 - [180,181]
Inhibition of p53 aa 144–188 [182–184]

M2
Induction of autophagosome formation - [119,124,129]
Inhibition of lysosomal degradation of

autophagosomes - [129,185,186]

NP Induction of autophagosome formation - [128,129]

(-) Multiple mechanisms or not defined.

3.1. Characterization of PB1-F2 Protein

PB1-F2 is a small accessory non-structural protein found in some influenza A virus
strains, encoded by the a + 1 alternative open reading frame of the PB1 segment [133]. The
length of the protein varies according to the host specificity. The original avian PB1-F2 is
composed of 87–90 amino acids [187], in contrast to 11 amino acids in human and swine
isolates [51]. Zoonotic IAV strains represent a reservoir of full-length PB1-F2 sequences and
were introduced into the human population during the pandemics of IAV strains H1N1
(1918), H2N2 (1957), and H3N2 (1968), characterized by an increased incidence of secondary
bacterial infections [188]. Full-length PB1-F2 is a phosphoprotein with two helical domains,
a C-terminus formed by an extended α-helix, and an N-terminus formed by two short
α-helices, connected by a flexible and unstructured hinge region [189]. The PB1-F2 molecule
can form oligomeric structures and membrane pores in the lipid bilayer [190,191]. The
protein is mainly localized in mitochondria, but it can also be present in the nucleus
and cytoplasm of infected cells [133,192,193]. Several virulence-associated amino acid
residues and motifs have been identified within PB1-F2. These motifs gave PB1-F2 both
intracellular and extracellular functions, such as the strain-specific regulation of polymerase
activity [194] or the exacerbation of viral pathogenesis in animal models, direct or indirect
induction of apoptosis, and the modulation of innate immune responses. To a large
extent, PB1-F2 also participates in the activation of neutrophils, alveolar macrophages, and
dendritic cells and in their recruitment into the airways [146,156,195]. The effect of PB1-F2
seems to be cell-type-dependent. With respect to these properties, PB1-F2 protein is able to
influence the course of infection and enhance not only viral infection [51,146,147,195,196]
but also subsequent secondary bacterial infections on several levels.
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3.1.1. Apoptosis and Cytotoxicity Mediated by PB1-F2

PB1-F2 itself increases IAV virulence by causing the cell death of the alveolar
macrophages located in the lungs [197]. Their apoptosis leads to decreased antigen pre-
sentation, reduced initial viral clearance, and disrupted communication between alveolar
macrophages and T-helper CD4+ cells. Consequently, the downstream effector functions of
CD4+ cells, including the activation of cytotoxic T-lymphocytes (CTL), the production of an-
tibodies, and the inflammatory response, are impaired [198]. Just one amino acid mutation
at position 66 (N66S) can inhibit inflammasome activation and the IFN response induction,
and increase the virulence of the virus [155]. PB1-F2 protein localized in mitochondria is
able to promote apoptosis through mechanisms mediated by the mitochondrial targeting
sequence at PB1-F2 C-terminus [199,200]. PB1-F2 localized in the outer mitochondrial
membrane interacts with two mitochondrial membrane proteins involved in the formation
of mitochondrial permeability transition pores, the voltage-dependent anion channel 1
(VDAC-1) and adenine nucleotide translocator 3 (ANT3). Their interaction causes the
permeabilization of the mitochondrial outer membrane (MOMP), allowing cytochrome
c efflux and resulting in apoptosis [150,201]. Moreover, PB1-F2 can form amyloid fibers
and β-amyloid pore structures, leading to the permeabilization of cellular membranes
and, subsequently, cell death [190]. The reduction of the pro-inflammatory response and
promotion of apoptosis increase the frequency and severity of secondary bacterial infection
in vivo [202].

The PB1-F2 protein of some IAV strains contains a cytotoxic sequence or “cytotoxic
motif”, consisting of three amino acid residues (I68, L69 and V70) at the C-terminus, which
can trigger cytotoxic death in immune and epithelial cells in lungs. This motif enhances
immunopathological processes in lungs and accelerates the development of secondary
bacterial infection [51,152].

3.1.2. PB1-F2 Pathogenic Markers Enhancing Secondary Bacterial Infection

At present, five specific amino acid markers found in the C-terminal region of PB1-
F2 are recognized, which are associated with the induction of the host inflammatory
response [154], as well as with complications after secondary bacterial infection [203]. The
first marker, amino acid exchange at position 66 in the PB1-F2 sequence (N66S), correlates
with pathogenicity, increased virulence [155], and early IFN response inhibition [148].
IFN suppression results in the increased susceptibility of the host to secondary bacterial
infection. The other four markers in the C-terminal region—specifically L62, R75, R79, and
L82—represent the PB1-F2 “proinflammatory domain” or “inflammatory motif” linked with
significantly higher morbidity and mortality in mouse models of all pandemic IAVs from
1918, 1957, and 1968 [51,153]. These “inflammatory residues” enhance the development of
secondary bacterial pneumonia, as they are responsible for increased lung destruction and
significant pulmonary inflammation by inflammatory cells and proinflammatory cytokines
present in the lungs. Interestingly, PB1-F2 protein without changes in these locations (i.e.,
motifs P62, H75, Q79, and S82) is referred to as “noninflammatory protein” and possesses
antibacterial activity [153].

Another function of PB1-F2 that influences the inflammatory response is its ability to
regulate the NLRP3-inflammasome in humans and mice, which consequently induces the
secretion of the pyrogenic interleukin IL-1β [156,204,205]. NLRP3-inflammasome is a cyto-
plasmic multi-protein complex that is activated upon IAV infection. This complex mediates
proteolysis of interleukins from the IL-1 family to their mature and fully active form [206].
After IAV is recognized by NOD-like receptors (NLRs), the NLRP3-inflammasome com-
plex is up-regulated and, subsequently, mature IL-1β is secreted [157,207]. PB1-F2 pro-
tein has been associated with the activation of the NLRP3-inflammasome through vari-
ous mechanisms, such as the induction of apoptosis, the inhibition of IFN I activation,
the acidification of phagolysosomes, mitochondrial disruption, the activation of reac-
tive oxygen species (ROS), and the formation of aggregates of the PB1-F2 C-terminal
region [156,157,204,205,207,208]. At the same time, PB1-F2 can also inhibit the activation of



Viruses 2022, 14, 1064 8 of 24

the NLRP3-inflammasome by decreasing the mitochondrial membrane potential. PB1-F2
translocates into mitochondrial inner membrane space by the major outer mitochondrial
membrane channel (Tom40). Accumulated PB1-F2 protein decreases the membrane po-
tential and accelerates mitochondrial fragmentation. The resulting pathway appears to
depend on the secondary structure of the PB1-F2 spliceosomes [158,205,209].

Overall, PB1-F2 is a critical virulence factor; its properties and functions differ ac-
cording to its amino acid sequence, strain specificity, cell type, and host specificity [210].
Although the exact mechanism by which this protein influences the virulence or im-
munopathogenesis is not yet fully understood, it is clear that PB1-F2 is involved in the
enhancement of pathological processes during IAV infection, which may lead to the devel-
opment of secondary bacterial infection [153,156,202].

3.2. Characterization of Hemagglutinin

Hemagglutinin (HA) is the major surface glycoprotein of influenza virus, which is
essential for the onset of viral infection. It is encoded by the fourth segment of IAV and,
as one of the virulence factors, is the main target of the immune response [41,211–213].
The synthesis of HA takes place on the ribosomes of the rough endoplasmic reticulum as
a precursor molecule HA0, which is post-translationally proteolytically cleaved into two
glycopeptides, HA1 and HA2, which are linked by disulfide bonds [38,214]. Depending
on the nature of the cleavage site, HA0 can be cleaved intracellularly or extracellularly.
Multi-basic cleavage sites are cleaved intracellularly with subtilisin-like cellular proteases
(furin, PC6), and monobasic cleavage sites are cleaved extracellularly with trypsin-like
serine proteases (tryptase Clara, HAT-protease, TMPRSS2, and plasmin) [215–217]. HA
forms on the viral surface homotrimers. The globular domain of HA trimer (formed by
HA1) ensures initial contact with the target cell through binding to sialic acid receptors
present on the cell surface. The stem domain, created mainly by HA2 [218], mediates the
viral–endosomal membrane fusion after low-pH-induced HA structural rearrangement and
plays an essential role in the release of influenza virus genome into the cytoplasm [219,220].

3.2.1. Changes of HA Cleavage during Viral and Bacterial Co-Infection

It has been shown that some bacteria influence the replication of the influenza virus
and pathogenesis during secondary bacterial infection by promoting HA0 cleavage to its
fusion-active form. This happens through the secretion of bacterial proteases or activation
of cellular proteases [221]. The direct effect of proteases on HA cleavage and exacerbation
of infection has been observed during co-infection with bacterial strains such as Staphylococ-
cus aureus [222], Aerococcus viridans [223], Streptomyces griseus [224], and Stenotrophomonas
maltophilia [225]. However, Callan et al. have described a reduction in viral infectivity
after HA cleavage at an alternative amino acid sequence of the cleavage site with Pseu-
domonas aeruginosa protease [226]. Some bacteria in the respiratory tract produce proteins
known as streptokinases and staphylokinases, which are capable of forming complexes
that convert host enzymes into their active forms (e.g., plasmin, kallikrein, thrombin) and,
thus, may indirectly increase the cleavage of the HA glycoprotein and spread of viral in-
fection [223,227–229]. However, none of the aforementioned mechanisms are used during
secondary bacterial infection with S. pneumoniae. As S. pneumoniae is able to bind plasmino-
gen and host-derived activator onto its surface [230–232] and transport both proteins to
the site of viral infection, it can possibly facilitate and increase the cleavage of viral HA
into its active form [233]. In the case of viral–bacterial co-infection, the interaction between
HA and bacteria leads to the promotion of viral infection. Viral HA, expressed on the
surface of infected pneumocytes or on free extracellular virions, can bind to ligands on
the polysaccharide capsule of Staphylococcus aureus [234], Streptococcus pyogenes [235], and
Streptococcus agalactiae [236] and ameliorate bacterial internalization.
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3.2.2. The Role of Hemagglutinin in the Autophagy

HA of IAV is one of the proteins involved in the regulation of autophagy. Wang et al.
have observed autophagy induced by HA binding to heat shock protein 90AA1 (HSP90AA1)
present on the cell surface [159]. This strategy is exploited by IAV to prolong the time
during which the virus replicates [118]. The process of exacerbation of the disease due
to pneumonia is multi-factorial and dependent on viral, bacterial, and host factors [82].
The ways in which the other HA properties, such as HA tropism and affinity to sialic acid,
extent of HA glycosylation, and the optimum pH for HA structural rearrangement into
its fusion-active conformation, influence the development of bacterial superinfection are
poorly understood at present [160,237].

3.3. Characterization of Neuraminidase

Neuraminidase (NA) and hemagglutinin (HA) are the major surface proteins of in-
fluenza viruses. NA is a tetramer comprising four identical monomers. Each NA monomer
consists of four structural domains, namely, the catalytic head, the stem, the transmem-
brane region, and the cytoplasmic tail [23,238]. Four catalytic head domains create the
enzymatic site with exo-sialidase activity. The stalk domain contributes to the stability of
the NA tetramer. The structure and length of the stem differ among viral strains. Its length,
in particular, affects the ability of the virus to replicate [238–240]. The transmembrane
domain anchors the NA tetramer to the viral envelope, and its signals are necessary for
translocation from the endoplasmic reticulum. The fourth domain—the cytoplasmic tail—is
thought to interact with matrix M1 viral protein and affects virion morphology and viru-
lence [238,241–243]. Neuraminidase is an enzyme that cleaves the terminal α-glycosidic
bond between N-acetyl-neuraminic acid (sialic acid) and the carbohydrate residues of
glycopeptides or glycolipids on the cell surface. The NA of influenza viruses functions at
multiple levels during IAV infection. NA activity enables the release of de novo synthesized
budding viral particles from the infected cell surface and prevents virion aggregation. This
cleavage mechanism of NA prevents not only the aggregation of emerging virions but also
the rebinding of these virions to the dying host cell [23,238,244]. Viral NA also cleaves
neuraminic acid residues from airway mucin, allowing the movement of the virus into
target cells [23,238,245]. Another function is its role in enhancing HA-mediated membrane
fusion [238,246].

3.3.1. The Role of the Viral and Bacterial Neuraminidases in Co-Infection

Many bacterial receptors are coated with carbohydrates covered by sialic acids. There-
fore, most bacterial strains synthesize their own bacterial neuraminidases, which cleave
sialic acids on the host cell surfaces and allow for their adhesion. S. pneumoniae expresses
three types of neuraminidases: NanA, NanB, and NanC [247,248]. The most expressed and
active is NanA, with a conserved catalytic site present in all strains. Although viral and
pneumococcal neuraminidases have different quaternary structures (bacterial NanA is a
monomer), their active sites are similar but have different substrate specificities [249,250].
The epithelium of the upper part of the respiratory tract is densely coated with α2,6-
linked sialic acids, while α2,3-linked sialic acids prevail in the lower respiratory tract.
Microbial NanA and viral NA can cleave sialic acids bound by both types of glycosidic
bonds [249]. S. pneumoniae NanA facilitates colonization of the respiratory tract by cleaving
sialic acid from mucin and reducing the viscosity of the mucus. Influenza infection in-
creases the production of mucus, which serves as a source of nutrients for S. pneumoniae [6].
Therefore, after previous infection with influenza viruses, pneumococci can adhere to the
pulmonary epithelium and invade host cells to a greater extent. This has been described
especially for more virulent strains of the H3N2 sub-type, revealing relatively high viral
neuraminidase activity. Several sources have suggested viral–bacterial neuraminidase
interactions [18,77,251,252].

The NA activity of IAV alters the glycosylation of the host cell surface in the airway
epithelium, thus affecting local and systemic immune responses and enhancing the de-
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velopment of bacterial infection [138,139]. Neuraminidases of IAV and S. pneumoniae can
desialylate surface glycans on lung epithelial cells and expose sub-terminal galactosyl
groups as ligands for soluble β-galactoside-binding proteins (i.e., galectins).

3.3.2. Cooperation of NA and Galectins during Co-Infection

Galectins play a key regulatory role in cell development and immune homeostasis.
They are involved in cell activation, differentiation, and signaling. Galectins also serve as
immune recognition receptors and effector factors in leukocyte recruitment and apoptosis
and mediate host–pathogen interactions [253–258]. Yang et al. have recently identified
three galectins with anti-influenza effects—Gal-1, Gal-2, and Gal-3—released after IAV
infection from various cells in the respiratory tract [258]. Current studies have confirmed
that Gal-1, Gal-3, and Gal-9 alleviate the overall course of influenza infection by blocking
viral binding and strengthening cell immune responses [162,258–262].

It has been found that primary IAV infection and subsequent S. pneumoniae infection
increase galectin expression and release, including Gal-1 and Gal-3, which bind strongly
to glycans on the surface of both pathogens. Subsequently, galectins, including galectin-3,
bound on the surface of S. pneumoniae interact with ligands and mediate the adhesion of
S. pneumoniae to epithelial cells and, as has been shown in both in vitro and in vivo models,
support S. pneumoniae invasion during co-infection [162,263–267]. This interplay between
galectins and viral NA may determine the intensity of pneumococcal infection.

3.3.3. Impact of the Viral NA Activity on the Innate Immunity

Neuraminidases of the influenza virus, as well as from S. pneumoniae, are some of the
few reported pathogen-encoded molecules that directly activate an important cytokine,
transforming growth factor β (TGF-β). TGF-β is an important mediator of interactions
between the infectious pathogen and its host and is constantly expressed in the body in the
form of mRNA or present as a latent protein. Thus, it rapidly becomes accessible in the
event of a primary infection. The latent TGF-β consists of an N-terminal latency-associated
peptide (LAP), which is non-covalently linked to a C-terminal mature TGF-β1 molecule.
The release of mature TGF-β from LAP by NA activates the TGF-β, which binds to cellular
receptors and induces a biological response [163,268,269]. In the respiratory tract, the
expression of the TGF-β1 isoform controls the differentiation, proliferation, and activation
status of leukocytes. TGF-β is an immunosuppressive molecule, and influenza infection
potentiates its immunosuppressive ability. Elevated TGF-β levels can induce apoptosis
of both immune cells and lung epithelial cells, confirming the potential role of NA in the
pathogenesis not only of viral infection, but also of bacterial co-infection [163,270–272].
TGF-β, a regulator of the adaptive immune response, reduces the number of activated
cytotoxic T-cells and induces the production of IL-10 by regulatory T-cells, thus facilitating
lung colonization by S. pneumoniae [164,273]. Although TGF-β is not an effector cytokine
that can mediate bacterial clearance, Roberts et al. have shown that hosts with allergic
airway disease, which induces TGF-β production, were protected against severe influenza
and bacterial co-infection [273]. On the contrary, Li et al. have demonstrated that TGF-β
directly activated by influenza virus NA promotes the expression of cellular adhesins,
leading to decreased bacterial clearance and increased colonization. Therefore, the exact
role of NA-activated TGF-β in co-infection remains unclear [164].

3.4. Characterization of NS1

Non-structural protein 1 (NS1) has many functions and is known as a major viral
antagonist of the interferon response [274–276]. Thus, NS1 represents a very important
virulence factor affecting the pathogenesis of influenza disease, as well as viral and bacterial
co-infection [35,141,277].

NS1 is a product of alternative splicing of the NS gene, occurring as a homodimer. The
monomer is composed of two functional domains, the N-terminal RNA-binding domain
(RBD) and the C-terminal effector domain, which are joined by a short inter-domain linker



Viruses 2022, 14, 1064 11 of 24

region [35,141,278]. Each domain interacts with different cellular factors. The homodimer
of NS1 can bind to various species of RNA—most importantly, to double-stranded RNA
(dsRNA) by RBD at the N-terminus. This binding property influences multiple functions of
cellular proteins critical in the development of secondary bacterial infection, consequently
affecting the onset, course, and severity of the bacterial co-infection [35,140,277]. The most
significant is the influence of NS1 on the type I IFN response as an antagonist of type I IFN
signaling. NS1 also interacts with other IAV and host proteins, controlling the autophagy
and apoptosis of lung epithelial cells [279–282].

3.4.1. NS1 Interaction with Interferon Signaling Pathways Enhances the Development of
Secondary Bacterial Infection

After the IAV invades the host, it is recognized by a cellular pathogen sensor called
retinoic acid-inducible gene-I (RIG-I). Subsequently, the RIG-I-mediated signaling pathway
induces the expression of interferons [283]. However, NS1 is capable of inhibiting this path-
way in several ways: first, by the direct interaction with E3 ubiquitin ligases TRIM25 [166]
and Riplet [167], which prevents the activation of the RIG-I receptor; second, indirectly by
interaction with host factors through its effector domain at the C-terminus, which leads to
the inhibition of IRF3 phosphorylation [141,174] and subsequent inhibition of the type I IFN
response mediated by IRF-3, as well as interferon-stimulated genes (ISGs) [141,175,284].
These steps result in the prevention of virus detection by host cells [166,276,285–287]. Next,
NS1 can bind its RBD domain to RIG-I and several other proteins with dsRNA-binding abil-
ity and block their activation—for example, dsRNA-dependent serine/threonine–protein
kinase R (PKR) [168,276,288].

PKR is a crucial protein responsible for the host antiviral response. It activates nuclear
factor κB (NF-κB), thus contributing to type I IFN response [168,276]. During IAV infection,
NF-κB regulates the expression of many cytokine and chemokine genes, including the
antiviral cytokine IFNβ [289]. PKR activates IKκB, part of the IKK kinase complex, which
phosphorylates the NF-κB inhibitor IκB, resulting in the activation of NF-κβ [290,291]. PKR
also significantly slows down viral protein synthesis through phosphorylation of eukaryotic
initiation factor-2 α-subunit protein (eIF-2α). Binding with NS1 prevents its activation,
which blocks subsequent antiviral responses [168,276,292]. IAV viruses with defective or
deleted NS1 (delNS1 mutants) are unable to block PKR activation [169]. They can, however,
replicate in the absence of PKR, which proves the role of NS1 in counteracting the PKR-
mediated antiviral response [170]. Furthermore, the RBD of NS1 can also compete with the
RNA-binding capacity of oligoadenylate synthase (OAS), which is able to cleave viral RNA
by the activation of RNase L. Such degraded viral RNA elements can be recognized by
RIG-I receptors that activate IFN production [141,172,274]. All of these steps and functions
weaken the immune response and prevent the detection of the virus in the host cells,
suggesting the important role of NS1 in enhancing the development of secondary bacterial
infection [33].

3.4.2. NS1 Motif Directly Involved in Co-Infection with S. pneumoniae

The structure and function of NS1 differ among types of influenza viruses, and even
among sub-types, and may be used to predict the potential of a particular strain to enhance
the development of bacterial co-infection [29,203]. It has been reported that influenza infec-
tion with A/Puerto Rico/8/34-H1N1 (PR8) virus impaired IFN-β production, which led to
increased susceptibility to secondary bacterial infection [282]. At 7 dpi, when the organism
is most susceptible to the development of secondary bacterial infection [6], minimal IFN-β
production [43,282,285] and extensive inflammatory response with insufficient bacterial
clearance were observed [9,31,293]. This environment provides suitable conditions allow-
ing for the rapid spread of bacteria, thus causing tissue damage. In 2019, Shepardson et al.
have identified HA and NS1 of the influenza virus as individual regulators of secondary
bacterial infection severity and described a motif binding PDZ (PDZ-bm) present at the
C-terminus of the NS1 protein of the PR8. To unveil its function, the PDZ-bm domain was
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deleted from the NS1 protein of PR8, and the resulting virus was not capable of lowering
the expression of IFN-β. Thus, they identified the PDZ-bm sequence, which is directly
involved in controlling the susceptibility to secondary bacterial infection through the reg-
ulation of the IFN-β response [282]. As there are significant differences among influenza
virus strains in this region, it was suggested that NS1 proteins from different viruses have
different impacts on the host susceptibility to secondary bacterial infection.

3.4.3. NS1 Manipulates Apoptosis

NS1 exhibits a complex role in the modulation of apoptosis, depending on various
factors including the virus strain and the cell type. It is well-known that NS1 can, for
example, directly bind to the linker region of PKR by its effector domain and block PKR-
mediated apoptosis by preventing its conformational change and autophosphorylation of
PKR. NS1 can also activate the host cell phosphatidylinositol 3-kinase (PI3K) pathway and,
in this way, impair apoptosis [276,277]. The NS1 of H3N2 and H5N1 sub-types interact with
heatshock protein Hsp90 and mediate the apoptosis of lymphocytes through the caspase
cascade [181]. However, the interactions between NS1 and apoptotic pathways are still not
well-understood and need to be further described in the future.

4. Conclusions

Influenza A virus infections in humans cause an acute respiratory disease with a
spectrum of clinical symptoms. In many patients, the disease can be life-threatening and
associated with various complications, depending on the comorbidities of the infected
individual. The most frequently occurring complications are linked with bacterial co-
infections or secondary superinfections, which enhance the pathological processes triggered
by the IAV infection.

At present, many unanswered questions remain regarding the role of the host and its
defense mechanisms in infection control, as well as about the effect of bacterial co-infection
on the course of influenza infection and the host immune response. Additionally, many
questions arise concerning the role of the primary viral infection and the function of viral
proteins in this process [2]. Influenza infection damages lung tissue and promotes bacterial
colonization through the alteration of the cytokine response. After the virus disrupts the
epithelial barrier and induces the production of cytokines, thus reducing the number of
Th17 cells in the lungs while also disrupting macrophage function and the production of
suppressive cytokines released by regulatory T-cells, the primary influenza infection can
lead to the development of a bacterial superinfection. Thus, the innate immune response
does not function properly after being affected by viral proteins such as HA, NA, PB1-
F2, and NS1. At least these IAV proteins are responsible for the disruption of the innate
immunity and inflammatory response during viral and bacterial co-infection, as well as for
the inability to trigger the antiviral response of the infected host. However, the synergy of
the pathological impact of influenza–bacterial co-infections is a complex process, where not
only viral but also bacterial and host factors play an important role. While indirect evidence
of the roles of the various viral proteins in the pathogenesis of secondary bacterial infection
has been supported by animal studies, exact direct clinical evidence in humans is, in general,
lacking. Not only has such synergy has been observed during IAV pandemics or epidemics,
but there are now data regarding similar complications in humans during SARS-CoV-2
infections. Understanding the mechanisms causing the devastating pneumonia through
viral–bacterial co-infections can bring insight into the finding of targets for effective antiviral
drugs or may help to improve prevention efforts through effective vaccines, consequently
preventing the severe course of potentially dangerous respiratory infections.
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